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5 1. INTRODUCTION 

There a re  two main approaches to the problem of 
Stark broadening of atomic lines, and it i s  convenient to 
describe them a s  the classical and the quantum-mechan- 
ical. Their essence can be easily understood if we re-  
gard the radiating and perturbing particles (respective- 
ly, the atom and, say, the ion) a s  the components of a 
single system emitting a quantum of radiation. The 
system i s  represented by the wave function \k(yA, yi) 

which can be written a s  the product of the atomic wave 
function ~ ( Y J  and the wave function $(Y*) of the ion. This 
way of writing the wave function is justified by the fact 
that the broadening process involves only a small spec- 
t ra l  range Aw near the atomic transition and corre- 
sponds to a small energy transfer (i. e., large distances) 
between the atom and the ion. In the classical treat- 
ment of the problem of broadening, one examines the 
evolution of the atomic wave function $(yJ in the field 
of the ion, the motion of which is assumed unperturbed 
and classical [$(Y,) i s  the classical wave packet]. In 
the quantum-mechanical formulation, on the other hand, 
one i s  interested in the motion of the perturbing particle 
(ion) in the potential produced by the radiating atom. The 
change A E  in the energy of the scattered ion determines 

t ra l  (collisional) part of the contour and the static wing 
of the line. We note that this transition was achieved 
ineel with the aid of quasiclassical wave functions for the 

perturbing particle. 

More recently, Tran Minh st al. C7p81 and Szudy and 
BaylisCg1 gave a sufficiently general quantum-mechani- 
cal treatment of line broadening. Their results apply 
to the case of two isolated atomic levels between which 
a radiative transition takes place. The method used by 
Tran Minh et al. C7'81 i s  more general and can, in prin- 
ciple, take into account the degeneracy of levels that is 
important for hydrogen-like systems. It i s  important 
to note, however, that all  these workers were forced 
to use the quasiclassical approximation for specific 
calculations. This i s  so because the quantum-mechani- 
cal treatment of the problem requires a knowledge of the 
exact wave function $(ri) of the perturbing particle in 
the field of the radiating atom. This function can, a s  a 
rule, be found only numerically. We emphasize that 
the scattering phase alone i s  insufficient for the deter- 
mination of the entire line contour. Thus, the gener- 
ality of the quantum-mechanical treatment of the broad- 
ening problem is, therefore, to some extent deter- 
mined by the associated computational difficulties. 

the change Aw = AE/A in the frequency of the light emit- 
ted by the atom. The hydrogen atom i s  an exception to all this and, 

a s  will be shown below, it admits of an analytic solu- 
The great majority of papers on the theory of broad- 

ening has been concerned with the classical treatment."] 
The quantum-mechanical formulation was first used by 
Jablonski. Specific calculations were, however, per- 
formed by JablonskiCS1 only in the quasiclassical ap- 
proximation, in the case of broadening by heavy par- 
ticles. The corresponding results were, therefore, 
valid only for the distant, static wing of the line. Sobel'- 
manc4] (see also ~obel'manc-']) and Barangercslused the 
quantum-mechanical formulation to calculate broaden- 
ing by fast light particles (electrons). The quantum- 
mechanical description of the motion of the electrons 
enabled them to relate the broadening parameters (line- 
width and shift) to the electron-atom scattering cross 
sections. These calculations were concerned with the 
central (collisional) part of the line contour and did 
not, therefore, incorporate the results of JablonskiCS1 
for the distant wing of the line. Further development 
of Jablonskiys theory, undertaken by Szudy, re- 
sulted in adescription of the transition between the cen- 

tion in both the classicil and the quantum-mechanical 
formulations. This i s  connected with the particular 
properties of the Coulomb field which gives rise to a 
"fortuitous" degeneracy of the hydrogen lines. The 
symmetry properties of the hydrogen atom can, in 
fact, be used (in the dipole approximation) to obtain 
an exact solution for the broadening problem in the 
classical formulation. c'ol" In this paper, we shall de- 
rive (again in the dipole approximation) the exact solu- 
tion of the quantum-mechanical problem and consider 
its relation to the obtained in the classical 
formulation. 

