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A study is made of the behavior of the elastic formfactor FN(q) and of the matrix element for virtual 
d a y  GN(q) of a compound system of N strongly interacting particles. On the example of a one- 
dimensional model with a &like attractive potential it is shown that for an arbitrary number of 
components N at high transferred momenta FN and GN fall off as a power of the transferred momentum, 
with FN- GN-q -Z(N-'). Such a power-type fall-off corresponds completely to the quantum asymptotic 
behavior of the N-body problem. The exact expression for FN(q) contains N-1 pole singularities. The 
nature of these poles is discussed. In the domain of low transferred momenta FN and GN exhibit 
exponential fall-off with the slope of the exponent being determined by the radius of the soliton solution of 
the classical nonlinear equation corresponding to the quantum equation. The quasiclassical correction to 
the soliton formfactor is obtained. A change in the behavior of the functions FN and GN is observed in the 
region q,, = qoN, where qo is the characteristic hadron momentum determined by the dynamics of the 
system and independent of the number of components. Thus, for large N the approach of the form factors 
to the power-law asymptotic behavior is delayed. 

PACS numbers: 03.65.Sq, 11.80.J~ 

$1. INTRODUCTION The number of components N does not appear at all 

Processes with high transferred momenta, and in 
particular the asymptotic behavior of the elastic form- 
factor of a hadron system, a r e  determined by that re- 
gion of configuration space where all the components 
a re  close to one another, i. e., knowledge of the hadron 
wave function with large relative momenta between com- 
ponents is required. If we a r e  given the number of com- 
ponents N of the hadron wave function and the form of 
the interaction between the components v(q), then the 
asymptotic behavior of the formfactor is determined by 
the simple formula 

This formula was obtained in Ref. 1 on the basis of 
dimensional considerations for the case v(q ) = const. In 
the nonrelativistic case this formula was proved for an 
arbitrary N and for functions v(q) which fall off accord- 
ing to  a power law in the domain of high q. L21 In the 
relativistic case it was obtained in the ladder approxi- 
mation for asystem of interacting scalar particles with 
N =  2,3 and with the interaction v(q) approaching a con- 
stant for high q, [" and also for an interaction of the type 
~ $ 7 ~  ( 4 9 ) -  l/q2). 

The validity of the asymptotic behavior (1) is appar- 
ently confirmed by the experimental data for a nucleon 
( N =  3) [*I and for a r meson ( N =  2).C51 It is generally 
assumed that a necessary condition for the approach to 
the asymptotic regime is that the following inequality 
for the transferred momentum q should holdCp1: 

where go is the average momentum of the component in 
the hadron. From experimental data for the nucleon i t  
follows that go- 2.5 Gev/c. 

in the estimate (2), and yet from physical considerations 
i t  seems natural that the asymptotic regime (1) should 
ar ise  only when the momentum q transferred to one 
component of the hadron is redistributed between the 
other components in equal amounts, and for this N - 1 
interactions a r e  needed. The final fraction of the mo- 
mentum transferred to each of the components is q / ~ .  
Therefore condition (2) for the approach to the asymp- 
totic regime is replaced by 

where q o  has the same meaning a s  before. 

We note that condition (3) is qualitatively already 
confirmed by data on the nucleon and the r meson: the 
approach to the asymptotic regime for the r-meson 
formfactor occurs earl ier  than for the nucleon, in the 
region q - 1.5 GeV/c. If one regards the deuteron a t  
small  distances a s  a system of six quarks then the 
boundary for the asymptotic behavior must be at a dis- 
tance which is double that for the nucleon, i. e., at q - 5 G ~ V / C .  Therefore the available experimental data 
on the electromagnetic formfactor for the d e ~ t e r o n " ~  
(q2 c 6 Gev/c2) do not refer to the asymptotic domain 
and do not serve a s  an experimental confirmation of the 
six-quark model of the deuteron. 

The problem ar ises  of the behavior of the formfactor 
in the region lying below the asymptotic region and of 
the change in the regime at q - N q o  . The following pic- 
ture appears to be entirely natural: for  q <<Nqo the ef- 
fective number of the components of the system is in- 
finite and the quasiclassical field description of the had- 
ron is valid. In this case the hadron can be described 
by the soliton solution of the classical field equation for 
i t s  components. Recently active attempts were made 

1063 Sov. Phys. JETP 45(6), June 1977 00385646/77/4506- 1063$02.40 @ 1978 American Institute of Physics 



to utilize solitons for describing the properties of had- 
r o n ~ . ~ "  A study of the formfactors of classical solitons 
shows that with an increase in the transferred momen- 
tum they fall off exponentially.c91 At the same time the 
known formfactors of hadron systems and also the ex- 
clusive and inclusive hadron cross sections in the do- 
main of high transferred momenta fall off according to 
a power law. Remaining within the framework of the 
soliton assumptions regarding the properties of hadron 
formfactors the power-type functions can be obtained 
if we take into account the inapplicability of the classi- 
cal description to the domain of small distances and 
make an exact calculation of the quantum asymptotic be- 
havior of the solution. The transition from the expo- 
nential soliton regime to the power law quantum regime 
must occur specifically a t  q -qoN. 

