
function P(H,,,) at  4.2 K indicates that the magnetization 
of alloy 14 is spatially inhomogeneous. On the other 
hand, the anomalies of the temperature dependence of 
du/dQ allows us to conclude that this inhomogeneity is 
due to the depolarizing influence of the local antiferro- 
magnetism. 
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A theory is developed of phase transitions in asymmetri6d disordered systems. A superionic crystal is 
considered by way of an example of such a system. Within the framework of the molecular-field 
approximation, expressions are obtained for the free energy and the equation of state. The state of the 
system depends on two dimensionless parameters, which are determined by the properties of the crystal. 
The specifics of the unsymmetrical system manifest itself in the fact that both single phase transitions and 
bitransitions are possible. New critical conditions corresponding to realization of bitransitions are obtained 
and expressions are derived for the corresponding temperatures. 

PACS numbers: 64.60.Cn 

This paper is devoted to a theoretical investigation 1. FORMULATION OF PROBLEM 
of first-order phase transitions that can be realized in An example of an asymmetrical system to be con- 
asymmetrical systems with disorder. The study of the sidered is a superionic crystal, although, as will be 
singularities of the thermodynamics of model disordered shown subsequently, the a r e  general in char- 
systems, both symmetrical (for Win systems, acter and can be used also for the description of a rath- 
AB alloys, certain lattice models of adsorption) and e r  large class of objects and phenomena. 
asymmetrical (for example, A,B, alloys, superionic 
crystals) has been the subject of many papers.n41 At 
the same time, some asymmetrical systems should have Superionic crystals, which have been intensively in- 
a number of interesting singularities, which have not vestigated of late, a r e  a special class of ionic crystals. 
been considered earlier. In particular, a s  will be One of the most characteristic features of these crys- 
shown below, two genetically related phase transitions- tals is the jumplike changes of the ionic conductivity, by 
bitransitions-may take place in such systems. several times o r  by several orders of magnitude. 
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This change occurs a t  certain temperatures that a r e  
lower than the melting temperatures of these crystals. 
Anomalies in the temperature dependence of a number 
of thermodynamic and kinetic characteristics a re  simul- 
taneously observed. This group of problems is the sub- 
ject of a number of e ~ ~ e r i m e n t a l ' ~ ' " ~  and theoreti- 
c a 1 ~ ~ z - ~ 6 ~  studies. These singularities a r e  caused, in 
final analysis, by a jumplike disordering ("meltiw) 
of the sublattices of one of the sor ts  of ions (usually 
cations), whereas the sublattice of the other sort  of 
ions remains ordered and ensures "rigidity" of the 
crystal. c17y181 l )  The asymmetry of the system mani- 
fests itself here in the fact that the number N' of the 
interstitial positions for the cations does not coincide 
with the number N of the sites of the disordered sublat- 
tice (usually N' > N ) .  In ordinary ionic crystals, to  find 
the equilibrium number n of the ions that have moved 
from their si tes into the interstices (and have produced 
by the same token Frenkel  defect^"^*^^^) one can start 
from the expression for the free energy, which is con- 
nected with the formation of the 

The first  term in (1) is the energy of formation of n de- 
fects; in the simplest case E(n) =wn, where w>O is the 
energy for the formation of one defect. The second 
term, where T i s  the absolute temperature in energy 
units, corresponds to the configuration entropy S: the 
first  factor in the curly brackets is the number of pos- 
sible manners in which n empty sites (vacancies) can be 
disposed among the total number of N cation sites, while 
the second is the same for n interstitial ions in N' inter- 
stices (for simplicity we consider only one sort  of ener- 
gywise equivalent interstitial positions). The equilibri- 
um value of n is determined by the condition that the 
free energy be a minimum, i. e., from the equation 8F/ 
an =O. 

