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It is emphasized that the character of the transition from the paramagnetic state to a sinusoidal or spiral 
state depends significantly on the form of the magnetic interactions. Thus if there are only exchange 
interactions, of if they significantly exceed the spin-orbit or dipole-dipole forces, then only a first-order 
transition is possible. A transition of the second-order is possible only for a definite finite intensity of the 
relativisitic interactions. In this latter case, there are two tricritical points on the phase diagram. 

PACS numbers: 75.30.K~ 

1. INTRODUCTION change type. Transitions of this form include those in 

Phase transitions in magnetic materials, especially MnO, UOz, TbAs, etc. 

transitions from the paramagnetic to the ferro- or anti- From the point of view of molecular-field theory, 
ferromagnetic state, a re  excellent exi3EIples of transi- what causes the transition to become discontinuous i s  a 
tions of second order. But a large number of cases a re  sufficiently strong nonlinear coupling between the effec- 
now known in which magnetic phase transitions that, ac- tive field H,, and the order parameter M: 
cording to the symmetry considerations characteristic 
of Landau's theory (see, for example, Ref. I ) ,  could be Hej j=JM+jM3+.  . . 
transitions of second order a re  actually found to be 
transitions of first  order. A large number of examples 
of this can be found in the review by Grazhdankina. 
New facts not mentioned in this review a re  reported in 
the  article^'"^' cited below. Until recently, such first-  
order transitions were explained within the framework 
of molecular-field theory, by the action of specific 
forces of rather large (in comparison with ordinary ex- 
change) intensity: magnetostriction, biquadratic ex- 
change, the Jahn-Teller effect, etc. (for details, see 
Ref. 2). Recently, however, i t  has been clarified that 
fluctuations of the short-range order, which increase 
with approach to. a point of (in principle possible) sec- 
ond-order transition, act in the same direction as  the 
just mentioned magnetostriction, biquadratic exchange, 
etc., tending to convert the continuous transition to a 
discontinuous one. Furthermore, i t  has been shown in 
papers of Brazovskii, Kukharenko, and the author, L3*41 

of Bak, Krinsky, and Mukamel, and of Alessandrini, 
Cracknell, and ~ r z ~ s t a w a ' "  that in certain cases the 
fluctuations make second-order transitions altogether 
impossible; that is, the transition is discontinuous even 
for arbitrarily weak interactions of the biquadratic-ex- 

For weak nonlinearity, j << J, the variation of M with 
temperature T is described by the usual Langevin- 
Brillouin curve (Curve 1 in Fig. .I). For  sufficiently 
large j, M a s  a function of T ceases to be single-valued 
(Curve 3 in Fig. 1); this obviously implies a transition 
of the f i rs t  order at some temperature To. From a 
physical point of view, the nonlinearity j originates 
from the already mentioned biquadratic exchange, mag- 
netostriction; etc. A characteristic feature of such 
first-order transitions is the presence of a tricritical 
point T,,, at which a line of first-order transitions is 
converted to a line of second-order transitions. 

The effect of fluctuations on the character of the tran- 
sition is as follows. In all cases analyzed, the magnetic 
phase that originates a s  a result of the transition is 
characterized by the presence of a large number of 
equivalent domains. This, for example, is 8 so-called 
T-domains in MnO, TbAs, etc. (see Refs. 3-5) o r  6 
domains in UOz (see Refs. 3-6). On approaching the 
transition point from above, the system of course can- 
not "know" into just which one of the 8 or 6 domains (or 
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FIG. 1. 

into a state described by a "linear combination" of 
them) i t  will actually be converted. The system, as it  
were, becomes confused and as a result is unable to 
reach a state with an infinite correlation radius. From 
the point of view of the modern theory of phase transi- 
tions (scaling), all stationary points of the renormaliza- 
tion group (RG) that correspond to transitions of the 
second order a re  unstable, and the system "wanders" 
until it ultimately reaches the stability boundary of the 
paramagnetic phase (see Refs. 3 and 4). 

