
where the + and - signs correspond to ellipsoids prolate 
and oblate along Ho, while x is the diamagnetic or  para- 
magnetic susceptibility. It is seen from (11) that a drop 
of diamagnetic or  paramagnetic liquid finds i t  energy- 
wise more convenient to become stretched along the 
magnetic field, whereas recombination magnetization 
leads to ablation of the EHD. 
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We show that when a semiconductor (due to electron and hole pairing through a strong electromagnetic 
wave) or a semimetal (due to electron-hole Coulomb attraction) change into a dielectric state the nature of 
the charge screening changes considerably: in the ground state the screening radius becomes infinite, the 
static permittivity starts to depend on the intensity of the electromagnetic wave in a semiconductor and on 
the magnitude of the dielectric gap in a semimetal, and the point charge retains a Coulomb potential but 
with a smaller effective charge. The set of Bogolyubov equations which describes the impurity states in a 
semiconductor in a strong electromagnetic field and in a metal is reduced to the relativistic Dirac 
equations. We find as a result the wavefunctions and energies of the localized impurity states. 

PACS numbers: 71.55.D~ 

In the field of a strong electromagnetic wave with a 
frequency in the region of the intrinsic absorption (wo 
>E,)  a semiconductor goes as the result of the appear- 
ance of an energy gapC11 over into a dielectric ~ t a t e ' ~ - ~ '  
("optical" insulator). It i s  natural to expect that at 
low temperatures the screening due to the transition 
into a new phase is changed considerably: electrons 
and holes bound by the electromagnetic wave into neu- 
t ra l  pairs cannot move in the field of a test  charge s o  
that the screening radius becomes infinite. The cal- 
culations given below confirm this qualitative state- 
ment: the long-wavelength limit of the static permit- 
tivity turns out to be finite in the ground state and de- 
pendent on the magnitude of the "optical" gap 2h =Ed: 

where o, is the plasma frequency of the f ree  carriers,  
&, takes into account the interband polarizability, E is 
the wave amplitude, and d the dipole moment of the in- 
terband transition. 

In the short-wavelength region ( q t ,  >> 1, 5, = V,/A i s  the 
coherence length) the dielectric permittivity has the 
usual metallic character: 

where ro = ( 8 ~ ~ e ~ / & , ) - ~ ' ~  i s  the usual Debye radius; v, 
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and N a re  the velocity and density of states near the 
resonance transition. The effect of the field of the elec- 
tromagnetic wave on the charge screening in a semi- 
conductor thus turns out to be very considerable. 

It has been noted earlierc3] that the electric proper- 
ties of an "optical" insulator a r e  the same a s  those of 
an exciton insulator,c51 if we replace the "optical" gap 
2 X  by the dielectric one 2 A  which is caused by the 
Coulomb attraction between electrons and holes. This 
is also completely confirmed by evaluating the static 
dielectric permittivity. In particular, the long-wave- 
length limit of the static permittivity in the ground state 
is the same as the dielectric constant of a semimetal 
found in Ref. 6 by calculating the vertex part. 

The infinite screening radius in "optica1'"nd exciton 
insulators in the ground state leads to the fact that a t  
distances r < r o  the short-range screened potential of 
a point charge V(r) cr e-'"o/r changes to a pure Coulomb 
onel/r .  When the temperature is raised the screening 
radius becomes finite a s  a result of the appearance of 
excitations, but exceeds the coherence length up to 
temperatures T -0.4 T, (T, is the temperature of the 
transition into an exciton insulator). This character of 
the screening is, in the first  place, reflected in the 
bound impurity states in an exciton insulator considered 
by Kopaev and ~usino+'] who assumed that one could 
use a s  impurity potential a secreened Coulomb potential 
with the usual Debye radius which in the case of strong 
screening was assumed to have the 6-function shape. 

We show in the present paper that in the weak coupling 
limit (A<< p, p is the Fermi level of the semimetal) the 
set of Bogolyubov equations which describes bound im- 
purity statesC1' reduces to the relativistic Dirac equa- 
tions which enables us to study localized states with a 
Coulomb potential. This possibility is not a chance one, 
a s  ~ e l d ~ s h ~ ~ ~ h a s  shown that the two-band problem of 
deep impurity levels in semiconductors has an analog 
with the relativistic equations and in an exciton insula- 
tor the impurity state problem will always be a two- 
band one. The solution of the relativistic equations 
gives a set of discrete levels in the gap which, however, 
a r e  not hydrogen-like. The existence of such a set of 
levels itself reflects the similarity of the general prop- 
ert ies of an exciton insulator and of a normal semi- 
conductor. 