Assuming a n )  = wn and using the relation lnz ! = z lnz 
- z  (z  >> I ) ,  we obtain from (1) an expression for n (the 
equation of state) 

which coincides with the relation knownt31201 from the 
theory of ordinary ionic crystals. Equation (2) has only 
one positive solution n(T), with n increasing monotoni- 
cally with increasing T. 

The change of the character of the oscillations a s  a 
result of the displacement of the cations from the sites 
into the interstices leads to the appearance of an ad- 
ditional term nT lnx in the free energy. Assuming also 
that wj and w:(j = 1,2, 3) a r e  the frequencies of the nor- 
mal vibrations of the cations in the sites and the inter- 
stices, respectively, we obtain 

Am,, fio,'<T, 

We now recognize that the interstitial ions and the 
sites that they have left (vacancies) interact both di- 
rectly and "crosswise" with one another, the total num- 
ber  of interacting pairs being proportional to n2. In- 
troducing the dimensionless defect concentration 
x =n/N (0 G x  e l ) ,  we now write down the energy E(n) 
in the form 

Here X is a phenomenological constant, the sign and 
magnitude of which a r e  determined by the resultant 
effect of the interactions (possibly indirect) of the in- 
terstitial ions with one another, the interactions of the 
remaining vacancies with one another, a s  well a s  the 
interactions between the vacancies and the interstitial 
ions, and depend on the nature of the crystal. The ex- 
pression for the f ree  energy, obtained after substitut- 
ing (5) in (I), i s  equivalent to the well known Bragg- 
Williams approximation in the theory of alloyscc5] o r  
to  the Curie-Weiss approximation in the theory of mag- 
netism. c2s211 Similar approximations a r e  used also in 
the description of regular solutions, "I of the adsorption 
in the presence of interactions between particles, ce"231 

of the properties of liquid crystals, "*' etc. We thus 
have 

The corresponding equation of state obtained from the 
condition aF/ax = 0 is of the form 

Equations (6) and (7) contain a complete formulation 
of the problem of the thermodynamic of superionic 
crystals, within the framework of the considered model. 
We emphasize that the specifics of the investigated sys- 
tem will not be used a t  all below. Since consideration 
of a number of other asymmetrical disordered sys- 
tems leads to  the same model equations (6) and (7), 
the results of the subsequent investigation a r e  of in- 
teres t  for the analysis of the behavior of a rather large 
class of objects. 

2. MATHEMATICAL INVESTIGATION OF THE 
PROBLEM. BITRANSITIONS 

Assume for simplicity that Nf/N>>l and that x is 
given by (4a) (it will be shown below that these assump- 
tions a re  not essential), In this case we always have 
N'/N>>x, and expressions (6) and (7) can be rewritten 
in the form 

1-x=s2v-I exp { ( w - A X ) / T ) ,  (9 

with 
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lbb FIG. 1. Graphical solution of Eq. 
(9): the function f kc) =x2v-I  
x exp((w - &)/TI; the fkc) curve 
at: ~ ) A = o ,  2)0<A<w, 3)A>w; 
4) the line 1-x .  

0 I X 

T -  -- z-x 
h In[v(l-x)/x'] ' 

where v=XNt/N and Z= w/X. The behavior of the con- 
sidered system is  determined completely by the two 
dimensionless parameters v and 2 We note that al- 
though N1/N>>l, the parameter v can range from 0 to 
m ,  owing to the factor X. Recognizing that A can gen- 
erally speaking be positive as well as negative, ;varies 
in the interval [ -m ,  m]. However, as will be shown be- 
low, the jumplike changes of xwhich are of greatest in- 
terest here are possible only i f  A > 0, i. e., 0 <; <m. If 
we assume that at sufficiently low temperatures2) the 
crystal i s  completely ordered (x-0 as T -O), then it 
follows from (6)  or (8) that X/2 <w, i. e., 1/2<x<m. 
The interval 0 <x < 1/2 corresponds to the situationwhen 
x i s  close to unity at low temperatures. As T -m we 
find from (9), regardless of the value of x, that $,/(I 
-x,)=v, where x,ex(T--), with O<x,<l, 

