
The excitation spectrum of the electrons of a 
semiconductor in the resonance field of a standing 
electromagnetic wave 

A. S. Aleksandrov, V. F. Elesin, A. N. Kremlev, and V. P. Yakovlev 

Moscow Engineering Physics Institute 
(Submitted November 15, 1976) 
Zh. Eksp. Teor. Fiz. 72, 1913-1925 (May 1977) 

The spectrum of the quasi-particle excitations of the electrons of a semiconductor in the resonance field of 
a standing electromagnetic wave is investigated. In contrast to the earlier investigated case of a running 
wave, when the corrections to the excitation spectrum were of the order of kv/A<l (k is the wave vector, 
v is the electron velocity at the Fermi surface, and A is the frequency of electron interband transitions 
under the action of the field), the spectrum in a standing wave is substantially different even when the 
parameter kv/A is small. In particular, the gap in the density of states is replaced by a smooth decrease 
of the density of states. This is due to the fact that the mixing of the states in the valence and. conduction 
bands occurs not at one value of the quasi-momentum, as obtained in a running-wave field. The obtained 
results are of interest not only for semiconductor lasers, where the standing-wave situation is usually 
realized, but also in connection with the investigation of superconductivity in the Frohlich model. In this 
case the role of the interaction with the electromagnetic field is played by the electron-phonon interaction. 

PACS numbers: 71.38. +i 

It was shown in Ref. 1 that if  the strong-field condi- 8 1. THE BASIC EQUATIONS 
tion AT>> 1 (A =dE, E i s  amplitude of the wave-field in- The Hamiltonian for the electrons and holes of a semi- 
tensity, d is  the dipole moment of the transition, and T conductor located in a homogeneous monochromatic 
i s  the electron-phonon collision time) is fulfilled, then electromagnetic field admits in the resonance approxi- 
a gap arises in the electron spectrum of the semicon- mation, a s  was shown in Ref. 1, diagonalization with 
ductor. Subsequently, it was theoretically and experi- the aid of the transformation of the electron operators 
mentally shown in a number of papers that the strong- into quasi-particle operators. In the more general 
field condition i s  realized at relatively low powers in case of a resonance field with an arbitrary coordinate 
semiconductors irradiated by external fields, a s  well a s  dependence, we can, after making the necessary gen- 
in semiconductor lasers (SL). The change in the spec- eralizations, also diagonalize the Hamiltonian. For 
trum leads to important effects in SL theory, in particu- this purpose it is convenient to use two-component field 
lar, to generation saturation. ~ 2 '  operators similar to the spinor operators in the theory 

In the previous papers the analysis was performed of superconductivity (see, for example, Ref. 4): 
for a running wave. Since for a strong field we can as- 
sume that ku << x (k i s  the wave vector and v is the ve- $(r)= ) , 
locity at the Fermi surface), the corrections to the 1(1,(r) 

(1 

spectrum that a re  due to the spatial inhomogeneity of 
the field a re  of the order of kv/A, and they can be ne- 
glected. However, in the case of a standing electro- 
magnetic wave, a case which i s  usually realized in SLY 
the situation turns out to be substantially different. As 
shown in the present paper, the spectrum undergoes 
substantial changes even when the parameter kv/h i s  
small. The spatial dispersion can be neglected only if 
k L << 1, where L is the sample dimension. If the condi- 
tion 1/L < k << A/v is fulfilled, then the gap in the density 
of states is washed out and replaced by a smooth de- 
crease of the density of states. 

It should be noted that the obtained results are of in- 
terest in connection with the investigation of the possi- 
bility of superconductivity in the Frahlich model. ''I The 
role of the interaction with the electromagnetic field is 
played there by the electron-phonon interaction. 