As to impurity states in a semiconductor in a strong 
electromagnetic field, one should note that an electro- 
magnetic wave delocalizes the normal acceptor and do- 
nor states so  that under well-defined conditionscs1 an 
impurity band can be The problem of local- 
ized impurity states in a semiconductor in the field of 
an electromagnetic wave must be solved, starting from 
new equations in which simultaneously the conduction 
band, the valence band, and the interaction with a strong 
wave which couples them a re  taken into account. In 
view of the above-mentioned analogy between "optical" 
and exciton insulators those equations will be Bogolyu- 
bov equations and the set of discrete levels will arise 
within the limits of the "optical" gap. 

1. PERMITTIVITY 

In the self-consistent field approximation the longi- 
tudinal permittivity is a s  usual defined a s  the ratio of 
the potential of external sources Vo(w, q) to the sum of 
that potential and the potential of the induced charges 
v, (w,q): 

e (o, q )  =V,/V, V=V,+V,. (1) 

One can find the density of the induced charges using 
perturbation theory and choosing as the unperturbed 
Harniltonian H the Hamiltonian of the electron and holes 
of the semimetal with a pairing potential. C51 It is con- 
venient for a spatially non-uniform problem to write H 
in terms of spinor field operators: 

where 

*,,, are  the annihilation operators for  an electron in 
the conduction and the valence band, GI,&, are the 
Pauli matrices, 

E,,,(P) a re  the dispersion laws in the bands. 

As H is a single-particle operator it can be diagonal- 
ized by going over to quasi-particle operators y,: 

where the single-particle wavefunctions I+!J, satisfy a set 
of Bogolyubov equations 

or, in expanded form 

In the simple band modelL1151 with equal effective 
masses fo r  the electrons and holes (E, =p2/2m, &, 

= -p2/2m + 2p) the solution of (3) has the form 

(two kinds of quasi-particles). 

We can write the Hamiltonian of a semiconductor in 
the field of an electromagnetic wave in the form (2) by 
means of the unitary transformationC" 
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with p =iwo for the conduction band and p = -$ao for 
the valence band. The further calculations a r e  there- 
fore equally valid for a semiconductor in the field of 
an electromagnetic wave, if we put A = A ,  

The interaction with the field of the external and the 
induced charges is the sum of an intraband HI and an 
interband Hz: 

where the "coherence factor" 

m..- (q) = dr e*rgn'(r)21*,(r). 

Considering HI,, a s  a perturbation one can in the stan- 
dard way determine the Fourier component of the in- 
duced charge density 

and, hence, also E(W, q). 

It then turns out that the contribution to & from the 
interband polarizability (the interaction H,) i s  practi- 
cally independent of the wavevector and in the case of 
the "optical" insulator also of the intensity of the strong 
electromagnetic wave. This is explained by the fact 
that the corresponding contribution is determined, as in 
an ordinary d ie le~ t r i c ,~" '  by all states of the valence 
and conduction bands so  that the change in the energy 
spectrum near the band edges a s  the result of Coulomb 
pairing (or the interaction with a strong electromagnetic 
field in a semiconductor) does not affect it. On the 
other hand, the polarizability of the free ca r r i e r s  (the 
interaction HI) changes appreciably in the phase transi- 
tion. 

Noting that Eqs. (5), (6) for HI and the charge densi- 
ty p differ from the corresponding expressions for f ree  
electrons by the substitution of the electron creation and 
annihilation operators by quasi-particle operators and 
the electron charge by em,,, we can use the well known 
formula for  the longitudinal permittivity of f ree  elec- 
trons (see, e. g., Ref. 11) replacing in it the electron 
energies and distribution function by the quasi-particle 
ones and the electron charge by em,,,. As a result the 
dielectric permittivity of an exciton o r  "optical" insu- 
lator takes the form 

where f, = (y ,' y,) is the number of quasi-particles in 
the state n and eo the contribution from the interband 
polarizability . 

2. SCREENING IN THE GROUND AND WEAKLY 
EXCITED STATES 

We consider the electrostatic screening e(0, q )  and 
f o r  the sake of simplicity we restrict  ourselves to the 
band model (4) with equal effective masses. Due to the 
symmetry of the bands the quasi-particle distribution 
can be expressed in terms of a single function f,: 

In equilibrium 

s o  that in the ground state (T = 0) f, = 0. 

