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A general approach is proposed to the determination of the response of an equilibrium system to an 
electromagnetic field. Diagram expansions of the average current density both in terms of the external 
field and in terms of the field in the medium are obtained. Graphs that determine the susceptibilities of 
arbitrary order of nonlinearity are obtained on the basis of the expansions. Relations are derived between 
the susceptibilities and the kinetic coefficients that determine the response of the system to an external 
field. These coeficients are expressed in terms of equilibrium correlation functions of the current and of 
the charge density. 

PACS numbers: 41.90. +e 

1. INTRODUCTION. FORMULATION OF PROBLEM 

The problem of calculating the kinetic coefficients 
that determine the response of an equilibrium system to 
an external action was actively discussed in the litera- 
ture of the middle fifties. In a classical paper, ~ubo" '  
obtained expressions for the kinetic coefficient in terms 
of the corresponding correlation functions of an equilib- 
rium system. These results were used also to calcu- 
late the susceptibilities, which determine the response 
of a system to an electromagnetic field. Kubo himself, 
a s  well a s  most workers subsequently dealing with the 
problem (for example, 1siharac2I), started from the 
Hamiltonian of a system of charged particles in an elec- 
tromagnetic field: 

(1.1') 

Here A(r, t) is the vector potential of the electromag- 
netic field in the medium (Coulomb gauge) and cp,,,(r, t )  
is the scalar potential of the external field. 

The standard procedure of calculating the suscepti- 
bilities consists in the following. The Hamiltonian of 
the unperturbed system is chosen in the form 

Then, regarding ij,' - Z? a s  a perturbation and using 
nonstationary perturbation theory, i t  is possible to ob- 
tain an expansion of the average microscopic current 
density (j(r, t)) in powers of the potentials of the field. 
It is the coefficients of this expansion which a r e  usually 
interpreted a s  the corresponding susceptibilities. 

Actually the problem is much more complicated, and 
frequently the described approach leads to incorrect re- 
sults. The presence in (1.1') of a term that describes 
that Coulomb interaction of the particles of the medium 
leads to the need for considering the longitudinal and 
transverse fields in the medium in different manners. 
We consider first  the response of an isotropic medium 
to an external longitudinal field. In this case perturba- 
tion theory leads to an expansion of the induced charge 

density in powers of the external scalar potential cpert(r, 
t ) .  In order to calculate from this expansion the true 
longitudinal susceptibilities, which determine the re-  
sponse to the true field in the medium, a standard self- 
consistency procedure is used. 's] Applying perturbation 
theory for the transverse fields in an isotropic medium, 
we obtain an expansion of the density of the induced cur- 
rent in powers of the vector potential A(r, t ) .  The coef- 
ficients of this expansion determine the true transverse 
susceptibilities of the medium. 

Thus, the calculation of the susceptibilities of an 
isotropic medium is carried out essentially in different 
manners for longitudinal and transverse fields. How- 
ever, whereas in an isotropic medium it is possible to  
consider the longitudinal and transverse fields indepen- 
dently, in the presence of anisotropy this is in general 
impossible. In an anisotropic medium the transverse 
field induces currents that have a longitudinal compo- 
nent, and this leads to the appearance of a longitudinal 
field and vice verse. In addition, even in an isotropic 
medium the self-consistency referred to above is a com- 
plicated problem if a nonlinear response of the medium 
is considered. The above-mentioned difficulties point 
to the need of a more consistent examination of the in- 
teraction of the medium with the electromagnetic field. 

The problem of calculating the linear and nonlinear 
susceptibilities is considered with the aid of a diagram 
variant of nonstationary perturbation theory. We shall 
obtain an expansion of the response of the medium in 
powers of the external field. The coefficients of this 
expansion will be  called the external susceptibilities, to  
distinguish them from the susceptibilities that deter- 
mine the response to the true field in the medium. To 
obtain the latter, the indicated expansion is rearranged 
in such a way that it becomes an expansion in terms of 
the field in the medium. It will be shown that the sus- 
ceptibilities should be calculated from irreducible po- 
larization par ts  of the corresponding order of nonlin- 
earity. For the linear fusceptibility this result was ob- 
tained by Dzyaloshinskii and ~i taevskir .  C43 

The question of the connection of the true and exter- 
nal susceptibilities was considered by different authors. 
The simplest and most natural approach was proposed 
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by Silevitch and Golden. C51 They obtained directly from 
Maxwell's equations the connection between the true and 
the external susceptibilities that describe effects that 
are linear and quadratic in the field. However, even 
this method is  too cumbersome to make it possible to 
propose a systematic approach to the higher-order non- 
linear susceptibilities. 