In this article, we shall consider the effect of fluctu- 
ations on the character of the phase transitions to a 
helical o r  sinusoidal state, restricting ourselves prin- 
cipally to the simplest case, in which there is only one 
spiral or  sinusoidal wave, with vector Q (directed, of 
course, along the crystal axis in tetrangonal, rhom- 
bohedral, o r  hexagonal systems or  along any one of the 
three crystallographic axes in systems of lower sym- 
metry). It turns out that if we completely neglect all 
interactions except exchange, then continuous transi- 
tions a re  again impossible. The reason is that above 
the transition the system knows only one thing about the 
state to which it will change: the wave vector Q. The 
"virtual transitions" (fluctuations) to any one of the 
three possible sinusoidal waves are  equally probable, 
and the virtual transitions to the spiral states have, in 
order of magnitude, the same probability. 

The character of the transition may change when 
spin-orbit and dipole-dipole forces a re  included. In 
the "easy axis" variant, all virtual states except one 
sinusoidal wave a re  suppressed. In this case, only a 
transition of the second order is possible. In the "easy 
plane" variant, two virtual sinusoidal waves and one 
spiral survive. The character of the transition in this 
case is determined by the relation between the exchange 
and the relativistic forces. Tuus there i s  overlap 
(crossover) between transitions of the f i rs t  'order (cor- 
responding to the maximum number of fluctuating fields) 
and transitions of the second order (corresponding to a 
smaller number of fields). Such a crossover point is of 
course an ordinary tricritical point. 

The situation i s  in principle no different when there 
are  several waves with different vectors 91, Qz, . . . 
(Sec. 3). 

The effect of fluctuations on transitions to sinusoidal 
and spiral states was first  considered in the papers, al- 
ready cited, by Bak et al. [53  They studied the transi- 
tion in C r  and Eu in the strong-anisotropy case and 
showed that in these materials a transition of the sec- 
ond order i s  impossible. 

2. A SINGLE SPIN-DENSITY WAVE 

This includes a large number of magnetic structures 
observed, for  example, in Tb, Dy, Ho, Mn02, etc.; 
that is, in uniaxial crystals with hexagonal o r  tetragonal 
symmetry, with the wave vector Q directed along the 
crystal axis z .  The magnetic structure of such mate- 
rials is described by a single complex vector 

S=S,e'QZ 

or  by its real  and imaginary parts, 

A sinusoidal wave corresponds to 8, II S, a spiral to 
s+ = s_ and 8, 1 s-. 

We shall construct a theory of phase transitions, with 
allowance for fluctuations, using Wilson's &-expansion 
method in the specific form employed in our previous 
papers. C3v41 For  this purpose i t  is necessary to write 
the Landau free energy including terms of the fourth or- 
der in S. We shall take into account two second-order 
invariants, 

SS', S,S,' 

and two fourth-order exchange invariants, 

(SS' )  : S'S'., 

We shall neglect nonexchange invariants of the type 
gg*, supposing that the relativistic interactions a re  
small. 

The f ree  energy, expressed in terms of 8, and s,, has 
the form 

F=' /2r .T(s+Z+s-2)  + 1 / 2 a ( ~ + z Z + ~ - . z )  

+ 1 / g r , ( ~ + 4 + ~ - ~ )  +114 (rl-2rS)~+2~-2+l/2r3(~+~-)zt (1) 
T= ( T - T , )  IT,. 

In Wilson's method, F, rl, and r, a re  themselves func- 
tions of s t  = s: + st and of 7 (see Refs. 3 and 4): 

The dependence of r on 5 is given by the equations of 
the renormalization group (RG) or, what amounts to the 
same thing, by the so-called parquet equations. The 
method of parquet equations, in i ts  application to the the 
theory of phase transitions, may be found in the papers 
of Larkin and ~hmel 'n i tskir  and of Abrahams et al .  ['I 
The equations a re  determined by the graphs in Fig. 2, 
where the lines denote functions of the spin correlation 

For anisotropy of the "easy plane" type (that is, a>0) ,  
1 

G,, = - 7-0; 
z+a+bq2 ' 
1 

Qas = - 6ag, a, P=x, !I, 
z+ bq2 
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FIG. 2. 

For anisotropy of the "easy axis" type (a < 0), 

1 

C, ,  = -- ~ ' = r + a + O ;  
r'+bqL' 

1 
Gas = - 6.n 

T'-af bq' 

The solid lines in Fig. 2 denote components of G,,, the 
broken lines components of G,,. 