In the paper we investigate in detail the spectrum of 
the quasi-particle excitations of the electrons of a semi- 
conductor in the resonance field of a standing electro- 
magnetic wave. 

where $, and $, are the operators of electron annihila- 
tion in the conduction and valence bands. After the ap- 
propriate unitary transformation that transfers the time 
dependence from the Hamiltonian to the state vectors 
(which results in the energy reference point being 
changed in each bandc"), the Hamiltonian for electrons 
interacting with an inhomogeneous electromagnetic field 
can be written in the form 

Here 

d is the dipole matrix element of the interband transi- 
tion, E, is the energy gap, the electric-field intensity is  
given in the form ~ ( r ) e - ' ~ ~  + c. c., are  pauli ma- 
trices, and the electron and hole masses are assumed, 
without loss of generality, to be equal. 
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The Hamiltonian (2) i s  a quadratic form in the field 
operators, and can be diagonalized with the aid of the 
linear transformation 

where (2, is the annihilation operator for a quasi-par- . 

ticle in the single-particle quantum state v with the wave 
function cpV = {cpY,, qi}, the totality of which forms a com- 
plete orthonormal set. Requiring that H = xcvff;cu,, we 
obtain for cp, and cp, the equations: 

The system (4) i s  similar to the Bogolyubov equations 
in the theory of superconductivity. 

In the field of the running wave ~ ( r )  = Xeik", which 
mixes the state with momentum p in the valence band 
and the state with momentum p +k in the conduction 
band, the Eqs. (4) are  exactly soluble. C5' The two en- 
ergy branches of the spectrum, distinguished by the in- 
dices o! and B, have the form 

If we neglect collisions (AT>> I), then the reduced den- 
sity of single-particle states for the spectrum in ques- 
tion has the form (see Fig. 1) 

where 

It can be seen from this that, when kv <2X, the spectrum 
contains a gap of width 2X - kv. When kv > ZX, the gap i s  
absent. In the limit kv << A, the results go over into the 
corresponding expressions for a uniform field. The ef- 
fect of scattering on p(c) was thoroughly studied in an 
earlier paper. 

A s  is  well known, the presence of a gap leads to the 
absence of absorption of a weak signal at frequencies 
close to the frequency of the strong field, to the absence 
of recombination emission at these same frequencies, c5' 

as  well as  to the existence of a limiting value for the 
field generated by the laser. "' Knowledge of the energy 
spectrum i s  very important for the understanding of the 
processes occurring in SL. In practice, in quite a num- 
ber of cases the situation is  realized when the electro- 
magnetic field in the SL is, to a good degree of accura- 
cy, the field of a standing wave. Therefore, in the fol- 
lowing sections we shall consider precisely this situa- 
tion. 

52. GENERAL PROPERTIES OF THE ENERGY 
SPECTRUM IN THE FIELD OF A STANDING WAVE 

The solution of the system (4) for the field of the 
standing wave X(r) = A cosk r meets with serious mathe- 

matical difficulties. In this section we shall consider 
the general properties of the spectrum, and at the same 
time construct a perturbation theory with the parameter 
X/kv. We shall use the well-known-in the theory of 
linear differential equations with periodic coefficients- 
Hill methodc7' (see also ~e l ikyan ' s  paperc81), and we 
shall seek the solution in the form 

The set of equations for the coefficients breaks up into 
two independent subsystems. Into one of them enter 

x , ~  and b,,, =x,,+,: 

A 
x z 1 + 1 -  ( x Z . + X ~ . + ~ )  =0, 

(p+1+2s) "pr' 

where 

For definiteness, the wave vector k i s  directed along 
the z axis and the quasi-momentum p = (p,, p,}. The 
second subsystem is obtained from (8) by means of the 
substitution p - p + 1 and redesignation of the unknown 
quantities, or by means of the substitution c - - c . 

The infinite determinant ~ ( p )  of the homogeneous sys- 
tem (8), considered a s  a function of p, possesses the 
following properties: 

1) D(p) i s  a meromorphic function, having simple 
poles at the points *p, + 2s and *p, +2s + 1; 

2) ~ ( p )  is an even periodic function with period 2; 

3) D(p)- 1 a s  Ipl -m. 

It follows from these properties that D(p) can be repre- 
sented in the form 

D (p) = l + ~  SinxPt + ,j sin np, 
cos n p ,  - cos xp ros xp2 + cos n p  ' (9 ) 

where the quantities A and B do not depend on p, and 
can be expressed in terms of D(0) and D(1). It follows 
from the structure of the determinants ~ ( 0 )  and D(l) that 
they are obtainable from each other by means of the sub- 
stitution p,=p,, so that it is  sufficient to compute only 
one of them. (This same property i s  possessed by the 
quantities A and B. ) 

FIG. 1. Relative density of states of the quasi-particle excita- 
tions in the field of a running wave for kv < 2 ~ .  
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sin n p ,  I f  p,l-p,' +-. , ) =o. 
p ,  cos n p ,  + cos n p  (11) 

FIG. 2. Schematic shape of the excifation epectrum for a 
standing-wave field. For simplicity, only the low-lying 
branches of the spectrum are shown: 1) eingle-quantum 
resoname splittinge. 2) Bragg splitting. 