The formal procedure developed in Sec. 2 enables us 
to propose in Sec. 3 a rather simple algorithm for de- 
termining the connection between the true and external 
susceptibilities. It can be derived directly from the 
connection between the irreducible and reducible polar- 
ization parts of the corresponding order of the nonlin- 
earity. 

In Sec. 4 we obtain analytic expressions for the exter- 
nal susceptibilities in terms of the equilibrium correla- 
tion functions of the currents. The results agree only 
outwardly with those obtained by Kubo. 'I' In contrast 
to Kubo, we did not assume the field to be a specified 
function of the coordinates and of the time, and regarded 
it as  one of the dynamic variables, having specified only 
the extraneous currents that determine the field. As a 
consequence, the susceptibilities obtained in Sec. 4 
differ from those obtained by Kubo. ''I This manifests 
itself formally in the fact that the susceptibilities indi- 
cated above are  expressed in terms of equilibrium cor- 
relation functions of the current operators in different 
Heisenberg representations. It seems curious, in our 
opinion, that the Kubo formula a s  applied to an isotropic 
medium describes actually an external longitudinal but 
a true transverse susceptibility. For an anisotropic 
medium, one can hardly interpret in reasonable manner 
the Kubo formula in the form obtained by him. 

This paper considers the response of an equilibrium 
nonrelativistic system of particles to an electromagnetic 
field. Inasmuch a s  the system is  no longer in equilib- 
rium after application of the external field, we use the 
diagram technique proposed by Keldysh. ['' We shall 
not dwell on the necessary formalism, and refer the 
readers to the cited papers. 

The Hamiltonian of a system situated in an external 
electromagnetic field is of the form 

- -  1 
H.=H - - j j, (r, t )  1 (r) drf jj e$(r)G(r)p.(rl. t )  , ,.. (1.1) 

lr-r'l 

Here i ( r )  is  the vector potential of the electromagnetic 
field. The densities j,(r, t) of the extraneous current 
and p,(r, t) of the charge a r e  assumed to be specified 
functions of the coordinates and of the time. The first 
term in (1.1) is the Hamiltonian of the system in the ab- 
sence of sources of an external field: 

+f rr e;p' (r) ;p (r) e&+ (rr) (r') dr dr,, 
1 r-r' 1 

(1.2) 

where ko is the Harniltonian of the free particles and of 
the field, the second and third terms in (1.2) describe 

the interaction of the particles and the fields, while the 
last term corresponds to Coulomb interaction of the par- 
ticles. The current density is broken up into paramag- 
netic and diamagnetic parts: 

We assume for simplicity that the system consists of 
one sort of spinless particles. The corresponding gen- 
eralizations entail no particular difficulty. Nor i s  it 
difficult to generalize the results to the case when other 
types of interactions a re  present, such a s  electron- 
phonon interaction. 

A s  seen from (1.2) the interaction of the particles 
with the field contains paramagnetic and diamagnetic 
terms. We shall accordingly distinguish on the dia- 
grams the paramagnetic and diamagnetic vertices. Be- 
sides the customary factor l/iE of the ~eynmkn tech- 
nique, an operator-j,(x)/c and one field operator i ( x )  
correspond to-the paramagnetic vertex, while the op- 
erator e2@(x)$(x)/mP and two field operators corre- 
spond to a diamagnetic vertex. We add to each diamag- 
netic vertex a factor of 2 to account for the possible 
permutation that occurs when field operators corre- 
sponding to one diamagnetic vertex a re  paired. It must 
be recognized here that the diagrams may contain sub- 
structures in which both field operators of a certain di- 
amagnetic vertex become paired with identical expres- 
sions. Since the permutation of the field operator does 
not lead in this case to a new pairing system, a factor 

must be assigned to each such substructure. 

2. AVERAGE FIELD. AVERAGE CURRENT DENSITY 
We proceed to find the diagram expansions for the 

average field and the average current density: 

We use here a Coulomb gauge for the potentials, and 
consequently, we should use a four-dimensional scheme - 
for the complete description of the field. By the time- 
dependent (a =0) components of the current density and 
of the potential we mean respectively the charge density 
and the scalar potential: 

6 (t-t') 
jSo($) = j {pe(zr)  +e&+ (zt)Ge (z') 1 dz'? 

r-r I 

and by the spatial components ((Y = 1,2,3) we mean the 
current density and the vector potential. A s  usual, x 
= r and x O = - xo = ct. The dynamic variables averaged 
in (2.1) and (2.2) are  taken in the Heisenberg represen- 
tation with Hamiltonian (1. I), a fact designated by the 
subscript e. The averaging is carried out with the aid 
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of a statistical operator taken at  the instant of time t =0: 

Here &, is the statistical operator a t  t = -03, when all  
the interactions in the system a r e  assumed to be turned 
off, and the extraneous current and charges a r e  assumed 
to be zero. 