The fact that an exact solution for hydrogen-line 
broadening during collisions with ions can be obtained 
i s  quite clear a primi. Thus, the potential due to the 
(dipole) interaction between the ion and the excited hy- 
drogen atom falls off as  Y ;', i. e., like a centrifugal 
potential. The wave functions of the ion moving in the 
dipole potential must, therefore, be Bessel functions. 
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The calculations a r e  complicated because a large num- 
ber  (n2) of states associated with the degenerate hydro- 
gen level with principal quantum number n participate 
in the interaction. In this respect, the problem is com- 
pletely analogous to the strong-coupling approximation 
in the multichannel problem of inelastic atomic colli- 
sions, discussed by Seaton. '13] We note in this ton- 
nection that, a s  observed by Demkov, Ostrovskii, and 
Solov'ev, C1d151 the four-dimensional symmetry proper- 
t ies of the hydrogen atom can be used in the quasiclassi- 
cal approximation to solve the scattering problem, just 
a s  in the classical case. It is important to note, how- 
ever, that, in contrast to the theory of scattering, the 
final result for the line profile in the theory of broad- 
ening is not expressed in terms of the scatteringphases, 
but contains information about the total structure of the 
wave function. 

8 2. SET OF WAVE FUNCTIONS FOR THE EXCITED 
HYDROGEN ATOM AND THE BROADENING 
PARTICLE 

In this section, we shall construct the set  of functions 
I * qlAmA) that transform, at  large distances between 
the atom and the perturbing particle, into a plane wave, 
a convergent o r  divergent spherical wave associated 
with the perturbing particle, and the hydrogen function 
of the atom in the state lAmA. These functions will 
then be used to determine the spectrum of the hydrogen 
atom. Let us beginby considering the Hamiltonian of 
the system consisting of an excited hydrogen atom and 
the broadening particle (ion): 

6 A 

In this expression, HA and H,  a re  the Ha9iltonians of 
the free atom and ion, respectively, and VA, is the oper- 
ator corresponding to their dipole interaction: 

- 1 1 rirl v - - - -w--  
A, - 

ri I - I  r,= ' 

where r, and r, a r e  the position vectors of the atomic 
electron and ion, respectively. 

The main contribution to broadening is providedttvz1 
by the states of the atom that correspond to the given 
degenerate level with fixed principal quantum number 
n (and lie on the "equal energy" surface). The wave 
function of the system under investigation can, there- 
fore, be written in the form of the product 

where $,(r,,) is the unperturbed wave function fo r  the 
hydrogen level n. 

If we substitute (2.3) into the Schradinger equation 
with the Hamiltonian given by (2. I), (2.2), we obtain 
a set  of equations for the wave function of the ion inter - 
acting with the n 2  degenerate states of hydrogen. The 
potential for this multichannel interaction, given by 
(2.2), i s  noncentral and, therefore, the orbital angular 
momentum I ,  of the scattered ion is not conserved. To 

simplify the resulting multichannel problem, we can 
use the symmetry properties of the dipole potential. 
Thus, it is that, in addition to the resul- 
tant angular momentum of the system L = 1, + 1, (1, is 
the orbital angular momentum of the atom) and its 
component M, there is the additional constant of mo- 
tion 

In this expression, M is the mass of the ion, n,, n~ 
a r e  unit position vectors n =  r/r, and we a r e  using 
atomic units in which e = A = m = 1. 

A 

Since .A is conserved, we can immediately write down 
the radial SchrSdinger equation for the m o t i v  of the ion 
in the potential given by (2.2) (cf. Ostrovskii and 
~olov 'ed '~ ' ) :  

dZR 2 dR b 
--I----+ (n'-7) R-0. 
dr' r dr 

The solution of this equation can be expressed in terms 
of Bessel functions: 

where q ' / 2 ~ =  E is the energy of the f ree  motion of the 
ion and r is the modulus of i ts  position vector (the sub- 
script i will be omitted henceforth). 

We must recall that (2.6) was obtained in the dipole 
approximation which is valid only for sufficiently dis- 
tant encounters. Encounters involving small angular 
momenta may result in the "fall" of the particle on the 
atomciT1 (Sec. 35). It is clear, however, that, a s  the 
distance decreases, the dipole approximation eventually 
ceases to be valid and the "fall" will not, in fact, oc- 
cur. For the n =  2 level, the fall of the particle is al- 
ready absent fo r  1,>2. Weshall, therefore, suppose 
that such encounters provide a small contribution to the 
resultant contour. They may have an effect on the dis- 
tant wings of the line contour, where the dipole approxi- 
mation is not valid. We note that, from the mathe- 
matical point of view, the fall effect is connected with 
the appearance of an imaginary index of the functions 
given by (2.61, so that the condition for an encounter 
without the "fall" is X > - 1/4. 

