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The regions of existence of the solid phase of a two-dimensional system of electrons in a magnetic field are 
ascertained for T = O  and for finite temperature values. It is shown that "magnetic" melting of the 
Wigner lattice is possible. The phase diagram of the system, based on the assumption that the solid phase 
has a polymicrocrystalline structure, is constructed. 

PACS numbers: 64.80.Gd, 75.30.K~ 

1. INTRODUCTION 

The properties of two-dimensional electron systems- 
inversion layers in metal-dielectric-semiconductor 
(MDS) structures and electrons on a liquid-helium sur-  
face-are currently being intensively investigated. The 
most interesting of the questions that have arisen i s  that 
of the behavior of the system in the low-density limit 
(the mean distance Y,, between the particles is much 
greater than the effective Bohr radius a*), when we 
should expect crystallization of the electrons (or 
holes). C'*21  Important arguments in favor of the reality 
of a two-dimensional Wigner crystal a r e  the machine 
experiment of Hockney and ~ r o w n ~ ~ ]  and the computer 
calculations performed by Meissner, Namaizawa and 
~ o s s . ~ ' ]  In Ref. 4, using the example of a metal-Si0,-Si 
structure, the energy of the electrons in an inversion 
channel was calculated and it was shown that a triangular 
lattice is the most favorable. The square lattice has 
energy only 0.5% above that of the triangular lattice, 
but i s  dynamically unstable: the square of the vibra- 
tional frequency of the transverse branch becomes neg- 
ative near the [lo] direction. In the machine experi- 
ment of Ref. 3 a system of lo4  particles moving in one 
plane and interacting by the Coulomb law was consid- 
ered. The calculation was performed in the framework 
of classical machanics: the equations of motion were 
integrated numerically and then the thermodynamic 
functions of the system were calculated. It was found 
that a t  a sufficiently low temperature the particles a r e  
indeed arranged a t  the si tes of a triangular lattice, the 
whole "sample" being divided into domains differing 
from each other in the orientation of the lattice axes. 
With increase of temperature the number of domains in- 
creases and their sizes decrease. At a certain tem- 
perature T, (in the conditions of Ref. 3, T, = 3.1 K for  
a particle density of loi0 cm',, and the charge and mass 
of the particles correspond to those of a f ree  electron), 
the specific heat of the system passes through a maxi- 
mum. In the region T> T, the domains disappear and 
the arrangement of the particles becomes disordered 
(the liquid phase). Thus, a Wigner crystal should exist, 
albeit in polycrystalline form, at perfectly attainable 
values of the temperature and surface electron density." 
It is therefore of interest to elucidate the form of the 
phase diagram of such a system, and also i ts  behavior 

in a magnetic field perpendicular to the plane of the lat- 
tice. The present article is devoted to this. 

The phase diagram of two-dimensional electron crys- 
tal in a magnetic field was discussed in the paper by 
Lozovik and Yudson, C51 in which the authors confined 
themselves to the case of absolute-zero temperature 
and performed the calculation in the framework of the 
Einstein model of the vibrational spectrum. It turns out 
that allowance for  the true form of the vibrational spec- 
trum of the "magnetized" Wigner crystal in the region 
of small wave numbers substantially alters the result. 
In particular, in sufficiently strong fields "magnetic" 
melting of the electron lattice at a constant temperature, 
including a t  T = 0, turns out to be possible. Increases 
in the temperature and magnetic-field intensity act in 
the same direction-the crystalline phase disappears, 
principally because of the contribution of the transverse 
branch of the vibrational spectrum to the displacements 
of the particles from their equilibrium positions. Phys- 
ically this is easily explained if we note that the vibra- 
tional spectrum of the system is degenerate a t  the point 
k= 0. A magnetic field lifts this degeneracy and, a s  in 
the usual "pushing apart" of two close terms, the lower 
(transverse) branch decreases i t s  frequencies, which 
favors melting. 