Sufficiently fa r  from the transition point, when T and 
T' >: l a ! ,  the contributions of all the loops in the dia- 
grams of Fig. 2 a r e  the same, regardless of whether 
they a re  made up of broken o r  of solid lines, and a re  
proportional to [ of (2). The problem in this range is 
equivalent to a phase transition described by the two 
three-dimensional vector fields s+ and s, and by the en- 
ergy (1) with a =O. This problem was considered by us 
earlier (Ref. 4, Sec. 31, and in fact for  a more general 
expression for the energy (see (11) in Ref. 4), with an 
arbitrary coefficient I?, in the $sf term instead of r, 
=r, - 2r,. The RG equations in this case have the form 
(12) of Ref. 4. It is easily seen that from this system 
one can derive the equation 

whence i t  follows that the system has the particular in- 
tegral 

The existence of the integral (6) obviously implies that 
the expression (1) for the energy remains invariant un- 
der the action of the RG. 

Knowing the solutions of the parquet equations for I?, 
we can easily find the expression (1) for the free energy. 
The following method leads most rapidly to the desired 

resylt (it was once applied by Larkin and ~hmel 'n i t -  
skii [I1 to the case of a single charge). 

Suppose that we know an exact expression for the f ree  
energy a s  a function of the main values of the compo- 
nents ql, q2, O . .  of the order parameter. Then the rela- 
tion 

holds, where the right member is the exact vertex part  
for zero momentum. The relation (7) can be derived, 
for example, by differentiation of the diagram series for 
F. Conversely, if, a s  in our case, the r,,,, are  known, 
the relations (7) may be regarded as differential equa- 
tions for finding the f ree  energy. They must be supple- 
mented by two boundary conditions: 

The second is essentially the definition of the 7,-depen- 
dent part  of the f ree  energy, while the f i rs t  is again ob- 
tained by differentiation of the diagrams. 

Finally, in order to calculate G;: (q =0, T) i t  is con- 
venient to use  Ward's identity 

where the three-point vertex Fis expressed as follows: 

5 

Summation of these diagrams in the parquet approxima- 
tion gives the differential equation for yT([): 

where i' is a combination of the components Tab,, formed 
in a definite manner: 

The solution of (9) is obviously given by the formula 

T(E.)=ew{-j  O ~ ( q ) d q ) .  (12) 

In the parquet approximation, r and r a r e  slowly 
varying functions of T and q: r = r ( [ )?  T = T([) with [ 
from (2); therefore they may be considered constant 
during the integration over the "fast" variables T and q 
in (7), (8), and (9). Then from (9) 

and from (7) and (8) we get the expression (1) for the 
f ree  energy. 

" 
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FIG. 3. ! 

We return to the parquet equations given in a previous 
paperc4] (formula (12)). With allowance for the condi- 
tion (6) they take the form 

This system has only one projective stationary point 0: 
rl = 1/145, r, =O. On introducing the new variable 
U = r3/rl and dividing one of equations (13) by the other, 
we get 

From the f i rs t  equation (13) i t  follows that rl is a de- 
creasing function of 5. The "trajectory" of the system 
(14) in one-dimensional U space is shown in Fig. 3a. 
The only stationary point of (141, the point U= 0, is un- 
stable with increase (decrease) of I?,. Therefore a 
transition of second order in such a system is impos- 
sible (see Refs. 3-6). The system will move until it 
reaches a boundary of the region of positive definiteness 
of the fourth-order terms in (I), where a transition of 
first  order will occur (see Refs. 3 and 4). These 
boundaries were found earlier (see Ref. 4, Sec. 3). 
One of them (with allowance for the fact that r2=- I?, 
+ 2r3) is 

On it, a transition occurs to a state with s+# 0, s- = 0 
or  s+ =0, s , # O  o r  with s+ =*,s,. Both of these states a r e  
obviously states with a sinusoidal wave. In Fig. 3% 
this transition corresponds to movement of the point U 
leftward to infinity, 

A secondary boundary is 

(13); that is, on the values of the coefficients in the 
Landau energy (1) f a r  from the transition point (5 - O), 
where molecular-field theory is valid. When rl(0) 
> r3(0) > 0 (O< Uo< 11, we have a first-order transition to 
a spiral  structure; and when r3(0)< 0 (Uo< O), a first- 
order transition to a sinusoidal structure. The transi- 
tion temperatures a re  determined by the RG equations 
(13) (see Refs. 3 and 4). Their solution has the form 