The equation D(p) = D(p, c) = 0 determines the 
branches, c(p), of the energy spectrum that are  con- 
nected with the system of equations (8). The function 
~ ( p ) ,  as  can be seen from the properties of D(p), is an 
even periodic function with period 2. The determinant 
E(p) 'B(p, E )  =D(p +1, c) for the second subsystem will 
give the branches Z(p) =c (p + 1). Furthermore, the re- 
lation D(p + 1, &) = D(p, - c)  is valid. Therefore, the re- 
sulting excitation spectrum is an even periodic function 
of p with period 1, and is symmetric under the substitu- 
tion c -  - c .  

The energy spectrum E (p) has singularities connected 
with the presence of points of intersection of the unper- 
turbed terms 

Intersections of the first type correspond to the reso- 
nance mixing by the field of the states cc and c, with mo- 
menta, p,, differing from each other by an odd number 
of k, i. e., 

In this case the parameters p, and p, entering into D(p) 
differ from each other by an odd number. This leads to 
pairwise fusion of the poles corresponding to them and 
to the appearance of gaps in the spectrum. Intersec- 
tions of the second kind correspond to the mixing by the 
field of the states cc (or c,) for opposite momentum val- 
ues, differing from each other by an even number of k. 
This condition is analogous to the. Bragg condition for 
reflection during motion in a periodic field. At these 
points the parameter p, (or p,) is equal to a whole num- 
ber. The poles of ~ ( p )  that a re  connected with this 
parameter merge in pairs, and a gap appears in the cor- 
responding branch of the spectrum. 

For a sufficiently weak field, we can restrict our- 
selves to the consideration of a few terms of the expan- 
sion of D(0) in a series in powers of A'. This leads to 
the following equation for the spectrum: 

In the most interesting parameter region, where p- p,, 
>> k2/m, this equation is applicable if 

In the vicinity of one of the points of intersection of 
the terms c, and c, for s = O  in (lo), which corresponds 
to a single-quantum resonance, p,=p,  - 1. Therefore, 
carrying out the necessary expansions in (11) near 
E = kv and p = - $ +mv/k, we obtain for c(p) the result 
(5). Thus, there exists resonance splitting, A& = k, 
near points of this kind. These splittings arise a s  a re- 
sult of the independent resonant action of the two running 
waves forming the standing wave. Equation (11) is not 
suitable for the computation of the spectrum near the 
points corresponding to resonances of higher multi- 
plicity, since it is necessary to take account of further 
terms of the expansion of the determinant in powers of 
h2 right up to (A')~~*'. The splitting at these points is 
proportional to has*'. The many-quantum resonances 
will be considered in the following section with the aid 
of the quasi-classical approximation. 

Near the singularity connected with the Bragg reflec- 
tion for the c, term, the parameter p, = s (s - mu/k >> 1). 
If in this case p2 is not close to a whole number, then 
the second term in the curly brackets in Eq. (11) can be 
neglected. Then there arises a splitting in the 6, term 
near &a- p+kes2/2m and p=s :  

At these energies the c, term does not, generally speak- 
ing, split up. An analogous splitting for &, occurs when 
p, is close to a whole number. 

A schematic shape of the spectrum in the extended 
zone scheme is shown in fig. 2. For simplicity, we 
show only the branches of the spectrum connected with 
the determinant D(p). The branches of the spectrum 
connected with E(p) a re  obtained by means of the sub- 
stitution c - - &. In the reduced zone scheme the spec- 
trum is obtainable by means of a periodic continuation 
with respect to p. Figure 3 shows the shape of the 

determined by Eq. 11 for A = 1 
and 2mp /kZ=95.  15. 

n A z  I+plz-pea 
I + 

[ I - ( P , + P , ) ~ ]  [ ~ - ( P ~ - P * ) ~ I  { cos n p ,  - cos n p  
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spectrum determined by Eq. (11) for specific values of 
the parameters. 