Despite the simple form of the solution (2.6), it is 
important to recall that, before i t  can be used, we 
must find the values of X , i. e.  , solve the secular equa- 
tion (2.4). The wave function Q,,,, which diagonalizes 
(2.41, is conveniently sought in the form of a combina- 
tion of functions with definite total angular momentum 
L and projection M: 

The coefficients (1,1, I XL) a r e  found in the course of the 
diagonalization of the constant of motion A .  If we write 

944 Sov. Phys. JETP 45(5), May 1977 F. F. Baryshnikov and V. S. Lisitsa 944 



and substitute for qAL, in (2.4), we obtain the following 
set of equations for the coefficients (1,1, I XL): 

The consistency condition for  (2.9) is  

det (I , 'L. 'LMI~-L 1 lAliLM) 4 (2.10) 

and this can be used to find the values of X and then, 
after substituting into (2.91, the coefficients (ZAIi I xL) . 
These coefficients satisfy the orthogonality condition 

Using the well-known relationships for the matrix ele- 
ments of tensor operators (see, for example, Landau 
and ~ i f s h i t z ~ " ~  1, we obtain the following expression for 
the constant of motion (2.4) : 

In this expression, a = Mn [ 3(n2 - 1, ,,)I ( a  = 6M 
for  n= 2), n i s  the principal quantum number, I,,,, 
I,, are  the minimum and maximum values of 1,-1'; 
the symbols {. . .) represent the 6J-symbol of Wigner, 
and (I' II n ll I) a r e  the reduced matrix elements of the 
operator n, which can be expressed in terms of the 
3J-symbol. "'I 

The solution of (2.9) and (2.10) in a general form i s  
difficult because of the high degree of degeneracy of the 
hydrogen levels. The solution is simplified, however, 
if, for example, the main contribution to the contour 
i s  provided by encounters with high angular momenta. 
We can then use the asymptotic expressions for the 6 J  
symbols. The aim of the present analysis i s  not, how- 
ever, the solution of this problem for an arbitrary n 
Henceforth, we shall suppose that the values of X and 
of the coefficients (1,1, I XL) a re  known and the specific 
calculation will be carried out for n =  2 for which the 
degree of degeneracy is not high. 

We must now construct the system of functions 
I *qlAmA). We shall expand it in terms of the complete 
set of functions qAL, (2.7): 

The asymptotic expression for the function given by 
(2.13) is  

where r i s  the distance between the ion and the atom. 
Equating the corresponding coefficients in (2.13) and 
(2.14), and using the orthogonality properties of 
(ZAZi I U )  and (m,mi I LM), we obtain 

where the corresponding signs on the left and right 
must be taken, i. e., either the upper or the lower, 
and vAL = (X +a) ' I 2 .  The coefficients in (2.15) and 
the functions (2.7) jointly provide us with the solution 
of our problem. Let us consider in greater detail the 
states with n=2. In this case, there are no difficulties 
with the diagonalization of the matrix A. Since the 
n= 2 wave functions a re  superpositions of only the S 
and P states, the corresponding results coincide, a s  
expected, with the results obtained by  eato on^'^] for 
problems involving strong coupling between the S and 
P channels during scattering. For the n= 2 level, Eq. 
(2.10) together with the explicit expression for the 
6 J  symbols in (2.11) assumes the form 

L ( L  + I )  - h - a [L/(2L + I)]"' - a [ ( L  + 1)/(2L + I)]'" 

det 1 - a 1 2  + I ) ]  L ( L  - 1) - a 0 

- a [ ( L  + l ) l (2L 4- I )  j"' 0 ( L + l ) ( L + 2 ) - 1  
= 0, (2.16) 

where a = 6M. The numbers of rows and columns in 
this matrix correspond to the coefficients (OL I xL) , 
(1L - 1 I XL) , and (1L + 1 I XL) , respectively. The eigen- 
values X and eigenvectors (I,, I XL) have the form 

1 
-a12 [ L  (2L + 1)11" , 

- a12 [ (L  + 1) (2L + 1)1" 