It was shown that the first-order transi- 
tion temperature is determined by the value 

at which the stability of the paramagnetic phase is lost; 
that is, by the root of the equation ri(Eo8) = O  fok a sinu- 
soidal transition and by the root of r1(5,) - r,([,,) = 0  
for  a helical transition. We have 

When the initial points lie close to the unstable station- 
ary point U = O  ( r ,  =0) of the RG equations, the transi- 
tion temperature rO- 0. The system moves "very 
slowly" (in time 5) to  the transition point. In the limit, 

In accordance with the previous work, C3*41 the main 
value of the spins at the transition point, so, is deter- 
mined by the behavior of the vertices rl and - r3 
close to their zeros ( r l  r p(tos - 5 ) )  and by the value of 
F a t  the transition temperature, F(eO), by means of the 
relation 

For I?, and rl - r, near the transition we have 

The quantity f of (11) in our case is equal to 

On it, a transition occurs to a state with 

By use of formula (15) we find, in accordance with (12), 
that is, to a helical wave. This transition is described 
by movement of the point U rightward to the stability 
boundary (region 11) U = 1, marked in Fig. 3a by- the 
broken line. 

Thus the character of the transition depends on the 
"initial conditions" rl(0) and J?,(0) for the RG equations 

whence 

Y 
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Finally, we have 

This treatment is valid only with neglect of anisotropy 
(the term a(st,+stz) in (1)). This means that the tem- 
perature 7 must not be too small: 

o r  in terms of 5, 

If the transition temperature 7, is smaller than a, then 
different loops in Fig. 2 will have different values. 
With "easy plane" symmetry, loops formed by solid 
lines will again be proportional to  5 > t,, while loops 
containing a t  least one broken line will be smaller, - 5,. 
Thus crossover will occur from the free-component vec- 
tors  s,, s_ to two-component vectors o,, o_ lying in the 
"easy plane. " 

The system of RG equations, in the leading-term ap- 
proximation with respect to 5 > t,, will be determined 
formally by the same energy (1) with s, and s, replaced 
by o, and o, (the coefficients I?,, r,- yl, y,). The RG 
equations for  y, and y, must now be solved with the "ini- 
tial conditions, " at 5 = 5,, 

where r(5,) a re  determined by formulas (15). 

The equations for y,, y, (corresponding to r,), and 
y, have the form 

This system again has the integral -yl+yz+ 2y3=0: 

The system (16) has two unstable stationary points 0 
(uo = 0) and A (u, = - 1) on the u axis (Fig. 3b). The 
point 0 is actually the result of fusion of two simple 
stationary points: a stable one 0- and an unstable 0, 
(Fig. 3c). The fusion occurs only in the linear approx- 
imation with respect to &. The stationary points of the 
RG determined by the energy (1) with the two-component 
vectors o,, u- in the c2 approximation have been inves- 
tigated by ~ u k a m e l ~ ~ ~  (see also Ref. 5). The stable 
point 0- corresponds to his point 8, with coordinate u 
= - &/2; the unstable point 0, corresponds to point 5 of 
Mukamel's paper and has the coordinate u, =O. In our 
further calculations we shall restrict  ourselves to the 
linear approximation in & and shall suppose that the 
points 0, and 0- have fused. The character of the tran- 
sition i s  now determined by the location of the initial 
point 

In tine range uo< u, = - 1, the system moves to - m, 

where, a s  before, a first-order transition occurs to the 
sinusoidal state. In the range uA<uo<u+ =0, all trajec- 
tories converge to the stable point 0- (u- = - &/2), where 
a second-order transition occurs to the same sinusoidal 
state. The indices at this point were determined by 
Mukamel. Finally, in the range uo> u+ = 0, the system 
will again move to the stability boundary of the para- 
magnetic phase (again it is y1 - y, = 0,  u = I) ,  denoted in 
Fig. 3b and c by a broken line, where a first-order 
transition occurs to the helical state. 