Notice that, for I pl << and A<< kuo, Eq. (11) i s  valid 
for E >> h(~m/k~)"~ .  For it to be applicable in the region 
of smaller c, we need a more rigid condition on the 
field: X << ke/m . 
53. THE QUASI-CLASSICAL APPROXIMATION 

If the distance, v/X, which an electron traverses dur- 
ing the time of i ts transition between the valence and 
conduction bands i s  small compared to the field-inhomo- 
geneity period l/k, i. e., if A>> ku, then the electron 
motion in the field of the standing wave X(Z)  = X coskz can 
be treated quasi-classically. Separating out the depen- 
dence on the transverse components of the momentum, 
and going over to the variable T = kz, we can represent 
(4) in the form 

Let us apply a previously proposed method. Let 
us effect a rotation through an angle 8 ( ~ ) :  

th 8 = h ( r ) / ~ ,  A{r) =A cos z. 

Neglecting the small terms containing the derivatives 
of 8, we arrive at two independent equations for x ,,,: 

Using the quasi-classical solutions to Eqs. (16), let us 
represent the linearly independent solutions to the basic 
system (14) in the form 

The functions a,,, have in the complex T plane two 
types of branch points, which a r e  repeated periodically. 
The branch points of the first kind a re  connected with the 
zeros of the interior root. On bypassing these points 
the solutions u and w go over into each other. This cor- 
responds to resonant mixing of the c, and E, terms. The 
branch points of the second kind are  determined by the 
zeroes of the exterior root. The bypassing of these 
points leads to the conversion of the solutions u and ii 
(w and 6) into each other, which corresponds to the 
Bragg conditions for reflection. Consequently, the gen- 
eral solution i s  a superposition of four types of waves 
that get converted into each other at the branch points. 
The problem consists in the search for those superposi- 
tions of these waves that would, with allowance for the 
indicated conversions, have the Bloch form. 

As will be shown below, for p>> A, the influence of 
the branch points of the second kind is negligible, i. e., 

we can restrict ourselves to the consideration of only 
the resonant conversions. In this case we should con- 
sider the cases c > X and c < X separately. 

For c > X the branch points of the interior root a re  
complex: 

Let us introduce in the interval (xn, n(n +I)) the func- 
tions u, and w, for which the lower limit of the integra- 
tion in (17) coincides with the left end of the interval, 
and let us represent the sought solution in the interval 
in the form 

Continuing the functions u, and w, into the next interval 
first along the real axis and then along a path bypassing 
the branch points located respectively in the upper and 
lower half-planes, where these functions decrease ex- 
ponentially (in the same way as is done in the problem 
of quasi-classical above-the-barrier reflecti~n"~'), we 
obtain the following unimodular transformation matrix 
for the coefficients A, and B,: 

Here 

where E i s  the complete elliptic integral. 

The quantity R is the coefficient of above-the-barrier 
reflection: 

where x = (1 - A ~ / E ~ ) " ~ .  An analogous reflection coeffi- 
cient R is encountered in, in particular, the problem of 
the many-photon resonance in a two-level system. r"*'2' 

If E >> X (which i s  actually equivalent to  a weak field), 

and the exponent at the point of intersection of the terms 
(10) is equal to the multiplicity of the corresponding 
resonance, i. e., 2~ /kv  = 2s + 1. For c not too close to 
X, the quantity R << 1. This condition of applicability of 
the quasi-classical approximation is violated only in the 
immediate proximity to A, when c - x-< ku. 

The continuation of the solution over the complete 
period of 2 r  is given by the matrix U= U,,+lUn, which has 
the eigenvalues 

o .e exp c-p = e x p ( 2 i ( S o * S . ) } ,  sin S.= (1+R2)"  sin S. (22) 1.2; 2)  

Let us take a s  the coefficients A, and B, the eigenvec- 
tors of the matrix U. Then the wave function (18) 
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acquires, after the continuation over the period, the 
phase factor (22), i. e., has the Bloch form, so that p, 
i s  a quasi-momentum. The energy spectrum i s  deter- 
mined by the relation 

The minus sign in front of p, in (23) corresponds to the 
second pair of Bloch functions, which a r e  constructed in 
similar fashion from ii and zZ. 