2. A WIGNER CRYSTAL IN A MAGNETIC FIELD AT 
AT T = O  

The solution of the vibrational problem for a two-di- 
mensional Wigner crystal in a magnetic field perpendic- 
ular to the lattice plane (x,  y) was obtained earlier. C21 

The frequencies GI, and 5, of the longitudinal (plasma) 
and transverse (shear) branches a r e  expressed in 
terms of the same quantities in the absence of a mag- 
netic field (w,, and q) by the formulas 

where 0 = e ~ / m c  i s  the cyclotron frequency. In the re- 
gion of small wave numbers (kro << 1) the following de- 
pendences2) a re  valid for the quantities w,, and w,: 

4ne2N.k 
oU2 = oLZ==s,;k,kj, i ,  j=z, y. 

rn (e,+ez cth kD) ' 
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FIG. 1. 

Here N, = ri2 i s  the density of the surface electrons, E, 

and E, a re  the dielectric constants of the semiconductor 
and dielectric, respectively, and D is the thickness of 
the dielectric (the distance to the metallic electrode, 
in the case of electrons on liquid helium). The trans- 
verse-sound velocity s is of the order of (e2/ 
(E, +z2) nzro)if2. Numerical calculations of the depen- 
dences w,,(k) and w,(k) for the two characteristic direc- 
tions A and A in the planar hexagonal Brillouin zone 
a re  given in Ref. 4. 

Our aim is to ascertain those regions of values of the 
density, magnetic field and temperature for  which the 
electron crystal i s  stable. We shall use the Lindemann 
melting criterion, i. e. ,  we shall find the ratio (u2)/ 
4~ y, where u is the displacement of a particle from 
the equilibrium position and the angular brackets de- 
note thermodynamic averaging. When y is smaller than 
a certain critical value y, the crystalline lattice i s  
stable, the melting occurs for  y > y,. We have the fol- 
lowing expression for the Lindemann parameter (cf., 
e-g . ,  Ref. 6): 

where the n a r e  Bose occupation numbers and X labels 
the branches of the vibrational spectrum, i. e . ,  
GA = GI,, GL. 

We now consider the isotropic model, in which w,= sk 
and w,, is determined by the f i rs t  of the formulas (2) for 
all k from zero to a limiting value KO, which is chosen 
in such a way that the correct number of degrees of 
freedom i s  obtained: ko= 2 ( n ~ , ) ' ~ ~  = 2nif2/ro. Then, 
from (3) for T = 0, 51 = 0, it is easy to obtain 

In the low-density limiting case considered here, the 
condition ro >> a* should be fulfilled. If it is compatible 
with the condition (4a), for which we should have D>> a*, 
then y(0, 0) << 1 and decreases with decrease of the par- 
ticle density. Thus, the lattice i s  stable for  sufficiently 
large ro ( ro>  r,, rc- a*/y:). However, for yo> D screen- 
ing of the electron-electron interaction by the electro- 
static-image potential (the term with cothkD in formula 

(2)) becomes important. In this case yo ceases to de- 
pend on the particle density (the case (4b)). The exis- 
tence of the electron system in the liquid o r  crystalline 
phase is then determined entirely by the quantity D: 
the crystal is stable if ~>a*/16n'y;. In all cases of 
practical interest this condition i s  amply fulfilled; 
therefore, we shall assume below that D>> yo. Then, in 
the isotropic model, w,, = (a!k)'I2, where a! = 4re2NS/ 
m(&, + c2) - s2ko: The vibrational spectrum of the model 
under consideration is depicted in Fig. 1. 

Substituting w,, and w, into (1) and then integrating in 
formula (3), in which i t  i s  necessary to put n=O, we 
find y(0, H) in two limiting cases. 

A weak magnetic field, 0 << = (akO)'l2, w o -  (e2/ 
m4) l f2 :  

A strong magnetic field, CJ >> w,: 

Here yo is defined by formula (4a), s o  that tiko/2nms 
and yo a r e  quantities of the same order. The magnetic 
correction to y(0, H) from (5a) contains contributions 
f rom the longitudinal and transverse branch. These 
contributions a r e  of the same order of magnitude and 
opposite in sign, but the resultant effect is such that 
y(0, H) grows with increase of H. As regards the case 
of (5b), here the principal role is played by the trans- 
verse branch, while the longitudinal branch gives a 
small contribution of the order of yowo/51. Thus, in- 
crease of y(0, H) with magnetic field occurs for any val- 
ue of w,, i. e., for any particle density. 