It is convenient t o  split off the contribution from the 
excitations and contribution from the polarizability of 
the electron-hole condensate, by writing (7) in the form 

In the ground o r  weakly excited states the second term 
in (8) is small and in the last one one can put f, = 0. Sub- 
stituting %, v, from (4) we get 

The integral in (9) has the same structure a s  when one 
calculates the Meissner effect in superconductors.c121 
We can, through the substitution 5, = sinhe, 5,- = sinhe' 
reduce it for  q <<p ,  to the following form: 

In the long-wavelength limit (qtO << 1) we find by expand- 
ing arctanx in powers of x 

which is the same a s  the low-frequency polarizability 
found earlier in Ref. 6. Here 

n =p: /6g2 i s  the f ree  electron o r  hole density (neglecting 
spin). 

Equation (1 1) is analogous to the expression for  the 
permittivity of a semi conduct^^"^ i f  we understand by 
the forbidden band the magnitude of the dielectric gap 
2A and take for the plasma frequency the plasma fre- 
quency of the free carr iers .  As the quantity E i s  inde- 
pendent of q a s  q- 0, the screening radius in exciton 
and "optical" insulators becomes infinite &I the ground 
state. 
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In the short-wavelength limit (qtO >> 1) the integral in 
(10) is small so that pairing does not affect the screen- 
ing: 

We show in Fig. 1 the function ~ ( 0 ,  9) for different co- 
herence lengths for intermediate values of g. In the 
weak coupling case (A << w,) the value of E is much larg- 
e r  than E,. In the opposite case (A- w,) E = E,. 

The screened potential of a point charge has the form 

Substituting Eq. (10) into (13) we find for  rat, (950 < 1): 

i. e., a Coulomb potential remains a t  distances large 
compared with to, but with a smaller effective charge. 
At small distances r < ro (qro > 1) E = E,, s o  that 

It can be seen in Fig. 2 which shows the results of a 
numerical calculation that at intermediate distances 
(r, s r <  to) the potential drops monotonically from the 
value (15) to the magnitude (14). 

When the temperature is non-vanishing o r  a state of 
equilibrium is not reached it is necessary to take into 
account also a contribution to E from excitations (second 
term in (8)) which leads to a finite screening radius. 
Indeed, letting q in that term tend to zero we get 

where the new screening radius is 

6n is a dimensionless parameter which characterizes the 
degree of excitation. When obtaining (16) we assumed 
for the sake of simplicity that f << 1 in order not to have 
to change the last term in (8). 

FIG. 1. Spatial disper- 
sion of the dielectric per- 
mittivity of "optical" and 
exciton insulators for dif- 
ferent coherence lengths. 

FIG. 2.  Point charge potential v ( r )  = V ( r )  (e/eOr)-' in "optical" 
and exciton insulators for various coherence lengths. The 
dotted line corresponds to a model potential for calculating 
impurity levels. 

As long as ro > to the presence of excitations does 
not affect the function V(r) in the region of most interest 
rsSo. The screening will thus have a dielectric nature 
under the conditions: 

In particular, when A << w,, 6n < &. We note that in 
equilibrium 

and condition (17) i s  satisfied up to T 5 0.4 T, where T, 
i s  the transition temperature. 

3, IMPURITY STATES 

For  the solution of the problem of the presence of 
localized impurity states in an exciton o r  "optical" in- 
sulator it is necessary to consider the set  (3) of Bogoly- 
ubov equations with an impurity potential Vc,,(r): 

We have noted above that the dielectric character of 
the screening does not enable u s  to consider the poten- 
tial to be short-range so that we consider the solution 
of (18) with the potential of Fig. 2. 

Fi rs t  of all we show in the general form that for  a 
neutral impurity acting in the same way on an electron 
and on a hole (V, = - V,) there a r e  no bound states (this 
result was obtained in Ref. 7 for  a 6-function potential). 
The absence of bound states for a neutral impurity is 
caused by the fact that in the case of a neutral impurity 
the whole energy spectrum lies in the region I &  I 2 A 
while the bound states must correspond to energies 
I& I <A. Indeed, a t  large distances from the impurity 
u =ae-&, v = be-&, where the constants a and b a r e  de- 
termined from (18) with V,,, = 0: 
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It is clear from this expression that an exponentially 
decreasing solution can exist only for energies Is I < A 

and f o r  1 s2 -A2 I 1 p, when k has a real part. How- 
ever, in the second case there is not only a solution 
decreasing a t  infinity (upper sign) but also a solution 
with imaginary k (lower sign) corresponding to infinite 
motion. Levels with Is2 - A' l > p will thus be quasi- 
stationary and electrons and holes will "leave" into a 
complex spectrum. In the case of a semiconductor in 
the field of an electromagnetic wave these states cor- 
respond to the usual acceptor o r  donor levels, de- 
localized by the field of the wave. Hence, bound states 
can exist only when I c I < A. 