It is obvious that the points A and 0 + (or 0 in the lin- 
ea r  approximation in &) are  tricritical points. Coexis- 
tence diagrams of the three phases-paramagnetic (P), 
sinusoidal (S), and helical (H)-are represented sche- 
matically in Fig. 4 (the solid lines a re  transitions of the 
first  kind, the broken lines of the second). We have not 
studied the character of the transitions between the he- 
lical and sinusoidal states. 

The coordinates of the tricritical points in our ap- 
proximation a re  given by the following relations: for 
point A, 

for point 0, . 

o r  (for point A) 

The RG equations for y, and y, a re  

The first-order transition temperatures a r e  now deter- 
mined by the solutions of equations (16). We have 

whence we find 
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The temperature of transition to the sinusoidal state, - 

So,, i s  given by the formula 

and to the helical state 

In the vicinity of the tricritical points, the transition 
temperatures have the following form: near point A, 

near point 0,  

We note also that the function f of (11) now has the form 

Therefore 

where is given by the formula presented above for 
5< 5,. 

Finally, in regard to "easy axis" symmetry: in this 
case the situation is remarkably simple. When 7 < a, 
only fluctuations of the z components of the vectors s, 
and s- are  important. The corresponding energy has 
the form 

and the RG equation for the only charge in this case, y, 
can be written 

It is to be solved with the initial condition 

relations (corresponding to equality of the transition 
temperatures T,, calculated in the exchange approxima- 
tion and of the anisotropy energy): coordinates of the 
point 0, 

coordinates of the point A, 

Eo6=5a.  

The maximum number of such waves occurs for an 
arbitrarily directed vector Q in crystals with high sym- 
metry. For  simplicity, we shall restrict  ourselves to 
the case of two and three waves, with vectors directed 
along symmetry axes. 

Two waves occur when the Q's a re  directed along the 
x and y (or [110] and [lie]) axes of a tetragonal crystal. 
Such a re  the magnetic structures in DyC2 and TbAu,. 
They a re  described by two complex vectors: 

There are, correspondingly, three second-order invari- 
ants, 

of which the f i r s t  is exchange and the other two relativ- 
istic, and four fourth-order exchange invariants, 

(S,S,') =+ (s,s2')Z, s,2S,''+Sz2S2Z', 

(S,S,') (SZS,') , (SIS,) (S,'S*') + (S,Sz') (S,'S*). 

The case of three waves occurs, for  example, in cubic 
crystals, when the Q's a re  directed along the three cubic 
axes (this includes the structures in TbD,, Cr ,  and Eu), 
and in hexagonal o r  rhombohedra1 crystals, when the Q's 
a re  directed along the three twofold axes (the structure 
of Nd). Such structures a re  described by three complex 
vectors, 

(for hexagonal crystals, x, y, and z are  to be understood 
as coordinates along the three twofold axes); and, cor- 
respondingly, there a re  again four fourth-order ex- 
change invariants, 

(S,S,.)Z+ (SZS?.) =+ (SJSI.) =, 

S,'S,Z'+S?ZS~'+S,ZS3z~, 

The solution has the form 

It obviously describes a unique stable stationary point 
(Fig. 3d): a phase transition of second order. 

The state diagram in the case of "easy axis" sym- 
metry again has the form of Fig. 2b. The coordinates 
of both tricritical points a re  determined by the following 

For  cubic crystals there a re  two quadratic invariants 

an exchange and a relativistic; for  hexagonal crystals, 
in addition to the exchange, there a re  two relativistic, 
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FIG. 5. 

where the coordinates 5 ,  77, and 5 are  measured along 
the twofold axes. 

In the case of a larger number of waves, nothing new 
appears. There a re  four fourth-order exchange invari- 
ants, of the same structure a s  (19), and two quadratic 
relativistic invariants, a s  in (20). 

In the exchange approximation, the Landau energy is 
described by the single formula (S, = s,++is,_) 

To this must be added the second-order relativistic 
energy. For cubic crystals this is 

for hexagonal and tetragonal 

(22b) 
It is clear that for hexagonal and tetragonal crystals, 
and also for a large number of waves, we always have 
to do with "easy axis" symmetry; that is (for large an- 
isotropy), only with sinusoidal structures. It is only 
for cubic crystals with positive a in (22a) that the "easy 
plane" situation arises and spiral structures become 
possible. 