We first carry out a qualitative analysis of the be- 
havior of the system. I f  X =0, then (9)  coincides with 
equation obtained from ( 2 )  when account i s  taken of the 
substitution w-w - T InX and under the condition N'/N 
>>I. In this case (and also at X < 0)  Eq. (9)  has one solu- 
tion (see F ig .  1). At sufficiently large X ,  however, as 
seen from Fig .  1, Eqs. (9)  or (10) has three roots 
{x, B x2 GX,) in the interval 0 < x < 1. I f  the equation of 
state has a single root, then the free energy, regarded 
as a function of x (at fixed T )  has one minimum at a 
value of x corresponding to this root ( ~ i g .  2 ) .  In the 
case of three roots, the function ~ ( x )  has two minima 
at the points x, and x, and one maximum at the pointx2. 
The crystal i s  in one of the two states (x, or x3) cor- 
responding to the absolute minimum of q x ) ;  the state 
x2 corresponds to a maximum of F(x) and i s  therefore 
unstable. 

When T changes, the F(x) curve is deformed in such 
a way that at certain temperatures T the value of 
F(xl(T)) turns out to be equal P(x,(T)). The latter 
means that a phase transition takes place in the sys- 
tem as a result of which x changes jumpwise from x, 
to x3 (or from x, to x,). The necessary condition for 
the transition is the onset of inflection points of the func- 
tion F(x), corresponding to the appearance of roots of 
the function a2~ /ax2 .  From (8)  we obtain 

ing to the appearance of real roots of the equation #F/ 
ax2 = 0 are determined by the inequality X/T 2 5, where 
5 = 3 + 2 a ;  at X /T  = 5 there appears a single real root 
x = x*= 2 - The obtained numbers 5 and x, do not de- 
pend on the parameters y and 2 and are invariants of 
the problem. 

The obtained invariants determine substantially the 
behavior of the, system in the case of "weak" transi- 
tions. We shall call phase transitions weak if the jump- 
like change of x i s  small: x, - x, <<l. In this case, ob- 
viously, all three roots of Eqs. (9)  or (10) are close to 
one another (see curve 3 of Fig.  2) .  The equation a2F/ 
ax2 = O  has two roots, which are located inside the inter- 
vals [x,, x2] and [x2, x,] and are also obviously close to 
each other. Between the two roots of the equation a 2 ~ /  
a2 = 0 there should be located the single root of the equa- 
tion a 3 ~ / a x S  =O.  Differentiating ( l l ) ,  we easily verify 
that a 3 ~ / a x  = 0 at x = x* . 

Thus, all three roots {x,, x,, x,} are concentrated in 
the vicinity of  the point x =x*, with x2 =x* while x, and 
x3 are on opposite sides of the point x, at equal dis- 
tances from it. The transition takes place i f  the F(x) 
curve is symmetrical about the point x =x* in its vi- 
cinity. It i s  precisely then, obviously, that we have 
F(x,) = ~ ( x , ) ;  this symmetry condition calls for satis- 
faction of the equality aF/ax I,,, * = 0. Substituting x 
=x* in (10) we obtain the temperature of the weak transi- 
tion 

where V* =&(I -x*); the numerical value i s  v, = 2 ( f i  
- 1) = 0.828. Substituting (12) in the equality X / T  = 5 we 
obtain the equation for the first critical curve in the 
(>, v> plane 

vl=v. exp {I (f -x.)). (13) 

It i s  easy to verify that the condition X/T  < 5 corre- 
sponds to 

Thus, weak transitions are realized near the critical 
curve (13) to its left  at v> v, and to its right at v< v,, 

FIG 2. Schematic form of the 
dependence of F on x at  different 
j7 and T: 1-the equation of state 
has one solution; 2, 3-the equa- 
tion of state has three solutions 
{ X I ,  X2, x J ;  X * =  2 - 0 .  