Substituting (2.5) in (2.1) and (2.2) and expanding the 
S matrix in powers of the interaction parameter, c6p81 
we obtain the expansion of the average field in the me- 
dium and the average current density in the form of a 
sum of all possible pairing systems, each of which is 
set in correspondence with a definite diagram. Clas- 
sifying the diagrams in accordance with the number of 
interactions with the source of the external field, we ob- 
tain a s  a result the diagram ser ies  shown in Figs. l a  
and lb. The wavy lines a re  the free-field lines. Each 
of them is set in correspondence to a  ree en's function 
i~~;*~(xi ,x ' i ' ) ,  which is defined in the Appendix A. 
The crosses in the figure denote the sources of the ex- 
ternal field -j:(x)/c. At CY = 1, 2, and 3 the ser ies  
shown in Figs. l a  and l b  determine the average vector 
potential and the average current density. At CY = O  they 
correspond to the average scalar potential and the av- 
erage charge density. In all  the internal vertices, in- 
tegration is carried out over t E (-a,  m) and r E V (the 
volume of the system) and summation is carried out 
over the tensor indices a =0,1,2,3. In addition, the 
time coordinate of each of the vertices can lie both on 
the positive and on the negative part of the integration 
contour C, which runs from t = - to t = + a  and back 
from t = + a  to t = -a. Accordingly, each vertex of the 
diagram is set in correspondence to a factor uii (u is 
the third Pauli matrix). Summation is carried out over 
the indices i of the internal vertices (i = 1,2). The 
shaded parts on Figs. l a  and l b  denote the reducible 
polarization parts of the first, second, etc., orders. 
The polarization part of the n-th order is defined a s  the 
aggregate of all  possible topologically different dia- 
grams that have n inputs and one output vertex of the 
electromagnetic interaction. 

The first  term of the diagram series in Fig. l a  cor- 
responds to an external field 

On the other hand, the diagram series presented in Fig. 
l b  corresponds to expansion of the microscopic current 
density in powers of the elrternal-field potential: 

Both expressions can be rewritten in terms of re -  
tarded functions. Using (A. 4) and introducing the kinet- 
ic coefficients 

we rewrite (2.6) and (2.7) in the form 

In (2.8), symmetrization is carried out over the argu- 
ment xi .  .x, of the expression in the right-hand side, 
which follows the symbol S. Expression (2.8) does not 
depend on the index i and has a retarded character, 
i. e., it vanishes if at  least one of the temporal argu- 
ments ti. e .  t, exceeds t. Moreover, the contribution of 
any diagram to (2.8) has a retarded character. A proof 
of these statements is given in Appendix B. 

The expansion (2.10) determines the response of the 
system to an external field. In order to obtain the re- 
sponse to an external field, it is necessary to recon- 
struct the diagram ser ies  in such a way that they con- 
tain only the average field. Any diagram on Fig. l a  be- 
gins with a free-field line, which leads to the following: 

1) either to an extraneous source of the field-this is 
the diagram for the external field A,(x); 

2) o r  to an outgoing vertex of the linear polarization 
part, the incoming vertex of which is connected with the 
source of the external field; 

3) o r  to the outgoing vertex of a linear polarization 
part, followed by a free field line that leads to the out- 
going vertex of the irreducible polarization part  of n-th 
order (n 2 2); 

4) o r  else to an outgoing vertex of the irreducible po- 
larization part  of n-th order (n a 2). 

Adding the diagrams of the f i rs t  two types, we obtain 
the line of the total Green's function (thick line) which 
goes to the extraneous field source. The obtained term 
describes the average field in the linear approximation. 
The summation of all possible diagrams of the succeed- 
ing two types, having one and the same irreducible po- 
larization pai-t, leads to a diagram in which the line of 

- 
oii - - ( ~ ( Z ~ ) ~ = ~ P ~ ~ , ~ ~ , , ( X . E ~ ,  . ..,En) 

In (2.6) and (2.7) we have omitted the signs of summa- 
tion over j = 1 and 2 and of integration with respect to [. 
In addition, we have left out the tensor indices a. Con- 
traction is carried out over the tensor indices of the in- 
ternal vertices. cj;...jn(~, xl, . . . , x,) denotes the po- 
larization part of n-th order. 