At high temperatures, T > a ,  a s  in the preceding sec- 
tion, the RG equations for rl, I?,, l?,, and r, in the ex- 
change approximation a re  valid. We shall write them 
for the case of an arbitrary number n of waves and of an 
arbitrary dimensionality m of the spin (m = 3 for ex- 
change forces, m = 2 for an "easy plane, " m = 1 for an 
"easy axis"). We have 

The system of course has the particular integral - r1 
+ r2 + 2 r 3  = 0, which again leads to invariance of the en- 
ergy (21) with respect to the RG (23). 

We note that the values of I? necessary for calculation 
of the coefficients . F i n  the expression for the free ener- 
gy a re  now given by the formula 

Finding the stationary points of (23) is a very trouble- 
some problem; i t  can be verified, in particular, that 
even the number of points depends on n. A previous 
test, c 3  however, has shown that in all problems in 
which the dimensionality of the RG space was no less 
than two, i, e., the number of significant charges r was 
no less than three, all RG stationary points proved un- 
stable. I am convinced that this fact is a general con- 
sequence of some kind of topological properties of the 
RG, connected, for example, with the positive definite- 
ness of the energy and the monotonicity of the charge 
r,. From this point of view, the possibility of transi- 
tions of second order is a trivial consequence of the 
one-dimensionality of the RG space (the number of 
charges is one or  two), in which stable and unstable 
points always alternate. Therefore, without carrying 
out numerical calculations, I assume that all stationary 
points of (23) a re  unstable and, a s  a result, transitions 
of the second kind, as  in Sec. 2, a re  impossible in the 
exchange region. 

In support of this deduction, some formal considera- 
tions can be offered. As we have seen, the character 
the phase transition is determined by the behavior of 
the trajectories in the projective phase space of the 
variables r2/rl, r3/r1, r 4 / r l , .  '. . It can be shown 
that trajectories to infinity a re  always "outgoing" (see 
the figures in Refs. 3 and 4 and Figs. 3a-c and 5 in the 
present paper). Therefore in one-dimensionalspace, 
a necessary and sufficient condition for the occurrence 
of a stable stationary point is  the presence of no fewer 
than three stationary points (Fig. 3c). In the two-di- 
mensional case, a necessary condition is the presence 
of at least five such points (see Fig. 5), but this condi- 
tion is not sufficient. In the case of a three-dimension- 
al space that is of interest to us, the number of neces- 
sary points is very large, and this makes the occur- 
rence of a stable point in a system of general form im- 
probable. 

The situation mentioned above of an "easy plane" i n  
a cubic crystal is described by the same four charges 
a s  is the exchange case. Therefore we suppose that 
transitions of second order a re  again impossible. This 
deduction is supported by experiments on C r  and Eu, 
where in fact the transitions observed a re  of f i rs t  order 
The same conclusion was reached by Bak, Krinsky, and 
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Mukamel, c51 who considered transitions of the "easy 
plane" type in C r  and Eu. They actually demonstrated 
the instability of all stationary points in a five-dimen- 
sional space, including also in their consideration two 
charges of nonexchange nature. 

The "easy axis" situation is described by the energy 

where sl+, sl-, . . . are  the z components of the corre- 
sponding vectors. The RG equations can be obtained 
from (23) by noting that when m = 1, the system (23) 
splits into three independent systems, of which the one 
for the variables 

has the form 

Comparison of the two expressions for the energy shows 
that the relations (25) correspond exactly to the transi- 
tion from (21) to (24). 

The system (261, as  before, is to be solved with the 
boundary conditions at 6 = 5 ,  

which insure a joining with the solutions of the system 
(23) in the exchange region. 

The RG defined by the expressions (24) and (26) was 
investigated in a somewhat different form by Mukamel 
and ~ r i n s k ~ [ ~ ~ ;  therefore we shall merely enumerate 
the results briefly. On transforming to the variable 
u = y2/yl, we get 

This equation has three stationary points: 

Of these, only the point 0- is stable, so  that we again 
encounter the situation of Fig. 3c. The range of ther- 
modynamic stability extends from + 03 to the point 
u, = - l/(n - I), and the points A and 0, are  tricritical. 
The system (26) can be solved by quadratures, so  that 
we a re  able to confirm all the calculations of the pre- 
ceding section and to construct a state diagram of the 
type of Fig. 4. 