It follows from (11) that the values of X/T  correspond- 
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and "become enhanced" with increasing distance from 
this curve. 

We consider now the transitions at x, <<I and x, = 1 - c, 
with c <<I; we call these transitions "strong. " From (9) 
we get 

from which we see  that strong transitions can be real- 
ized if w/2T >> 1, (A - W)/T >> 1. 

Assume now for simplicity that x, >>E, i. e., 2w > X 
>3w/2 ,  o r  i <; <$. With allowance for the foregoing 
inequalities, we obtain from (8) 

Bearing in mind that F(x,) = F(x,) a t  the transition point, 
we get from (15) and (16) an equation for the strong- 
transition temperature T"': 

We emphasize that the last t e rm in the brackets in 
the right-hand side of (17) much be much l ess  than 
unity, whereas the other t e rms  in (17) can be either 
larger o r  smaller than unity. In particular, if the 
quantity 1 +lnv i s  not small, then (17) has a single solu- 
tion 

On the other hand, if the condition?) < 1 +lnv<<l, is sat- 
isfied then, a s  can be easily seen, the right-hand side 
of (17) as a function of T ( ~ '  has a maximum. It starts 
from zero and is almost linear up t? the maximum, 
after which i t  drops abruptly, crossing the T"' axis 
a t  T(') =To, corresponding to  the vanishing of the quan- 
tity in the square brackets in (17). Under the condition 
O< x -+<< 1 Eq. (17) has two solutions. The f i rs t  is 
given by (181, and the second turns out to be quite close 
to To and is therefore given by 

With increasing x - 9, the solution T y )  and T ap- 
proach each other and merge, so  that starting dith a 
certain x =gcr(v), a t  which T?' = T PA, there a re  no solu- 
tions. Equating (18) and (19) with allowance for the fact 
that 1 + lnv << 1, we obtain approximately 

Thus, a t  $<x <x,(v) with 1 +lnv << 1, two strong 
' 

transitions take place in the system in any case, ?and 
a re  separated by a temperature interval AT = T E) - T:'. 

In connection with this result, let us  carry  out the 
general investigation of the existence of bitransitions in 
the system. In the phase-transition region there a re  
three functions x(T), and therefore F(T,x(T) is a multi- 
ply valued function of T. A transition corresponds to 

FIG. 3. Schematic plots of the free energy F(T)  correspond- 
ing to the solutions x l (T)  and x3(T) as functions of T :  a) the 
curves F h l )  and F h 3 )  intersect once, To  i s  the transition 
temperature; b) the curves F G I )  and F k 3 )  intersect twice, 
T 1  and T 2  are the temperatures of the transitions; dashed-the 
curves are tangent and T 1  and T 2  merge. 

the intersection of the two curves F(T,xl(T)) and F(T, 
x,(T)). The number of intersections determines the 
number of transitions (see Fig. 3). 

In the analysis presented above of the conditions for  
the "onset" (or vanishing) of a weak transition (see (11)- 
(14)) we used the system of equations 

which determines the critical curve v,G) in the param- 
e ter  plane, a s  well a s  the temperature corresponding 
to the onset (vanishing) of a transition on this curve. 
The presented system (21) is perfectly analogous to  the 
system traditionally used in the investigation of first- 
order phase transitions (the meaning of the quantity x 
is determined here by the specifics of the system). 
Single phase transitions, the onset conditions for  which 
a r e  described by Eqs. (21), correspond to Fig. 3a. 
At the same time, the onset (or vanishing) of a pair 
of transitions is possible in principlec251 (see Fig. 3b). 
The corresponding condition is determined by the tan- 
gency of the two branches of the curves 

The two equations (22) together with the equation of 
state BF/Bx = 0 determine a substantially different type 
of critical conditions than in (21). These conditions 
determine the critical curve (or curves) v,,G) in the 
parameter plane, and also the temperature for  the 
onset (or vanishing) of a bitransition (a pair of transi- 
tions) on this curve. 