FIG. 1. Diagram expansion for the average field and the 
average current density: a, b-in terms of the external 
field; c, d-in terms of the average field. 
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the complete Green's function i s  joined to the outgoing 
vertex of the irreducible polarization part (n 3 2). 

Certain substructures which a re  not related to one 
another are  joined to the incoming vertices of the i r -  
reducible polarization part with the aid of the free-field 
lines. By summing all the possible diagrams having 
one and the same irreducible polarization part, we find 
that average-field blocks a re  joined to the incoming ver- 
tices of the irreducible polarization part (Fig. lc). The 
series for the average current density i s  realigned in 
similar fashion (Fig. Id). The unshaded blocks denote 
the irreducible polarization parts. The irreducible po- 
larization part cannot be broken up into polarization 
parts of the same order or  of lower order by removing 
one field line. The diagram expansion shown in Fig. 
Id solves the problem of finding the response to the av- 
erage field: 

We have introduced here the kinetic coefficients 

x(x,x,, . . . ,a!,)-S I... "01, C P,j ,... J"(Z,Z~,  . . . ,xn), (2.12) 
L...j.=-~,~ 

which a re  determined in terms of the irreducible polar- 
ization parts and which can be naturally called the 
"true" susceptibilities in contrast to the external sus- 
ceptibilities (2.8). The contribution of any diagram to 
(2.12) has a retarded character. In the calculation of 
(2.8) and (2.12) it i s  necessary to take into account only 
connected diagrams. 

In the foregoing construction of the diagram expan- 
sions for (2.1) and (2.2), we described the field with 
the aid of potentials in a Coulomb gauge. This was 
dictated by the need of applying the Wick theorem and 
to our desire to separate the Coulomb interaction. In 
addition, in the nonrelativistic theory, the Coulomb 
gauge i s  distinguished by the fact that the field dynamic 
variables describe only the transverse part of the 
field. The transverse part of the field, on the other 
hand, i s  described by a vector potential in the Coulomb 
gauge. 

A disadvantage in the description of the field in a 
Coulomb gauge i s  the need for considering, besides the 
vector potential, also the scalar potential that describes 
the longitudinal part of the field. This forces us to use 
a scheme in which the tensor indices corresponding to 
all the vertices run through four values, whereas only 
three tensor indices a re  assigned to the polarizability 
in the usual sense of the word, in correspondence with 
the projections of the electric-field vector. It makes 
sense therefore to change over in (2.9)-(2.11) to a 
gauge with a zero scalar potential. In this case, the 
connection between the potential and the electric field is 
simplest in form: 

As a result the Green's functions (A. 14) of the potential 
in this case coincide essentially with the Green's func- 
tions of the electric field, and the expansions obtained 
above for the response of the system are  in fact expan- 
sions in the electric field. The absence of a scalar po- 
tential makes it  possible to use an ordinary three-di- 
mensional schemen for the description of the total field. 
The changes that must be carried out in formulas (2.9)- 
(2.11) consist of replacing the Green's function D ~ " ~ ( X ,  
x') (a, P = O ,  1,2,3) by the  ree en's function G ~ " ~ ( x ,  x') 
(a, p= l,2,3). We note that for the field lines that join 
the vertices of one and the same irreducible polariza- 
tion part, the Coulomb gauge i s  preserved, making it  
possible to separate the Coulomb interaction of the par- 
ticles. 

To be able to carry out the indicated change of gauge, 
it suffices that the four-dimensional divergence of the 
susceptibility with respect to the coordinates of each of 
the external vertices vanish: 

This equation is equivalent to the charge-conservation 
law and ensures gauge invariance of the response. 