When H = H, (the value such that y(0', H,) = y,), mag- 
netic melting of the Wigner crystal should occur. The 
melting curve y(O,H)= y, i s  depicted schematically in 
the variables 8, ro in Fig. 2; the shaded region cor- 
responds to the crystalline phase. Near r, the form of 
the curve i s  determined by formula (5a): 

The asymptotic form for  ro>> r, follows from (5b): 
51ar;'. 

It is interesting that there exists a certain optimal 
value of the density (of order r12) for which the magnetic 
field that destroys the lattice is a maximum. At the 
point of the maximum O(Y,,,)- wo, which gives the esti- 
mate om,- me4yZfi2d, where E S  $(c, + E ~ ) .  For most 
solids the value of y, is close to 6X lom2 (see below), so  
that the limiting magnetic field is of the order of 10' Oe 

FIG. 2. 
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FIG. 3. Melting curves (sko= 0. 5wo, Z =  1, m =m,): 1) for 
Ns= loi2 ~rn'~, 2) for Ns= 10'' ~ r n - ~ ,  3) for N,= lo8 ~ r n ' ~ .  

in the case of electrons on liquid helium and lo2 - lo3 
Oe for the inversion layers of semiconductors 6 - 10, 
m-(0-1 -1)mJ. 

3. FINITE VALUES OF THE TEMPERATURE 

For T t  0 the integral in (3) corresponding to the 
transverse branch diverges at the lower limit-logarith- 
mically for H= 0 and like fdk/k2 for finite H. The point 
i s  that at small momenta &,(k) behaves like c ~ ' / ~ s k ~ / ~ / 0 .  
Thus, a two-dimensional electron lattice of arbitrarily 
large size cannot exist. We shall associate this cir- 
cumstance with the fact, established in Ref. 3, that the 
sample breaks up into crystallites (in conditions of 
thermodynamic equilibrium! ) whose sizes decrease a s  
the temperature i s  raised. We shall assume that the 
lower limit k,,, of the divergent integrals is  deter- 
mined by the mean size L = 27r/km,, of the monocrystal- 
line domains that exist for the given T and H. In other 
words, the dependence of L and T and H i s  determined 
from the equation y(T, H, L) = yc. In order to check 
this statement we shall make use of the results of the 
calculation in Ref. 3, in which the pair correlation 
function was calculated for nine different temperature 
values (in the absence of a magnetic field). The value 
of w, corresponding to the density lo i0  cm" i s  2.4 
x loi2 sec", i. e., the Debye temperature 8= 17 K. 
Inasmuch as  the melting temperahre Tc= 3.1 K found 
in Ref. 3. i s  appreciably below 8, we must make use 
of the low-temperature limit in formula (3): 

L ( T )  = (2n f i . d~ )  exp{2nmsz(yc-yo) 12'). 

Below we give the values of the correlation length 
N= L/r,,, calculated from the equation y(T, 0) = yc with 
y ( ~ ,  0) from (6): 

The corresponding values of N,,, borrowed from Ref. 
3, a re  given in the last line. The adjustable parameters 
are  the averaged transverse-sound velocity s and the 
difference yc-yo. The values of N  given above were ob- 
tained for s = 1 . 5 ~ 1 0 ~  cm/sec and yc-y,=4~10'2. 
Knowing s we can find yo = 2X lo", whence yc = 0.06. 
The latter number i s  extremely close to the Lindemann 
parameter of other solids. For example, for Na we 
have yc = fS (cf. Ref. 6), and for solid ~ e ~ ,  by Abriko- 
sov's estimate, CT1, yo = 5.65 X 10". The quantity s i s  
also in fair agreement with the caluulations of Ref. 4: 
s(A) = l .78x 10' cm/sec, S(A) = 1 . 8 5 x l d  sm/sec. 
Thus, making allowance for the crudity of the isotropic 
model used here, the agreement between formulas (6) 
and the machine experiment might be considered satis- 
factory. It must be remembered, however, that the 
results of Hockney and ~ r o w n ~ ~ ~  were obtained in the 
framework of classical mechanics, while the formulas 
(6) pertain to the region T <<a, where quantum effects 
play an essential role. 