However, if V, = - V,,, the whole of the spectrum of 
(18) lies in the region Is I 2 A. One can verify this by 
expanding u and v in terms of the single-electron func- 
tions @, which a re  solutions of the equation 

For  the expansion coefficients we get the set of equa- 
tions 

from which it follows that I c I = ( [ : + A ~ ) " ~ ~ A .  

To determine the levels in the case of a charged im- 
purity (V, = V, = V) we note that a large energy p >> A 
occurs in Eq. (18) which can be cancelled only due to 
fast oscillations of the wavefunction. It is therefore 
convenient to look for the wavefunction in the form of a 
product of a fast  oscillating function of period - 1/p, 
and a more slowly varying function with a characteristic 
length 5,: 

~ ( r )  =(f cos (pFr)  + g  sin ( p d )  Ylm(0, cp), 

v (r) - ( f  eos ( p ~ )  -g sin (p,r) ) Yirn (6, (P), 
(19) 

where Y,,(B, cp) are  the angular momentum eigenfunc- 
tions. 

If we take the coherence length 5, a s  the unit length 
and the potential A a s  the unit energy, we get the fol- 
lowing equations for  the functions f, g, 7, and 2: 

where q =  Alp is a small parameter, primes denote 
differentiation with respect to the dimensionless vari- 
ables r ,  and all energies relate to A. 

Apart from small terms of order q we can =f, 
g =g, and the equations for  f and g become 

(rf) ' -  ( e - V + l )  (rg)  =o, 
( rg ) '+(e -V-I )  ( r f )  =O. 

The set (21) i s  the same a s  the Dirac equations for  
an electron in a spherically symmetric field, C1sl if in 
the latter we put j + 4 = 0 ( j  i s  the total angular momen- 
tum of the electron). We note that Eqs. (21) cannot be 
reduced to the one-dimensional Schrsdinger equation 
so that the conclusion about the one-dimensional motion 
a t  large distances from the impurity which was reached 
in Ref. 14 is erroneous. 

Apart from the solutions of (21) there a r e  also solu- 
tions with?= -f, 2 =-g ,  the equations for which differ 
from (21) through the substitutions of V, I,, f by - V, 
'E, -2 

(rf) ' -  ( e -V-I )  (rg) =0, 
(21') 

(rg)  '+ (e-V+1) ( r f )  =o. 

The existence of such solutions reflects the symmetry 
of the initial Eqs. (18) with respect to replacing a re- 
puisive potential by an attractive potential with the si- 
multaneous replacement of u by -v, v by u, and E by 
-E .  We shall in what follows therefore, to fix the 
ideas, consider only a repulsive potential (v> 0).  

To begin with we find the localized ( I s I< 1) solutions 
of (21) and (21') for  a potential well: 

In order that u and v remain finite i t  is necessary that 
r f  - 0, a s  r-0 while rg remains finite. The solution of 
the set (21) which satisfies this condition has the form 

sin(kr) cos (kr)  
f=Ar , g=A(e-V,- l )  - if r c 4 ,  

kr 

Here x =(1 - c ~ ) ' ' ~ ,  k =((VO -E)' - 1)'12, A and B are  
arbitrary constants. 

The condition that f andg  a re  continuous a t  r = a  gives 
the equation for the energy: 

In particular, for  a 6-function potential (a -0, V,+z =J 
=const) we get from (23) the result of Ref. 7: 

i. e., a single localized level in the gap 2A. 

The set (21') has no solutions with Is 1 < 1. For  a 
6-function attractive potential the localized level is ob- 
tained f rom the set (21 '1. 

We turn to the solution of the equations with the po- 
tential V(r) shown in Fig. 2. It is clear from Fig. 2 
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For small distances ( z  <: 1) '"I that at small and large r ( r  << ro, r >> yo) we can assume 
the potential to be Coulombic. However, for such a 
potential, which diverges a t  the origin, Eqs. (21) and 
(21') give solutions which oscillate a s  r- 0 without 
tending to any definite limit. There thus ar ises  the well 
known situation of the "collapse" into the center.'"l 
Notwithstanding this there exist also in this case sta- 
tionary localized solutions with I & I< 1. It was shown 
in Refs. 15, 16 that the "collapse" into the center in the 
Dirac equations leads to the levels depending on the cut- 
off of the Coulomb potential at small distances. In the 
case considered the potential remains Coulombic, but 
i t  is clear from (20) that Eqs. (21), (21 ') themselves 
a r e  inapplicable a t  small distances r s q .  In order to 
take the essential dependence of the energy on the be- 
havior of the wavefunction at the origin which ar ises  
due to the "collapse" into the center into account it is 
therefore necessary to find from the initial set  (18) 
the solution for r << 1 which is regular a t  the origin and 
to join it to the solutions of the se ts  (21), (21') for q 
<<r << 1. 