No = [ I  + aa/4L(L + I ) (";  
I 

(2.17) 

h=h,=L(L+l)+ l*(2L+l)  [ l + [ a / ( 2 L + I ) ] ' ] " ' ,  

1  
- CIL"'/(~L + 1)'" (1 f E )  , (2.18) 

- a (L  + i)"*/(ZL + 1)'" (- 1 f E) 1 

The expressions given by (2.17) and (2.181, taken'to- 
gether with (2.61, (2.7), (2.13), and (2.15), define the 
exact wave functions of the broadening particle, mov- 
ing in the field of the excited hydrogen atom in the n= 2 
state. These functions will be used below in a specific 
calculation concerned with the spectrum of the Ly-a 
line. 

$3. CONTOUR OF A HYDROGEN LINE AND 
THE OVERLAP lNTEGRAL FOR THE WAVE 
FUNCTIONS OF BROADENING PARTICLES 

To determine the contour I ( w ) ,  we shall use the well- 
known expression for the transition probability in the 
continuous spectrum 
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Here, v is the operator representing the interaction be- 
tween the atom and the radiation field, g ,  - g, = ( fZ '/ 
2M)(q:-q,2)-tiAw, Aw=w,,-w i s  the difference be- 
tween the atomic and observed frequencies, and k i s  
the wave vector of the emitted photon. 

We begin by considering the case of a two-level 
atomic system with arbitrary spherically symmetric 
interaction potentials u,(Y) and u,(Y). The particular 
form of the potential i s  unimportant. We shall use this 
example to demonstrate the possibilities of the quan- 
tum-mechanical approach to the theory of broadening. 
This approach enables us to use the well-established 
formalism of scattering theory. However, whilst the 
asymptotic form of the wave functions i s  sufficient in 
the scattering theory, to calculate the complete contour 
we must know the wave functions throughout space. 

Let the wave functions for the initial a and final b 
states of the system be of the form - 

where ~p,,, are the atomic wave functions and $(q*) 
,%eiqr +f *Y"etiqr (see ~obel'man~"). The chosen nor- 
malization of the wave functions is analogous to the 
normalization usedti3 to determine the bremsstrahlung 
cross section du/dw. The cross section du i s  given 
directly by (3.1) after averaging over initial and sum- 
ming over final states of the system. In our case, it 
is not the external particle that interacts with the radia- 
tion field but the atom itself and, therefore, the result- 
ing cross section will characterize the broadening pro- 
cess. Following the treatment used for bremsstrah- 
lung, ['I we obtain 

-=-- do 4 0 3 1 4 1 2  nz ( Z i t i )  lA.1'. 
d o  3c3 v .E.~I  , 

where R , ( ~ ~ Y )  i s  the solution of the radial equation with 
angular, momentum I in the potential Ui(r) with momen- 
tum Rqi (i=a, b): 

The power radiated per unit volume, Q(w) dw, i s  
related to du/dw in a simple fashion, a s  in the brems- 
strahlung case: 

In this expression, flu,) i s  the distribution over the 
initial relative velocities. We shall not carry out the 
averaging with respect to velocity. If necessary, this 
can be done at the end. We thus obtain 

This yields the following expression for the line con- 
tour: 

The expression given by (3.5) i s  identical with the 
corresponding expression given by Szudy, C61 but we 
have obtained it  by the direct method that does not re- 
quire an analysis of the motion of the broadening par- 
ticles in a finite volume. It can be shownc6' '] that (3.5) 
contains all the results of the adiabatic theory of broad- 
ening. 

Let us apply our formalism to the radiation emitted 
by a hydrogen atom. The overlap integral i s  difficult 
to evaluate in this case because, as  noted above, the 
states a and b by which the broadening ion i s  scat- 
tered a re  degenerate. However, the existence of the 
additional constant of motion A enables us to isolate 
independent scattering channels characterized by dif- 
ferent quantum numbers X. The overlap integral 
then splits into a series of two-level integrals corre- 
sponding to different pairs of values X,, X, for the 
levels a, b. Using the wave functions given by (2.13), 
we find that, a s  in the case of the two-level system, 
the expression for the power Q(w) radiated per unit 
volume per unit frequency i s  

A:> 5 FRLL (qr)  RL'L' (q'r) dr. 