We shall assume, further, that melting in the pres- 
ence of a magnetic field occurs at those values of H, T 
and ro at which the crystallite size reaches the critical 
value LC, i. e. , y ( ~ ,  H; LC) = yc. From the data of Ref. 
3, LC = 9r0. We shall consider only the low-tempera- 
ture limit T <<Awn. Different relations between T and 
the magnetic energy tiS2 are possible. We write out the 
quantities N= L/ro in several characteristic regions 
(we put A =  1): 

The case (7b) can be realized only if, besides the con- 
diton 45dT >> wi, the condition 2nms2 >> 0 is also ful- 
filled. In principle this is  possible, since ms2/wo - (~ , /a*)"~  >> 1. In the region T << Q << wo, 

In the region 0 << T << w,, 

The melting curve in the (T, H) plane (for a given den- 
sity) i s  determined by the relations (7)-(9) from the 
formula Ny0 = L ,. The values of y ( ~ ,  H)  were calcu- 
lated (in the isotropic model) at 250 points in the plane 
of the dimensionless variables (T/wo, H/wo). The 
curves y ( ~ ,  H; LC) =yo are  given in Fig. 3; the particle 
density N ,  = ri2 i s  the parameter of the curves. The 
region bounded by a curve and the coordinate axes cor- 
responds to the polycrystalline phase. 

The author is grateful to the participants of the Sixth 
All-Union Symposium on Theoretical Physics (~des sa ,  
1976) for useful discussions on questions touched upon 
in the work. 

APPENDIX 

We shall confine ourselves for simplicity to an ideal- 
ized model in which the dielectric constants have the 
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same value E on both sides of the plane (z = 0) of the 
electron lattice. In the long-wavelength limit of inter- 
est to us, the transverse vibrations can be described 
by the equations of motion of a continuous medium: 

u-s2Au=eE/em. (A. 1) 

In the equation for the electric field E we take into ac- 
count that the volume density of the current of electrons 
is equal to eiuN,~(z)~:  

e .. 4neN, AE--Ex- 
C" 

6 ( z )  u. 
C" (A. 2) 

As will be clear from the result, the region of wave 
vectors in which the interaction manifest themselves 
through the transverse fields correspond to such small 
frequencies that we can take the static value for E in 
(A. 1) and (A. 2). 

The vectors u and E lie in the (x ,  y) plane. The so- 
lution, in the form of a plane wave, i s  

U(r, t )  =Uoe'(k'-") E(r, t )  =Eoe'(kr-*')e-PI*l (A. 3) 

The singular factor in the expression for E(Y, t )  appears 
because of the need to compensate the term with the 
6-function in (A. 2). 

We substitute (A. 3) into (A. 1) and (A. 2) and sep- 
arately equate the singular and regular terms. This 
gives first, a determination of the parameter 8: 

and second, the dispersion equation: 

-a-, a-s'k,. (A-4) 
c' 

Investigation of Eq. (A. 4) leads to the following results: 
for k >> s2ko/c2 the dependence w(k) remains a s  before: 
w = sk; for k << s2ko/c2 we obtain w(k) = ~ c a * ' / ~  k3I2 - ck(k/k,)lJ2. 

Thus, the retarded interaction is  important only in 
the region of wave vectors k/kg 5 s2/c2 - 0.3 X lo-' 
- 0 . 3 ~  in the range of values of N ,  from lo8 to loi2 
cmm2. In this case the speed of light appears explicitly 
in the dispersion law. The corresponding wavelengths 
(from 3x10' to 30 cm) are much greater than the linear 
dimensions (L - 0.1 - 1 cm) of real quasi-two-dimen- 
sional electron systems, both in the case of MDS struc- 
tures and for electrons on liquid helium. Therefore, 
the spectrum of values of k always has a lower cutoff 
(k 5 1/L) far outside the limits of the region discussed 
here. 

 he breakup of the sample into crystallites is, possibly, the 
process by which the fact that the crystalline phase is ener- 
getically favored is reconciled in the system with the im- 
possibility of the existence of long-range order in the two- 
dimensional case for infinite sample sizes. 

2 ) ~ h e s e  formulas were obtained in Ref. 2 under the assumption 
that the electron-electron interaction is instantaneous and 
correspc9ds to the Coulomb law. There is also the retarded 
interaction via the transverse fields that arise from the elec- 
tron-lattice vibrations. The effect of these fields on the 
shear branch (the most important branch in the problem in 
the stability of the crystalline phase) is treated in the Appen- 
dix. It is found to be negligibly small. 

3 ) ~ h e  corresponding three-dimensional problem is solved in 
Ref. 8. 
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