Since R << 1, we have S, =S in those regions where 
I sin S I i s  not close to unity, and the spectrum in the ex-  
tended zone scheme i s  given by the following implicit 
expression: 

The influence of R becomes important near the reso- 
nances where S= ir(s +$). There arise at these places 
in the spectrum the splittings 

Until E << p, the branch points of the second kind lie far 
off in the 7 complex plane, and a re  therefore unimpor- 
tant. 

Let us consider the energy region E <A << p. In this 
case the branch points of the interior root in (16) lie on 
the real axis: 

z.=nnf r,, cos ro=e/A. 

The branch points of the exterior root can be neglected. 
In the interval (s(n - 1) + rO, sn - r0) the functions (17) 
oscillate. Let us continue them into the next interval, 
bypassing the branch point irn - 7, on top and underneath. 
Each of them will get converted into a sum of an in- 
creasing, and a decreasing, function. Here we should 
rectify the coefficient attached to the decreasing termc131 
to ensure the constancy of the particle flux. There are  
four reversal points in a complete period. We continue 
the solution, successively bypassing all these points, 
and obtain the following unimodular transformation ma- 
trix: 

(26) 
The quantity R i s  analogous to the quasi-classical coef- 
ficient of penetration through a barrier 

Further, 

The quantities figuring in (27) and (28) were computed 
for E <A<< p. 

Determining the eigenvalues of the matrix (26), and 
introducing the quasi-momentum p,, we obtain the fol- 
lowing expression for the spectrum: 

At energies E not too close to A, the quantity R i s  ex- 
ponentially small. Therefore, the spectrum i s  a se- 
quence of narrow allowed bands in the vicinity of ener- 
gies where S = m. In particular, in the region E << A the 
allowed bands lie in the vicinity of the energies 

en= (kkun)'". (30) 

As the energy increases, the allowed-band spacing de- 
creases, while the band width increases. 

Let us estimate the relative role of the branch points 
of the first and second kinds. Let us, for simplicity, 
restrict ourselves to the case of small E. It follows 
from (27) that 

exp (-21/ku), ~ e h ~ p ,  
R = (  

exp[-1,65(2m1/kz) '"I, ~ < p < h .  (31) 

The bypassing of the complex (for E < p) branch points 
of the exterior root [ p  - (E' - leads to the ap- 
pearance of the exponential factor 

It can be seen from a comparison of (31) and (32) that 
the mixing of the E, (or E,) states under conditions of 
Bragg reflection becomes important fi >> R) at small p, 
i. e., when the transverse quasi-momentum components 
p, a r e  close to muo. 

Allowance for all  the branch points leads to  quite a 
complicated expression for the spectrum. However, in 
the region of parameter values 

we can develop another method of investigating the sys- 
tem of equations (14). 

The quasi-classical solutions oscillate near the points 
s(s + $) in the intervals I A r l  < & / A  << 1, while outside 
these intervals (in the subbarrier regions) these solu- 
tions contain exponential (increasing o r  decreasing) 
factors. 

The penetrability of the barriers i s  given by the ex- 
ponentially small quantity R, which also determines the 
allowed-band width. If we neglect this width, i. e., if 
we a r e  interested only in the position of the allowed 
bands, then we can restrict ourselves in Eqs. (14) to 
the consideration of only the vicinities of 1 7 - a(.$'+ 8) 1 
,<&/A and, to make up for this, successively take into 
account the influence of the branch points of the second 
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I / in the reduced zone scheme 
!" for p /h=10  and k v / ~ = 0 . 5 .  

kind, which can be either complex (when c < F) ,  o r  real  
(when c > p). The thus obtained discrete energy levels 
a re  degenerate, since they correspond to states local- 
ized in the indicated intervals. Allowance for the over- 
lap of the wave functions of these states, i. e., for the 
quantity R, leads to their being smeared into bands (a 
situation which is similar to the tight-binding approxi- 
mation in solid-state theory). 