It can be verified directly that the contributions of 
the individual diagrams to the susceptibility do not sat- 
isfy such a condition. We shall present below a rule 
that makes it  possible to select groups of diagrams 
whose combined contribution to the susceptibility satis- 
fies (2.13). Assume that we have a certain diagram for 
an irreducible polarization part of n-th order, having 
an external vertex x (incoming o r  outgoing) o r  the para- 
magnetic type. We add to this diagram n-th order dia- 
grams for the polarization parts, which also have in- 
ternal and external vertices, but which have a different 
topological structure. To the resultant aggregate we 
now add diagrams obtained by replacing each of the dia- 
grams of the indicated aggregate the vertex x and one 
of the remaining paramagnetic vertices by a diamag- 
netic vertex. We can then show that the contribution of 
the group of diagrams constructed in this manner to the 
susceptibility has a zero four-dimensional divergence 
with respect to the argument x. Thus, to obtain a zero 
four-dimensional divergence with respect to the argu- 
ment x' i t  is necessary to add the diagrams of Figs. ' 2b, 
2c, and 2d to the diagram of Fig. 2a. After adding the 
diagrams of Figs. 2e, 2f, and 2g, the contribution of 
the obtained group of diagrams to the susceptibility will 
have a zero four-dimensional divergence also with re- 
spect to the argument x. 

FIG. 2. Example of group of diagrams whose contribution to 
the susceptibility has zero 4-divergences with respect to the 
coordinates of the external vertices. 
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FIG. 3. Connection of reducible and irreducible polarization 
parts: a-linear, b--quadratic, c--cubic. 

3. CONNECTION BETWEEN THE SUSCEPTIBILITIES 

Let us find the connection between the susceptibility 
~ ( x ,  x,, . . . , x,) and the external susceptibility xe(x, 
x,, . . . , x,). This connection can be obtained by consid- 
ering the relation between the reducible and irreducible 
polarization parts of n-th order. The connection of the 
linear polarization parts i s  shown in Fig. 3a. The lin- 
ear susceptibilities are  correspondingly connected by 
the reiation 

The relation between the quadratic reducible and ir-  
reducible polarization parts is shown in Fig. 3b. Ex- 
pressing this relation with the aid of (A. 4), (2. E), and 
(2.12) in terms of the retarded Green's functions and 
the quadratic susceptibility, we obtain in the Coulomb 
gauge 

DoR(x. E ) x . ( E . E ~ . E z )  n DoR(E.. x . )=DR(x.  E),(E, E l ,  E,) 11 D'(,,, x . ) .  
.=1.2 r= l .Z  

(3.2) 
We now change over with the aid of (A. 14) and (2.13) 

to Green's functions in a gauge with zero potential, and 
obtain 

Starting with the third order, the connection between 
the susceptibilities x and xe becomes more complicated. 
This is due to the possibility of constructing higher-or- 
der polarization parts (n 2 3) out of the lower-order 
parts. However, on the basis of the results of Appendix 
B, we can state that we can always change from rela- 
tions that connect reducible and irreducible polarization 
parts to relations containing susceptibilities and re- 
tarded Green's functions. In the latter relations, in 
turn, we can always change to Green's functions in a 
gauge cp =O. 

Consider the cubic susceptibility. The connection be- 
tween the irreducible and reducible polarization parts 
i s  shown in Fig. 3c. 

Comparing, a s  above, the analytic expression, we 
obtain 

Relations (3. I), (3.3), and (3.4) solve the problem of 
finding the connection between the susceptibilities that 
determine the response to the average and external 
fields (at n = l,2,3). To obtain an explicit expression 
for x in terms of X, it suffices to apply the operator 

to each of the external coordinates in both parts of 
(3. I), (3.3), and (3.4) and use Eq. (A. 19) for the re- 
tarded Green's function G ~ ( x ,  x'). We use to denote 
an integral operator with a kernel equal to the linear 
susceptibility ~ ( x ,  5 ) .  

4. EXTERNAL SUSCEPTlBl LlTlES 

We proceed to construct analytic expressions for the 
external susceptibilities. We consider the linear and 
quadratic susceptibilities. Figure 4a shows the struc- 
ture of the linear reducible polarization part P;?(X, x'). 
The indices j of the vertices of the first term denote 
that it contains all possible diagrams having normal (or 
j-type) incoming and outgoing vertices, i. e., either 
paramagnetic or  diamagnetic, but with one of the field 
ends paired inside the polarization part. The index u 
of the second term means that it contains diagrams with 
anomalous, i. e., diamagnetic external vertex, the field 
ends of which are  not paired inside the polarization part. 
The linear irreducible polarization part has an analogous 
structure, and incorporates the entire second term of 
Fig. 4a. 