Below on the example of a model that can be solved 
exactly both in the quantum and the classical case we 
consider the properties of the elastic formfactor of a 
compound system. In 02 we study the formfactor of the 
quantum problem. In 03 we obtain the relation of the 
quantum solution to the formfactor of the classical soli- 
ton. In 04 we consider the possibilities of generalizing 
our model solution to more realistic cases. 

A part of the material presented here has been pub- 
lished previously .[lo' 

52. THE FORMFACTOR OF A QUANTUM COMPOUND 
SYSTEM 

We consider the one-dimensional nonrelativistic quan- 
tum theory of a complex field G ( x ,  t), defined by the 
~amiltonian" 

In such an exactly soluble model"" in each N-parti- 
cle sector there exists only a single bound state of all 
the N  particles with the wave function 

The formfactor is defined by the single-particle den- 
sity pN(x) in the usual manner: 

The function pN(x) for the wave function (5) was obtained 
in Ref. 12: 

FIG. 1. The contour of inte- 
gration C for the express ion 
(9). The dots indicate the 
poles of the integrand. 

FIG. 2. The dependence of 
the formfactors of the com- 
pound system (the number 
of quantum components is 
N=3, 6, 10, 20) and of the 
soliton (dotted line) on the 

From this we immediately obtain 

-50 

-70 

For an explicit calculation of F,(q) it is convenient 
to extend the summation to the values - (N- 1) sn< 1 
and to write the sum so obtained in the form of an inte- 
gral over the contour C shown in Fig. 1: 

- transferred momentum 
(in dimensionless units, 

\ '\\I\ \ \ 51 \ x = 4/90). 

- \ 

\ 

Taking the residues outside the contour C we obtain in 
accordance with the Cauchy theory 

bn c f x )  

We examine the behavior of F,(q) defined by (10) and 
(1 1) under the condition that the quantity q, = g ~ / 2  is 
fixed. For 

we obtain 

In the opposite limiting case q >>q,, we have 

and this agrees with the asymptotic behavior of (1) since 
in our case v(q) = const. The nature of the transition 
from one asymptotic behavior to the other is shown in 
Fig. 2 for N = 3, 6, 10, 20. On the same diagram we 
also show the form of the function lnF(q) (13). As will 
be seen from 03 in the domain of low q the functions 
lnF,(q) differ from the function lnF(q)  which falls off 
linearly by terms - q 2 / ~ .  
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1' _ FIG. 3. 

N N-1 

It must be noted that the existence of two different 
regimes for the behavior of the formfactor (13) and (14) 
for this model was recently noted independently of our 
work by Amado and ~ o 1 o s h y n . ~ ' ~ ~  

An analogous discussion can be applied to the matrix 
elements ( e  J G, which enters, for example, 
into the expression for the matrix element of the pro- 
cess shown in Fig. 3 where G, corresponds to the lower 
part of the diagram. 

Calculations similar to those given above (cf., the 
exact derivation in the Appendix), lead to the following 
expression: 

Just a s  before in the region (12) we have an asymptotic 
behavior of the form 

while for  q >>Nq, we obtain a power law falling-off anal- 
ogous to (14). 

We now discuss the meaning of the poles of the form- 
factor F,(q) in the expression (10). Our assertion con- 
sists of the fact that to each n-th pole of F,(q) there 
corresponds an anomalous threshold of the triangle dia- 
gram of Fig. 4 with a prescribed choice of the numbers 
Nl and N,. The fact that an anomalous threshold leads 
to a pole and not to a cut is associated with the one- 
dimensional nature of the problem. 