The primed and unprimed variables refer to states b 
and a of the system, respectively. The general expres- 
sion (3.6) for Q(w) i s  rather unwieldy and we shall, 
therefore, consider the lines belonging to the Lyman 
series. The resulting conclusions on the structure of 
the overlap integrals A;:' will, however, be of a gen- 
eral character. For the Lyman lines, we can neglect 
the interaction in the lower state as  compared with the 
upper state. 

Using (3.6) and substituting (OLt I X'Lt ) = 1, we obtain 

The expressions given by (3.8) and (3.9) and the coef - 
ficients (1,111 XL) given by (2.17) and (2.18) for n= 2 
are  the starting point for evaluating the Ly-a contour. 
In contrast to the two-level approximationc~ and (3.5), 
the expression for the contour now includes contribu- 
tions due to the different angular momenta La = L, & 1 
of the upper state and, in addition, all three scattering 
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channels corresponding to A, and A, [see (2.17) and 
(2.1811. In the general case of an arbitrary Lyman 
line, the expression in (3.9) should be summed over all 
the scattering channels, i. e . ,  all A obtained by solving 
(2.10). 

For  arbitrary (non-~yman) lines, the contour za,(w) 
has a relatively complicated structure, largely due to 
the complexity of the solution of the secular equation 
determined by the value of the constant of motion A.  
The latter is clear from (3.6). This problem can be 
simplified in the quasiclassical limit by using the sym- 
metry properties of the hydrogen atom. C'O1 However, 
we shall be interested in the possibility of obtaining 
the quantum-mechanical expression for  the contour and 
in i t s  relation to the classical expression. 

It follows from (3.9) that the main problem in calcu- 
lating the spectrum i s  the evaluation of the overlap in- 
tegral (3.8). The radial wave functions (2.6) a r e  nor - 
malized to the delta function of q so that we must in- 
vestigate the integral 

w 

A,.,-- (q.qs)"2J rJ, (q.r) 1,. (qbr)dr. (3.10) 
0 

This integral contains singularities that impede i ts  
evaluation. It is ,  however, possible to isolate these 
terms explicitly. The integral can then be written a s  
the sum of a regular part  and delta-function type singu- 
larities. The singularities a r e  unimportant for the 
main part of the line contour and can be ignored. 

To isolate the regular part, we use the following 
property of the indefinite integral of Bessel functionsci81: 

v'-v +- k'?-k? [k1JV(kr) 1%-+,(k'r) -kJ\+,(kr)Jv,(k1r) I - Jv (kr) Jv* (k'r) . 

(3.11) 

If we insert the limits r= 0 and r=-, the last  term 
will vanish for  v + v' > 0, which i s  satisfied in our case. 
The second term on the right-hand side of (3.10) is 
zero when r= 0 and, a s  Y - m ,  we can substitute the 
asymptotic form of the Bessel functions. This leads 
to the above-mentioned singularities of the delta-func- 
tion type: 

If we exclude the small neighborhood of the point Aw = 0 
(q: = q: )from our analysis, we can ignore this singular- 
ity. ') 

The remaining term in (3.11) is regular. The cor- 
responding integral can be expressed in terms of the 
complete hypergeometric function ~ ( a ,  b, c, 2). Ci91 The 
final result is 

Substituting this expression in (3.91, we obtain the ex- 
act  quantum-mechanical expression for  the contour of 
an arbitrary Lyman line, including Ly -a, in the dipole 
approximation. Since the structure of the function 
Z,,(w) is quite clear f rom (3.9) and (3.13), we shall not 
write out the somewhat unwieldy general expression. 

We thus see  that an exact expression for  the line con- 
tour can be obtained from the quantum-mechanical 
treatment of the broadening of the hydrogen lines. As 
noted above, an exact solution can also be obtainedcio1 
in the classical formulation corresponding to the classi- 
cal motion of the perturbing ion. The problem is to 
determine the relation between the two solutions. One 
would expect the classical solution to be a special case 
of the quantum-mechanical solution a s  the latter is 
taken to the classical limit. This transition will be 
investigated below. All we need to say now is that we 
a r e  concerned with the direct correspondence between 
the two analytic solutions for  arbitrary values of Aw. 
When they a r e  compared, we need not therefore use the 
quasiclassical wave functions of the form 

which was done by szudyCG1 and Tran Minh et al. C7-91 

4. CLASSICAL LIMIT 

The expression given by (3.9) for the line contour 
contains the sum over different angular momenta of the 
incident particle. Motion with large relative momenta 
should be close to the classical situation. For  a heavy 
particle, the main contribution to broadening is,  in 
fact, due to encounters with high angular momenta. 
Therefore, by passing to the limit of high angular mo- 
menta in (3.9), we obtain the expression for the line 
contour broadened by classical particles. 