Thus, the first term in the right-hand side of Fig. 4a 
i s  the aggregate of all possible diagrams (which do not 
contain extraneous field sources), whose vertices cor- 
respond to the operators -&, i)/c and -?(xt, if)/c. Ex- 
actly the same aggregate of diagrams is  encountered in 
the expansion of the equilibrium correlation function in 
powers of the interaction parameter 

Here T, denotes the chronological ordering operation, 
referred to in Sec. 2, along the contour C. This opera- 

FIG. 4. Structure of polarization parts: a-linear, 
b-quadratic. 
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tion coincides with the usual operation of chronological 
ordering if  x0  and xfO lie on the positive part of the con- 
tour, and with the operation of anti-ordering if  they lie 
on the negative part. The points of the positive part of 
the contour C are  assumed to precede those on the nega- 
tive part. The subscripts H of the averaged operators 
means that they a re  taken in the Heisenberg representa- 
tion with the Hamiltonian (1.2), and 8 is the equilibrium 
statistical operator corresponding to this Hamiltonian. 
We do not write out explicitly the tensor indices a, as- 
suming them to be included in the corresponding argu- 
ment x. Since all the dynamic-variable operators em- 
ployed below are taken in the Heisenberg representation, 
we shall henceforth omit the subscript H. 

Considering, as  above, the second term of Fig. 4a, 
we obtain an analytic expression for the linear polariza- 
tion part: 

'Jii 'Ji' . '  p,Yd ( x ,  x , )  = - e h  ( x )  ( T ~ ( ; ( X ,  t ) ,  j (x ' ,  ir)) > + 7 o i i 6 i , , 6  ( x - x r )  . 
zhc' mc 

(4.1) 

Here n(x) i s  the density of the number of particles in 
the equilibrium system. Substituting (4.1) in (2. a), we 
obtain the external linear susceptibility 

On changing over from (4.1) to (4.2) we use the fol- 
lowing easily proved statement. For any operator [(t) ,  
tl(tl), . . . , 5,(tn) of the Bose type we have 

As usual, 9(t)  stands for the function 

We consider now the quadratic susceptibility. The 
structure of the diagrams for the quadratic polariza- 
tion part P;;;~,(X, xl, xz) i s  shown in Fig. 4b. Reasoning 
a s  in the derivation of (4. I), we get 

This yields the quadratic external susceptibility 

1  ez A 1  - 
+ - o ( t - t , ) a ( ~ - ~ ~ )  [ - 9 + $ ( x ) ,  - _ j ( z l )  I ) .  (4.5) 

lii m cZ 

In analogy with the procedure used above for the lin- 
ear and quadratic susceptibilities, we can consider also 
the higher -order external susceptibilities. The resul- 
tant analytic expressions are too cumbersome to present 
here, all the more since they coincide outwardly with 
those obtained by Kubo. We note, however, the fol- 
lowing. In his paperc11 he considered the problem of 
calculating the dynamic coefficients that determine the 
response of an equilibrium system to an external action. 
As applied to an electromagnetic field, the expression 
obtained for the linear susceptibility agrees outwardly 
with (4.2) and i s  known a s  the Kubo formula. In the 
Kubo formula, however, the commutator of the current- 
density operators i s  averaged in a Heisenberg represen- 
tation defined by the Hamiltonian (1.2'), and not by the 
Hamiltonian (1.2) a s  i s  the case in (4.2). To compare 
the external linear susceptibility obtained above with 
~ u b o ' s  result, let us examine the diagrams correspond- 
ing to the Kubo susceptibility. The Hamiltonian (1.2') 
does not contain terms corresponding to the interaction 
of the particles of the medium with the photons. This 
means that the Kubo susceptibility corresponds to a re- 
ducible polarization part that does not contain trans- 
verse (photon) lines. 

Consider an isotropic medium. In such a medium the 
longitudinal projection of the diagram, which determines 
the density of the current when an external transverse 
field i s  applied, i s  equal to zero, just a s  the transverse 
projection of the diagram that determines the response 
to the longitudinal field. It follows therefore that the 
longitudinal projection (4.2) coincides with the longi- 
tudinal projection of the Kubo formula, which thus de- 
termines the external longitudinal susceptibility. The 
same reasoning makes it possible to establish that for 
the case of a transverse field in an isotropic medium 
the Kubo formula determines the true transverse sus- 
ceptibility. As applied to an anisotropic medium, the 
Kubo formula does not describe either the true o r  the 
external susceptibility, and can hardly be interpreted 
in reasonable fashion. 

In conclusion, I am indebted to L. V. Keldysh for sug- 
gesting the problem and constant interest in the work. 
I am also grateful to I. E. Dzyloshinskii for a useful 
discussion of the work. 