r (I-C) r (c-I) 
Y (a, c, z )  = + - z i - o  

r(a-c+i) r(a)  ' 

Using (28), (29) we find for r o <  r << 1 

sin (a In (2xr) -6 (e) ) 
f = - B  

r 

cos (a ln(2xr) -6 (e) ) 
g=B 

r 

where 

Equating (30) and (27) for  r=ro we get the following 
equation for the energy: 

i r e  
=F arctg (=)'la = arg ~ ( l t ~ i c i )  -arg 6 ( i+ia +- a" X 

IT 4r - aln(2xrp) +- (1-2nf l ) + a l n - 2  - arg r(l+l+ia) ,  
2 11 (31) As we can for Y << 1 neglect in the Bogolyubov equa- 

tions the pairing potential A the functions u, and 
hence, f and g will satisfy the normal ~ c h r k i i n g e r  equa- 
tion which in dimensional form has the form 

where the n are  integers and the upper sign correspond 
to the solution of the se t  (21) and the lower sign to that 
of the se t  (21'). 

For an exciton insulator in the weak coupling case the 
inequality A << w, is satisfied a s  well a s  the condition A 
<< p . Therefore a "q << a and we can in Eq. (3 1) for not 
too shallow levels neglect all  terms and expand the 
last term in f f :  

For  r < ro we can put ~ ( r )  = a/r and for r > yo, V(r) 
= &/Y, where a =e2/cv,  i s  the coupling constant, a! 
= E ~ C Y / E ,  while c is given by Eq. (11). In the weak cou- 
pling case the inequality q << r, << 1 is satisfied s o  that 
we can use for r >r, the solution of (21) o r  (21') with 
the solution V(Y) = (Y/Y and join it a t  the point r =ro to 
the asymptotic solution of Eq. (25) with the potential 
V(Y) = o / r  for large r (in dimensional form ro >> l/~,) ' '~': where $(x) is the logarithmic derivative of the I' func- 

tion. 

In an "optical" insulator the magnitude of the gap is 
determined by the external field and may be comparable 
to w,, even when A << p .  In that case i t  is necessary to 
solve Eq. (31). 

where 6, = - in1 + a r g r ( l +  1 + ia). 
Using (19) we get from (26): 

The solution (32) exists only for n = (1 + 1)/2 (upper 
sign) or  for n = (1 - 1)/2 (lower sign). Because ff is 
small all levels turn out to be shallow, lying close to 
the lower edge of the gap (1 + & << 1). Expanding arctanx 
in a series for large (upper sign) o r  small (lower sign)x 
we get the following expression for the ionization energy 
of the levels: The solution of the Dirac Eqs. (21) with the potential 

V(Y) = d;/r which converges a t  infinity can be expressed 
in terms of Whittaker functions or  the second hyper- 
geometric functions *(a, c, z )  Ci3*16,181 : 

a €  
f (r) =B (l+e) "'e-"'r-'d-L [ Y  (-iat;, -2iii+l, 2xr Using the ser ies  expansion for the $ functionf18': 

we find for the lowest s-state ( I  = 0): 
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The distance between the first  excited level (P state) 
and the ground state will be equal to 

Eo - El = 2a9 (I* ($1 - 1). 

We note that using the Bohr formula with a quasi-par- 
ticle effective mass 

to estimate the ionization energy gives E ,  =$a2 which 
differs from (33) by the absence of the square of a large 
logarithm. 

In conclusion we elucidate the cause of the lifting of 
the "accidental" degeneracy in I which is specific for 
the Coulomb field. The lifting of that degeneracy is not 
connected with the approximations used in solving the 
Bogolyubov Eqs. (18) but is caused because the pairing 
potential does not commute with the matrix analogue of 
the operator 

which is conserved in a repulsive (attractive) Coulomb 
fieldciT1: 

,.A I . .  
[AA] =2iA - oz, 

r 

where 

The pairing potential thus lifts the "accidental" degen- 
eracy in the Coulomb field. 

The authors a re  grateful to Yu. A. ~ ~ k o v s k i r ,  Yu. 
V. Kopaev, and M. I. Ryazanov ;or useful discussions 
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