For an "easy axis" of another type, for example for 
the case of TbD2, where only the components sir ,  szy, 
and s,, a re  nonzero (energy of type (22a)), o r  for  the 
case of DyC2 and TbAu2, where in principle the pairs 
six, s~~ o r  sly, s2% may be nonzero (energy of type (22b)), 
the energy expression (24) and the RG equations (26) 
are  retained. All that changes is the form of the initial 
conditions (27); they now read: 

Thus with "easy axis" symmetry and with any num- 
ber  of waves, the state diagram of Fig. 4 i s  realized, 
with two tricritical points. We recall that with "easy 
plane" anisotropy in a cubic crystal, a s  in C r  and Eu, 
a transition of second order i s  in general impossible. 

4. TRANSITION OF FIRST ORDER IN MnS2 

Recently Hastings and ~ o r l i s s [ ~ l  established that the 
transition in MnS, is a transition of first  order. The 
MnS, crystal has the cubic group Pa3(~,8). The mag- 
netic structure in i t  i s  described by three complex vec- 
tors  

that is, i t  belongs to the case considered in the preced- 
ing section. But because the wave vectors e occupy the 
symmetrical positions $00, 060, 006, there is an addi- 
tional exchange invariant, 

in consequence, the second fourth-order term in (21) 
will have an arbitrary coefficient r,. It can also be 
shown that for  MnS, there a r e  three second-order in- 
variants, i. e., "easy axis" anisotropy. 

In the exchange approximation, the transition is again 
described by the system (23) with m = n  = 3. The corre- 
sponding projective space is four-dimensional-r,/r,, 
r3/rl, r4/rl, r,/r,-and therefore (see the note in the 
preceding section) stable points a re  certainly absent. 
The strong-anisotropy case was considered by Bak et 
al. c51 They showed that the corresponding system has 
a stable stationary point, s o  that a transition of second 
order is in principle possible. We shall show, however, 
that a continuous transition to the state observed exper- 
imentally i s  again impossible. 

In the "easy axis" case, when each of the vectors S1, 
S2, and S3 has only one component, the energy expres- 
sion (21) and the system (23) simplify greatly. In ap- 
propriate variables, they have the form 

and 

Here 

when all three vectors S1, S2, and S2 a re  parallel, and 

when they a r e  mutually perpendicular. 
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The trajectories of the system (29) in the plane 

a re  shown in Fig. 5. There a re  7 stationary points: 

The point Al was found to be stable; therefore, in prin- 
ciple, a continuous transition is possible from the re-  
gion of initial values uovo bounded by the curve 
OB2Cd2CIBl. The form of the magnetic structure that 
originates as  a result of such a transition can be  found 
by writing the energy (28) in the scaling range, where 

We have (y, > 0) 

It is clear this expression is smallest when all three of 
S,, S2, S, a r e  simultaneously nonzero. 

Other magnetic structures can occur only as a result 
of a transition of f i rs t  order. A simple analysis of the 
energy expression (28) shows that (see the discussion 
in Ref. 4) loss of positive definiteness, and with i t  a 
transitionof f i rs t  order, occur in the following four 
states: 

I , :  s,+#O, s,-=0, s2+= .. . =O. 
12: s,+=s,-ZO, s ,+=.  . . =o. 
11,: s,+=sZ+=sQ++O, S,-= .. . =O. 
112: &+=Sf-= .  . . +o. 

A transition to the experimentally observed state I, 
occurs when the trajectory goes out to infinity in the 
first  quadrant in Fig. 5. A transition to I, occurs when 

the trajectory intersects the dashed straight line v + 2 = 0. 
State 11, appears on the straight line 2u+ 1 =0, state 11, 
on the straight line 4u + v + 2 = 0. 

The considerations presented a r e  of course also ap- 
plicable to the transition in K21rC1, considered by Bak 
et aZ. 

" ~ l l  these cases  have already been treated by Bak et al. 15] 
What is  new in our investigation is the assertion that in the 
case of purely exchange forces,  the transition is always a 
transition of the f i rs t  order. In Ref. 5 can also be found 
a more detailed description of the magnetic structures and 
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