APPENDIX A: GREEN'S FUNCTIONS 

The Green's functions in the absence of external field 
sources a re  defined in the usualCB1 manner 

itrDaU(xi, x1j)  =T~(;TC ( A H ~ ( X ,  i), AHR (XI,  1) 11. (A. 1) 

The tensor indices a, B = 1,2,3 correspond here to the 
three projections on the spatial coordinate axis. The 
Green's functions (A. 1) with different i and j a re  con- 
nected by the relations 

D ( x 1 ,  1'1) =0 (t- t ')  D  (x2 ,  x ' l )  +0 ( t f - t )  D  ( x i ,  x f 2 ) ,  

D ( x 2 ,  2'2) = 0 ( t - t l ) D ( x l ,  1'2) +O(t l - t )  D ( x 2 ,  x ' l ) .  (A. 2) 

The retarded Green's function 
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i D R a B ( x ,  x l )  =6(t-t')  T T ( ~ [ A = ~  ( x ) ,  AxB(x') 1 )  (A. 3) 

is connected with (A. 1) by the relation 

Relations (A. 1) and (A. 3) determine the Green's func- 
tions in the Coulomb gauge 

div ~ ( r )  4, (A. 5) 

which we have used to construct the diagram expansions 
in Sec. 2. The vector-potential operator in this gauge is 

Here ih(q) and g(q) a r e  the operators of the annihilation 
and production of photons in a state with a wave vector 
q and polarization n,(q), X = l,2. The free Green's func- 
tions a r e  defined a s  the mean values of the free field 
operators with the aid of relations analogous to (A. 1) and 
(A.3). The averaging is carried out with the aid of the 
statistical operator bo. 

Using (A.6) we easily verify that the free retarded 
Green's function satisfies the equation (a, 8= 1,2,3) 

where we have introduced the function 

i a= i 
61*(r-r') -6ab6 (r-r') - --- 

4~ azaaz'@ 11-r'l' 

which, upon integration with respect to r' and contrac- 
tion with respect to 8 with any vector function, separates 
the transverse of this function. 

The  ree en's functions referred to above form a 3 x 3 
matrix in the tensor indices a! and P. It makes it pos- 
sible to describe only the transverse part of the field. 
For a complete description of the field in the Coulomb 
gauge it .is necessary to supplement this matrix to form 
a 4 x 4 (a! = 1,2,3) matrix: 

Dooa(xi, x'j) =DOa0(xi, x'j) =0, (A. 8) 

6 (t-t')  
DORp' ( z , z l ) = - .  

Ir-r'l 

The complete Green's functions (A. 1) satisfy the Dy- 
son equation 

Da@ (xi ,  x1i1) =Doap (xi,  xr ir)  +DoaT(xi, Q)  ~ , ; ! ~ ( f j ,  E'j') D:" (E'i', x'i'). 

(A. 10) 

 xi, Ej)  DoTB(U,  xf i ' )  =PaT(xi,  gj)DYB(6j,  x f i i )  . (A. 11) 

Summation is carried out over repeated indices and in- 
tegration over the continuous variables. At a, p= 1,2,3, 

Eq. (A. 10) is the usual Dyson equation. At a o r  P equal 
to zero, Eq. (A. 10) should be regarded a s  a definition 
of the complete Green's function in the Coulomb gauge. 
At a! = P=O, Eq. (A. 10) goes over into the equation for 
the effective interaction potential. ''I Multiplying (A. 10) 
and (A. 11) from the right by o and using (A. 4), we ob- 
tain the Dyson equation for the retarded Green's func- 
tion: 

D & @ ( X , ~ ~ ) = D ~ R ~ ~  (5 ,  xl)+~oRorf (2 ,  E ) ~ : ; !  (g ,  ~ l ) ~ o R " ~ ~ l , + ~ ) ,  (A. 12) 

xi;' (2 ,  S)Do"*' (5 ,  x ' ) = x ~ ~ ( x ,  E)DRID(E, 5' ) .  (A. 13) 

We now introduce the Green's functions in a gauge with 
zero scalar potential, which we define in the following 
manner: 

(A. 14) 

In the last term the integration is consecutive. It is 
easy to verify that 

GRa"GRO==GROO,O, (A. 15) 

We determine analogously also the free energy, for 
which the second and third terms drop out by virtue of 
(A.9). The Green's function (A. 14) satisfies the Dyson 
equation which follows from (A. 12) and (2.13): 

~ f i = f i ( ~ , ~ ~ ) = ~ ? '  (5 ,  X < ) + G : D ~  (2 ,  E); '  ( s ,  EI)G:*'' ( E I , Z ~ ) ,  (A. 16) 

xeal(z ,  S)GR*(S, z')=xa'(.t, E)GR"(E, 5 ' ) .  (A. 17) 

The free Green's function in the gauge rp =0 satisfies 
the differential equation 

I 1 a2 
- - [ (rot rot)., + --aa.] G?' ( I ,  X I )  =a.,a ( x - X I ) .  