*he foregoing analysis (see (17)-(20)) illustrate the 
fact that the critical conditions (22) can be realized in 
the investigated system. 

We emphasize that in the general case, in the analy- 
sis of problems connected with phase transitions, it i s  
necessary to take into account the possibility of realiza- 
tion of the formulated conditions (22), corresponding 
to the appearance of bitransitions in the system. 

We proceed now to a detailed mathematical investi- 
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At v <l /e ,  the system (22) has no solutions and there 
a re  no bitransitions. 

FIG. 4. Plane of the parameters 
(Z , v ) :  vI, vII, and vII1 a r e  the 
critical curves (see ( l3 ) ,  (24), 
and (25). 

gation of the properties of the considered system with 
allowance for the critical conditions (22). Recogniz- 
ing that the functions xlt3(T) a re  determined from the 
equation aF/ax = 0, we obtain ~ F ( T ,  x,, , (T) ) /~T = W/BT 
= - ~ ( x , ,  ,). From this and from (22) i t  follows that a t  
the point of the onset (or vanishing) of a pair of transi- 
tions, we have E b , )  = ~ ( x , )  (which is equivalent to the 
equality x, +x3 = 2x7 and ~ ( x , )  =S(x3). From the presented 
equations, and also from Eq. (10) and the condition 
T(xl)=~(x,) ,  we obtain after simple transformations 

f2-A2/4=v[ ( i - f  )'-A2/4]", 

where A ~ x ,  - x ,  is the jump of the concentration a t  the 
points where the bitransition sets  in. 

Within the framework of the assumed model, the 
system (23) is exact and it determines the critical 
vII ( i )  (see Fig. 4) and A. An analysis shows that at 
v > v, the system (23) has no solution at any x; conse- 
quently, there a re  no bitransitions in this case. At 
l / e  < v <  v,, in the interval $< ?<x,, a solution of the 
system (23) exists and is furthermore unique. 

If 0 ~ x ,  -x << 1, then A << 1, corresponding to the 
critical condition for a weak bitransition (a pair of 
weak transition). In this case we obtain from (23) 

On the other hand if 0 < x - i << 1, then A = 1, corre- 
sponding to the critical condition for a strong bitransi- 
tion. In this case 

where 6 =x - $. We note that the obtained function 
vII(i) i s  equivalent to the previously obtained function 
x,,(v) -see (20). It i s  obvious that the "intermediate" 
region of the values of x corresponds to the critical 
condition for the "medium" bitransitions. 

With increasing distance to the left of the second 
critical curve (Fig. 4), the temperature interval be- 
tween the produced pair of transitions broaden and a 
pair of arbitrary transitions (for example, a weak and 
a strong one) can be realized in the system. 

It i s  convenient to illustrate the results by analyzing 
the equation of state in the form (10). It is easily seen 
that the function ~ ( x )  vanishes a t  the three points x = 0, 
x = 1, and x =x. Thus, in the low temperature region 
Eq. (10) always has three solutions xl(T) Gx2(T) <x3(T). 
If x < 1, then all the solutions a r e  in the interval [O, l ] ,  
but if x >1, then one solution is situated in the physical 
interval [0,1]. At sufficiently high T, there always 
exists only one solution that tends asymptotically to 
the value x, (Fig. 5). 

If .?<x,, the closed loop corresponding to the solution 
of xl and x, (Figs. 5c and 5d) is located under the 
asymptotic value x =x,; if Z >x,, then the closed loop 
corresponds to the solutions x2 and x, (Figs. 5a and 5b) 
and lie above the asymptotic value x =x,. The condition 

FIG. 5. Schematic form of the possible solutions of the 
equation of state and of the transitions between solutions. The 
numbers in the circles correspond to the regions in the (E', v )  
plane-see Fig. 4. The thick lines represent the realized 
regimes, and the arrows the transitions between them. 
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R =x,  yields the equation for the third critical point in 
the (i, v )  plane-see F i g .  4: 

The loop is lower if 2 and v are located to the left of 
this curve and higher if they are on the right. 