We introduce the dimensionless angles 8 and X: 

M,'+M,Z-M,' 2Y ,2- t  
cos e=. 2M,M,  , COS X =- 

2M: ' 

The condition for the anomalous threshold 28 + x = 2r  
leads us to the following value for the position of the 
singularity with respect to t = q2: 

Denoting the masses of the particles by M = Nt m 
Ni - E", , going over in (18) to the nonrelativistlc limit 

and taking into account the fact that E , = ~ ' ( N ~  - ~ ) / 4 8 m ,  
we obtain 

and this agrees exactly with the position of the poles in 
(10). 

g3. THE FORMFACTOR OF THE CLASSICAL 
SOLITON 

We now show that the exponential regime of the form- -- 
factor for low q corresponds to the behavior of the 

formfactor of a classical soliton. Proceeding in analo- 
gy with the work of lshikawaCol we introduce into the 
Lagrangian the interaction of our field with an exter- 
nal scalar field A (x): . 

and from this we obtain the expression for  the form- 
factor 

The classical equation for the function a (x ,  t), deter- 
mined by the Hamiltonian H (4) has the form 

and is completely integrable.'14' The soliton of Eq. (22) 
has the following form: 

where x,, rp a r e  the parameters of the soliton, n 
= J**qdx is an integral of the motion of Eq. (22). The 
relation of the N-particle wave function (5) to the soli- 
ton (23) was investigated in Ref. 15. In particular i t  
was shown that the properties of the quantum system (5) 
go over into the properties of solitons a s  No= and un- 
der the condition of weak coupling Ng = n x = const. 

First  of all we note that in this case the slope of the 
exponent in expression (13) is determined by the quanti- 
ty q, = g ~ / 2  = x n/2, i. e., it is related to the radius of 
the classical soliton (13). Further substituting the soli- 
ton solution into the formfactor (21) we obtain exactly 
the expression (13). Thus, the form of the quantum 
formfactor with a large number of components in the 
domain of low transferred momenta agrees with the 
formfactor of the classical soliton in the limit N- .o 

and our intuitive considerations in 8 1  a r e  completely 
confirmed by the model investigation. 

We now obtain the quasiclassical correction to the 
classical formfactor F(q) (13). This can be done most 
conveniently by expanding the r functions in formula 
(11) into a Taylor series in the neighborhood of the point 
N (taking into account the fact that ~>>q/q , ) .  We obtain 
in the f i rs t  nonvanishing approximation 

Taking into account the fact that for large N the sum 
2 "(m + N)' = 1 / ~  we obtain 

FIG. 4. 
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qa 1 In F , ( q )  =ln F  ( q )  + --. 
49' N 

i. e., the quantum corrections to the soliton solution 
have the form of an expansion in powers of 1/N. 

Formula (24) shows that it is not possible to recon- 
struct the exact quantum solution (10) for the formfac- 
tor of an N-particle system on the basis of quantizing 
small oscillations in the neighborhood of the classical 
solution. For the transition from an exponential fall- 
off into one described by a power law it  is necessary to 
take into account all the terms in the ser ies  expansion 
in terms of q2/qi, and not of a finite number of them 
a s  in formula (24). 

54. CONCLUSION 

We discuss the possibility of generalizing our model 
problem to more realistic cases. Here the following 
questions arise: a )  what will occur in the transition 
to the three-dimensional case, b) what will be intro- 
duced by a transition to  the relativistic case, and c) 
what will be altered when the finite range of interaction 
is taken into account? 

In answering the first  question we note f i rs t  of all 
that the asymptotic behavior of the formfactor F,(q) 
- q4'"" certainly does not depend on the dimensionality 
of the problem, since the answer is related to the enum- 
eration of the number of propagators carrying the mo- 
mentum q transferred to the system. But the form of 
the propagator G -q4 in the momentum representation 
does not depend on the dimensionality of the space. The 
behavior of F,(q) in the domain lying below the a s y m p  
totic domain in accordance with Ref. 16 is also deter- 
mined by the properties of the propagators, but taking 
into account the mass terms and therefore also does not 
depend on the dimensionality of the problem. As re- 
gards the domain of low transferrred momenta, the 
problem here is related to the existence of three-dimen- 
sional soliton solutions which were recently found in 
numerical  experiment^.^"^ 

Taldng into account the relativistic nature of the mo- 
tion leads first  of all to a change in the kinematics. 
Thus, for example, in the work of ~shikawa[~ '  an ex- 
pression was obtained for the formfactor of the classi- 
cal soliton using the model of a scalar field of the Ginz- 
burg-landau-Higgs type which differs from expression 
(13) merely by the replacement q2- [ t ( t  - 4) M ~ ] " ~ ,  and 
is given by: 

t  ( t -4MZ) 
F  ( t )  = L 

2v2 

where M is the soliton mass. From (26) i t  can also be 
seen that the root singularity of F ( t )  a t  t =  4M2 is illu- 
sory, since it appears both in the numerator and the 
denominator of formula (26) and cancels out a s  the point 
4M is approached. On the other hand, the threshold 
root singularity must enter the correct relativistic ex- 
pression for the formfactor. Therefore, although the 
nonrelativistic limit t < < 4 ~ ,  of expression (26) agrees 
with our expression (13), nevertheless formula. (26) 