4n cZ atz 
(A. 18) 

The complete Green's function in a gauge with zero 
scalar potential satisfies the equation 

i 1 a= 
- -[ (rotrot).. +--by] G ' ~ @ ( X ,  z r )  

4n C' at2 

- f x a v ( ~ ,  b)GR1'(E, x1)dE=6.+6(x-x'). (A. 19) 

APPENDIX B: RETARDED CHARACTER OF THE 
SUSCEPTlBl LITY 

We consider here the "causal" diagram properties 
that a r e  typical of the Keldysh technique. AS will be 
shown below, the retarded character of the susceptibili- 
t ies (2.8) and (2.12) follows directly from the method 
used for their construction, and the Green's functions 
of the particles a r e  determined in analogy with the field 
Green's functions (A. I), and consequently also satisfy 
a relation similar to (A. 2). At t >t t  it follows from it 
that the Green's functions corresponding to the lines 
connecting the vertex having the largest time-dependent 
argument from among all  the vertices, with the vertices 
that lie to the left on the time axis, do not depend on 
whether the outermost right-hand vertex lies on the 
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positive C+(-=, +=) o r  negative c,(+=, -m) part  of the 
integration contour C. Since all the internal vertices 
of the diagram a r e  taken both on C+ and on C-, and the 
vertex lying on C, is assigned the factor - 1, the con- 
tribution of the diagram can be different from zero only 
if the extreme right vertex on the time axis is an ex- 
ternal vertex (over the index i of which no summation is 
carried out). If we denote by Pi, ,,(x, xl, . . . , x,,) the 
contribution of the diagram with external vertices x, 
xl, . . . , x,,, then at t > max {tl, . . . , t,} we have 

It follows from this, in particular, that expressions of 
the type (2.8) and (2.12) a r e  independent of the index i. 

Next, 

if a t  least one of the time-dependent arguments tl, . . . , t ,  
exceeds t. From this follows the retarded character of 
the contribution of any diagram to the kinetic coefficients 
defined by relations of the type (2.8) and (2.12). 

It follows also from the foregoing that the so-called 
vacuum loops a r e  absent in the Keldysh technique. In 
fact, the vacuum loop is not connected with any of the 

external vertices. Consequently, it corresponds to a 
zero factor. In the same manner it is easy to verify 
that only connected diagrams contribute to  the kinetic 
coefficients (2.8) and (2.12). 
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Establishment of equilibrium between the nuclear and 
electron subsystems on dynamic cooling of nuclei 
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The dynamics of nuclear spins in conditions of nuclear dynamic cooling is investigated. The process of 
establishment of the stationary polarization is analyzed for various intensities of the alternating magnetic 
field. An equation describing the nuclear polarization process in the case of a strong saturating field at 
low temperatures is obtained. 

PACS numbers: 29.75. + x  

In recent years the introduction of the concept of a 
spin-spin interaction reservoir has turned out to be ex- 
tremely fruitful in the development of magnetic reso- 
nance in solids.['-31 According to this concept the spin- 
spin interaction energy (more precisely, i ts  secular 
part) is regarded a s  a separate energy reservoir, iso- 
lated, generally speaking, from the Zeeman energy of 
the spins in the external magnetic field H, and charac- 
terized by its own temperature, which, under certain 
conditions, can differ greatly from the Zeeman temper- 
ature. 

In Refs. 2 and 3, the existence of thermal contact be- 

tween the dipole reservoir of paramagnetic impurities 
and the Zeeman system of the nuclei[41 was predicted 
theoretically, and was'later confirmed in numerous ex- 
periments. In the presence of near-resonance satura- 
tion of the EPR the temperature of the dipole reservoir 
of the electron spins is lowered. The presence of the 
effective coupling with the Zeeman system of the nuclei 
leads to lowering of the nuclear Zeeman temperature 
too, and this increases the nuclear polarization. This 
method of polarization has been named the "method of 
dynamics cooling of nuclei." A number of theoretical 
and experimental papers[51 a re  devoted to the study of 
this method. The method of dynamic cooling of nuclei 
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