3. QUALITATIVE ANALYSIS OF THE RESULTS 

We present now a complete picture of  the behavior of 
the system in the plane of the parameters (2, v)-Fig. 4. 
The three critical curves (see (13), (24), and (25) )  and 
the line x =$ break up the parameter plane into eight 
regions. 

In region 1, which i s  to the right of the curves v,  and 
v,, and of the line ; =+, there are no transitions and x 
increases monotonically from the value x = 0 at T = 0 
to x =x at T -  03. This region corresponds to Fig. 5a, 
and if $ <x < 1 then the loop lies under the value x = 1 
(i.  e., in the physical region of the parameter). 

On crossing the curve v,, we land in region 2 (see 
Fig. 5b), where one transition on the S-shaped section 
of the lower branch of the curve i s  realized. The tran- 
sition is weak in the immediate vicinity of the curve v,  
(where the S-shaped section initiates) and becomes 
stronger with decreasing 2. On crossing the curve v,,,, 
which corresponds to the transition of the loop down- 
ward, we land in region 3 (see Fig. 5c), which is 
bounded by the curves v,, v,,, and the line 2 = $. 

The concentration jump in the phase transition on the 
S-shaped section, as for example in region 2, cannot 
be accompanied by a jump through the value x =x,  
which i s  asymptotic as T -  m (although the difference 
x3 -xl need not necessarily be small in such a transi- 
tion). In region 3, a phase transition takes place with 
participation of loop-shaped curves. In the general 
case this transition must be accompanied by a jump to 
the value x =x,  so that one of the states must have a 
concentration x larger than x, The transitions ac- 
companied by crossing of the asymptote will be called, 
in accord supertransitions. Thus, in the re- 
gion 3 there is realized one transition which i s  a super- 
transition; it can be either strong (whenx is near the 
value $) or weak (when 2 is near x* and v i s  near v,). 

On crossing the curve v,, we go over into the region 
4. Inasmuch as on the right of v, there is produced a 
weak transition (see (14)), we "acquire" on landing in 
region 4 a second transition, independent of the first- 
see Fig. 5d-and connected with the appearance of the 
S-shaped section on the upper branch of the curve. 
Thus, in region 4 there are realized two independent 
transitions, one of which i s  a supertransition. 

Crossing curve v,,,, we land in region 5 between the 
curves v,,, v,,,, and the line x =$. It is precisely this 
region that corresponds to the situation described by 
formulas (17)-(20), namely a pair of strong transi- 
tions; in the general case, a bitransition comprising 
a pair of supertransitions i s  realized in region 5-see 
F i g .  5e. Finally, crossing the curve v,,, we land again 
in region 1. 

From a comparison of Figs. 5a and 5e we see that 
the plots of the solutions in regions 1 and 5 are topologi- 
cally equivalent, and the pair of supertransitions (see 
F ig .  5e) in the region 5 comes closer together as the 
v,, curve i s  approached and vanishes when this curve 
i s  crossed. 

The point 2 =x,, v =v, on the parameter plane, at 
which all three critical curves intersect, i s  singular: 
at =x ,  =x,  degeneracy sets in and a single phase tran- 
sition, furthermore of second order, takes place in the 
system (the quantity x is continuous and d x / d ~  is dis- 
continuous). The temperature of this transition is 
T = x / ( .  