may turn out to incorrect in the region of large t . 
We investigate to  what can a finite range of interac- 

tion ro lead. In the case of q,ro << 1 all our formulas ap- 
parently remain valid right up to q -ril and the asymp- 
totic behavior of the solution in the region q _>ril will be 
determined by formula (1). If q,ro- 1, then the behav- 
ior of the formfactor in the domain of low q will be de- 
termined by the soliton solution of the classical equations 
with a point interaction, and the approach to the asymp- 
toric bkhavior (I) will have a more complicated form. 

We consider what kind of qualitative predictions can 
be obtained for the change in the nature of the asymp- 
totic behavior of the formfactor for nuclei. Associating 
q, in formula (13) with the nuclear radius by q,R = n, we 
obtain 

q,, =A"JJc. 0.8 F-1, (27) 

which yields 5.9 G ~ V / C  for c a m  and 2.9 G ~ V / C  for the 
c', nucleus, i. e., the values of q,, l ie in a domain ac- 
cessible to experiment. The values of ~ , ( q )  calculated 
according to (14) turn out to be of the order of lo*. In 
the case of estimating the real formfactor for  the nu- 
cleus it is necessary to take into account the Pauli prin- 
ciple for nucleons,[181 and this greatly reduces the 
asymptotic value of the formfactor (14). 

The authors express their gratitude for useful dis- 
cussions to B. L. Ioffe, V. A. Karmanov, F. Calogero, 
I. Yu. Kobzarev, and F. Palumbo. 

APPENDIX 

We calculate the matrix element corresponding to the 
virtual decay of the bound state of N particles into a 
bound state of N - 1 particles and one free particle. 
Such a matrix element 

G , , . = ( Y ~ I Y N - ~ Y ~ )  (A. 1) 

d  d . .  . d x ( z .  . . , x  . . . - Y (A. 2) 
- s 

enters into the amplitude of a reaction of the type of a 
quasielastic knock-out. The Feynman diagram cor- 
responding to such a reaction is shown in Fig. 3. 

For the calculation of G, i t  is convenient first  of all 
to consider the contribution to the integral in (A. 2) 
from the domain of the configuration space {x , } ,  deter- 
mined by the condition x, <%,< . . . <%,-,< x (the sector 
a,). In t'his domain the integral of (A. 2) has the form 

~ P N - ,  g N-' +-- N -  1 ( x  ,+...+ I , - . ) + - x  4 ( ~ - 2 m ) x . + i ~ , i . . , }  (A. 3) 

and can be easily calculated by consecutive integration 
over all the xi. As a result we obtain 
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(A. 4) 

The interchange of any two particles other than 5, does 
not al ter  the result of the integration. As a result the 
contribution of all the regions of { x , } ,  in which xN oc- 
curs to the right of all the other particles is equal to 
l ; = ( N -  l ) ! Z ? .  

We now consider the region x l  < x, < . . . < x,-, < XN 
< x , - ~  (the sector b l ) .  A consecutive integration leads 
to the result 

n-a 
g 1 ~ 6 8 - 2 ~ 6  (pN-pN- l -p l )  {I1 [ T k ( ~ - k )  + L k ( ~ - k - ' )  

k-I 
4 

ip  ( N - i )  ~ P N - ~  ( N - 2 )  +ipl I-'. -N+, 
N  N -  1  (A. 5) 

Just a s  earl ier  for the sectors a, Ib, = (N - l ) !  1 2 .  Sub- 
sequently the evaluation of the integrals for other sec- 
tors of the configuration space { x N }  is carried out in an 
analogous manner and the complete integral IN can be 
represented in the form of the sum 

x-l ( N - 1 )  ! 2 n l  (p.,--pw-,-p,) 
I.Y = c N N - l - N  

( N - 1 - M )  IMl n n [ ( Z N - 2 k - 1 ) - i a ]  [ ( 2 N - 2 1 - l ) + i a ]  
1 - 1  h-1 . .. 

(A. 6) 
where we have used the notation 4 q / g ~ =  a! and q = p l  
- P , - , / N -  1 )  is the transferred momentum. The ex- 
pression (A. 6) is real  due to the symmetry with respect 
to the indices k and I and can be  easily brought to the 
form 

the wave functions 9 , ,  and i t  is easy to make 
the transition from (A. 7) to (15)  given in the main text. 

l ) ~ o t h  here and in the rest  of this paper we use the system of 
units in which A= c= 1.  
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