If in (14) we expand cosr near rr/2 and go over to the 
Fourier components 

then we obtain for them a system of first-order equa- 
tions that leads to the following second-order equation 
for J=J,:  

The form of the effective potential energy V(x) depends 
essentially on the quantity Eo (i. e., on p). If Eo >> 1, 
i. e., if A/q<< p << A, then V(x) represents two potential 
wells separated by a fairly large barrier. The energy 
spectrum for c << p can be obtained by considering the 
two wells independently. Expanding V(x) near the min- 
ima, we obtain in the quasi-classical approximation for 
the energy levels the expression (30). These levels (ex- 
cept the c = 0 level) a re  two-fold degenerate. Allowance 
for the finite barrier penetrance removes this degen- 
eracy. For the quasi-classical barr ier  penetratGn fac- 
tor we obtain, a s  was to be expected, a quantity R coin- 
ciding with the second expression in (32) (for c < p, a is 
connected with the bypassing of the complex branch 
points in the T plane, or, correspondingly, with the by- 
passing of the real branch points in the plane p = qx). 
The degenerate levels undergo splittings of magnitude 
&-a, which is significantly greater than the width of 
the band into which each of the levels is smeared when 
the factor R is taken into consideration. 

As p decreases, the potential barrier between the 
wells diminishes and generally disappears finally a t  p 

= 1.19h/q. Starting from some value of p- A/% and 
upon i ts  subsequent decrease, the "ground" state energy 
c2 becomes strictly greater than zero and increases. 
Let us give the quasi-classical expression for the spec- 
trum for IEoI <<I: 

Let us draw attention to the nontrivial field dependence 
of the energy levels: c - A2I3. 

At large negative p(IEoI >> 1) we obtain for not too 
high levels the expression 

i. e., the level spacing decreases with increasing I jt I .  

A numerical computation of the quasi-particle excita- 
tion spectrum was carried out on an electronic computer 
for some specific values of the parameters. The re- 
sults a re  represented in Fig. 4 by the continuous curve. 
The dashed line represents the spectrum computed with 
the aid of the quasi-classical approximation. The quan- 
titative agreement (with the exception of the regions 
where the conditions for quasi-classicality a r e  strongly 
violated) is very good. 

Let us compute the density of states for the strong- 
field case (A >> kvo). The dominant contribution to it is 
made by the range of momenta p,,<mvo. Therefore, we 
can use for the energy spectrum the expressions (24) 
(in the case when E >A) and (28) and (29) (in the case 
when E <A). After simple computations we obtain up to 
terms of the order of ( ~ V ~ / X ) " ~  the expression 

The logarithmic singularity a t  c = A  is connected with 
the inapplicability of the quasi-classical approximation 
in the region I E - X I  < kvo. The function p(c) is depicted 
in Fig. 5. 

$4. THE GREEN FUNCTION 

Such integral characteristics of the spectrum a s  the 
density of states can be very clearly obtained with the 
aid of the diagrammatic technique. Let us introduce 
the Green fwiction 

FIG. 5. Relative density of states of the quasi-particle 
excitations in the field of a standing-wave ( A  >> kv) .  
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iGs(x, 2') =(T{$o(x)$v+(x')} ), 
iG, (x, x') =(T {$,(x) $,+(xl)} ). 

In the momentum representation the diagrammatic ex- 
pansion for G,(p, p; o) has the form 

where 

The energy range in which the interaction of an elec- 
tron with the field has a resonance character i s  of the 
order of X. Because of the spatial inhomogeneity of the 
field, the change in the electron momentum during one 
interaction event i s  k, while the energy change - kv. 
Therefore, the number of collisions that do not take the 
electron out of the region of resonance energies i s  N - ~ / k v .  In a strong field, N>> 1. If the collisions have 
a stochastic character (i. e., a re  equally probable pro- 
cesses in each of which the electron momentum changes 
by + k), then the change in the electron energy after the 
effective number of collisions (N)'" is of the order of 

Therefore, we can set k=O in (37). Summing the se- 
ries, we obtain 

The Green function G,  i s  obtainable from (39) by means 
of the substitution ((p) - - t(p).  

The density of states computed with the aid of these 
Green functions, 

coincides with the result (36). 

The substantial difference between the electronic-ex- 
citation spectra of a semiconductor in a running-wave 
field and in a standing-wave field will lead to some dif- 
ference in their optical properties. Because of the ab- 
sence of a gap in the density of states (see Fig. 5), the 
transparency region in the absorption of a weak signal 
and in the recombination-emission spectrum will be ef- 
faced. 

In conclusion, we express our thanks to S. M. 
Belonosov and A. S. Belonosov for their help in the 
carrying out of the numerical computations. 
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