Let us return to the case 2 < i. As already indicated, 
in this case at low temperatures the value of x i s  close 
to unity. In the region 6 (Fig. 5 f )  the solution curves 
are topologically equivalent to the curves correspond- 
ing to regions 1 and 5 (Figs. 5a and 5e), but the start- 
ing point i s  now x = 1. Therefore with increasing tem- 
perature, one supertransition i s  realized here, ac- 
companied by a jumplike decrease of x. (We note that 
there are no transitions in the analogous curves in the 
region 1, while in the region 5 we have a bitransition.) 
In region 7 (Fig. 5 g )  the solution curves are topologically 
equivalent to those shown in F ig .  5d,  but now only one 
transition takes place here on the S-shaped section of 
the upper curve. Finally, region 8 corresponds to 
F i g .  5h, which i s  topologically equivalent to Fig. 5c, 
but now the system is on the upper curve at all T ,  and 
there are no transitions. 

We emphasize that the existence of bitransitions i s  
essentially connected with the asymmetry of the con- 
sidered system: N ' + N .  When N' = N  (symmetrical 
systems), the equation of state (7) reduces to the form 
x / ( l  - x )  =vl" e d -  (w-&)/2T}. This case i s  analyzed 
in detail inc271. 

It is easy to verify that the value of x, corresponding 
to the onset of three close solutions (see (11)) turns out 
to be equal to x* =$ in the symmetrical system, and 
there i s  no interval $<;<x, corresponding to the pos- 
sibility of realizing two transitions. Therefore in a 
symmetrical system there are either no transitions, or 
there exists a single transition. The temperature of 
this transition (at all values of the difference x3 -xl)  
i s  obtained from (12) by making the substitution x ,  = $  
(and v* = 1 ): T, = x(; - +)/ln v. 

The considered case N'>>N i s  the " e x t ~ m e l y  asym- 
metrical" one. It is clear, however, that the results 
(in particular, the existence of eight characteristic re- 
gions on the (;, v) plane and of double transitions) re- 
main in force also in the general case of asymmetry 
N' +N ( ~ q s .  ( 6 )  and (7). 3' 

Let us make a few remarks concerning a number of 
other assumptions used in the calculations. It was 
assumed that w remains unchanged in the entire con- 
sidered temperature interval. This assumption i.s in 
fact not restrictive, since allowance for a weak W ( T )  
dependence reduces, as can be easily seen, to a re- 
normalization of the constants x in Eqs. ( 6 )  and (7).  
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Consideration of other models for the description of 
the vibrations of the disordered particles reduces in 
exactly the same manner to a renormalization of X. 
Next, it was assumed that all the states N' a r e  ener- 
gywise equivalent. Obviously, the results remain un- 
changed also in a number of cases when the system has 
several sorts of such states (for example, different 
interstitial positions). Indeed, if the energies of these 
states a re  close to one another (their difference is less  
than TI, then these states can be effectively regarded 
a s  indistinguishable. In the opposite limit (when their 
difference is larger than T), we can confine ourselves 
to consideration of states with minimum energy. Final- 
ly, it was assumed that all the states N' a r e  equally 
accessible, i.e., there is no blocking effect. We note 
in this connection that in the opposite limit of absolute 
blocking (one particle blocks g > 1 places), the calcula- 
tion of the configuration entropy leads to the same final 
expressions (6) and (7), but with a renormalized ratio 
N ' / N - N ' / ~ N ;  the parameter can also become renor- 
malized in concrete models. 

Thus, the investigated model, despite i t s  relative 
simplicity, predicts a variety of possible temperature 
behaviors of the considered disordered systems. First ,  
a continuous disordering of the initial sublattice is pos- 
sible (Fig. 5a), or  else a nearly continuous one ac- 
companied by a relatively small discontinuity of x  
(Fig. 5b); the temperature of such a jump (weak tran- 
sition) is  given by formula (12). *) 

Second, an abrupt jump from a state with "small" x 
to a state with a value x =  1 is possible, corresponding 
to a strong supertransition. The temperature of such 
a transition is given by formula (18). With further in- 
crease of the temperature, the system remains in this 
state, and x  decreases with increasing T (Fig. 5c). 
Physically, the decrease of x  with increasing T is due 
to the following: the state xg > x ,  is realized and is pre- 
served because of the presence of a sufficiently strong 
interaction (Z < 1). With increasing temperature, the 
influence of the interaction weakens effectively (the 
"particle gas" becomes ideal a s  T/x- a). Consequent- 
ly, x  decreases with increasing T to a value x  =%,. 

Third, the temperature interval in which the state 
x >  x ,  is realized can be finite. In particular, when 
this interval is bounded by a pair of strong supertransi- 
tions (Fig. 5a), the temperature limits of the interval 
a re  given by formulas (18) and (19). 

It is possible also that the second jump is not a super- 
transition (Fig. 5d) and therefore does not take the sys- 
tem out of the state x > x , ,  into which the system went 
over a s  a result of the f i rs t  transition. If one transi- 
tion is strong and the other is weak, then the tempera- 
tures of the transitions a re  given by formulas (18) and 
(1 2) respectively. 

Finally, a case is possible when the system is dis- 
ordered in the initial state G<i) .  With increasing tem- 
perature this disorder can decrease either continuous- 
ly (Fig. 5a) o r  accompanied by a weak transition (Fig. 
5g). A jumplike ordering is also possible a s  a result 
of a strong supertransition a t  a temperature T?' (181, 

s o  that at T >  T?' the system is "almost ordered" 
(Fig. 5f). 

In the case of superionic crystals, the last situation 
corresponds to a jumplike vanishing of the high ion con- 
ducitivity with increasing temperature. This effect is 
analogous in i t s  physical manifestation, in a certain 
sense, to the destruction of electronic superconductiv- 
ity with increasing temperature. 

The foregoing investigation has revealed the existence 
of a number of interesting possibilities of the thermo- 
dynamic behavior of asymmetrical disordered systems; 
the existence of supertransitions, bitransitions, and 
two successive transitions. This investigation was 
based on the use of two types of critical conditions for  
the onset of phase transitions-(21) and (22). Condi- 
tions (21) a re  traditionally used in the description of 
f irst-order phase transitions. 

At the same time, we must emphasize the importance 
of the formulated conditions (22) for  a sufficiently com- 
plete analysis of problems involving phase transitions. 
In particular, in the simple model system considered 
in the present paper we have demonstrated the possible 
existence of bitransitions as a result of realization of 
the conditions (22). In more complicated systems, a 
similar analysis can demonstrate in principle the ex- 
istence of several bitransitions, o r  even a more com- 
plicated system of correlated transitions. 

The authors thank Ya. B. Zel'dovich and I. M. Lif- 
shitz for  a discussion of the work and for  useful re-  
marks, a s  well as M. A. Vorotyntsev, R. R. Dogo- 
natze, and A. M. Kuznetsov for  stimulating discus- 
sions. 

"1n some crystals, the considered cation order can be accom- 
panied by a restructuring of the rigid sublattice and by a 
change of its symmetry. For simplicity, we shall deal below 
with crystals in which no such restructuring takes place. 

')BY "low" temperatures are  meant those corresponding to the 
intermediate asymptotes, so  that xi << 1 but (4a) is still 
valid; at even lower temperatures, when x is given by (4b), 
the problem reduces to ours by making the substitution 

3)~quations analogous to (6) and (7) were obtained in C281, where 
a system of interacting defects in an irradiated crystal was 
investigated.' Since, however, the critical conditions (22) 
were not investigated in C283, the possibility of the existence 
of bitransitions was not observed. 

4 ) ~ h e  weak and strong transitions mentioned here and below 
can, generally speaking, be "medium" transitions (when 
x3-xl < 1); the temperatures of "medium" transitions can- 
not be obtained analytically but can be determined by a 
numerical solution of the corresponding equations. 
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