The overlap integral (3.7) in (3.6) and (3.9) i s  pro- 
portional to the hypergeometric function which, for high 
angular momenta, transforms into the confluent hyper- 
geometric function of the second kindczo3 

When v, >> I v b  - va I , this is equivalent to 

and the factor in front of the hypergometric function in 
(3.13) is then simplified, eventually yielding 

where kJx)  = ~,,,,,~,,(2x)/l?(l+ v/2) i s  the Bateman 
function. C201 

The exponential in (4.3) can be ignored under our 
conditions. The coefficients in (2.17) and (2.18) a r e  
substantially simplified in the limit of high angular 
momenta. The final result for the Ly-a contour is 
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where j3= cuAw/Mv *, X =  (2L +I)/@. The expression 
in the second brackets differs from the f i rs t  by the 
signs of the indices of the kv-functions. 

The expression given by (4.4) was obtained on the 
assumption that j3>0. It i s  readily shown by examining 
the derivation of (4.4) that the same expression is valid 
for @< 0. We can, therefore, use it for both signs of 
I¶ by defining kV(@ for  @<0 in the same way a s  for  
,9> 0 C Z O l  : 

It follows from this expression that kv(j3)= LV(- 0). The 
expression in the second brackets in (4.4) is, there- 
fore, identical with that in the f i rs t  if we substitute B - - j3, which, of course, represents the symmetriza- 
tion of the contour. If we replace the summation in 
(4.4) over the angular momenta by integration with 
respect to the impact parameter p -  x,  we obtain an 
expression that is exactly the same a s  the result of the 
classical calculation. clO1 

We can use (4.2) to obtain the criterion for the 
validity of the classical expression for  the line contour. 
In the collisional region (QAW/MV << I), the effective 
impact parameter i s  determined by the Weisskopf 
lengthc'] p, - a/Mv. Condition (4.2) is, therefore, 
equivalent to 

which is satisfied with a considerable margin. The 
validity of the classical expression given by (4.4) in 
the collisional region is quite clear a priori because 
the main contribution to the central part of the contour 
is due to distant encounters with high angular momenta. 
In the static region (LYAW/MV >> 1) the validity of (4.4) 
is not so obvious. In this case, the effective impact 
parameter is pet,- p, - (LY/MAW)''~. Condition (4.2) is 
then satisfied provided 

This condition is identical with the usual criterion for  
the validity of the approximation of classical trajec- 
tories which assumes that the change in the particle 
energy during the interaction process is small in com- 
parison with i ts  initial energy. 

§ 5. CONCLUSIONS 

We have investigated the quantum-mechanical treat- 
ment of the theory of broadening of spectral lines, 
based on an analysis of the overlap integrals for  the 
wave functions of the broadening particle. This ap- 
proach provides us  with a simple means of formulating 
the broadening problem itself in complete analogy with 
the theory of inelastic scattering and the emission of 

bremsstrahlung. The quantum-mechanical treatment 
thus yields a clearer expression of the connection be- 
tween the broadening of spectral lines and the latter 
two effects. 

The broadening of hydrogen lines considered above 
i s  interesting in the f i rs t  place because exact analytic 
expressions can be obtained for  the entire line contour, 
both in the classical and quantum-mechanical treat-  
ments of the problem. This means that the two results 
can be compared. Comparisons of this kind usually en- 
counter considerable computational difficulties. They 
a re  usually carried out either within a restricted part 
of the contour (collisional o r  static) o r  by substituting 
simplified quasiclassical wave functions into the quan- 
tum-mechanical expression. The hydrogen atom pro- 
vides us  with an interesting possibility of a direct com- 
parison of quantum-mechanical and classical results 
for the entire line contour using the exact solutions 
without the quasiclassical approximations. 

APPENDIX (DECEMBER 27. 1976) 

Tran Minh et  al. have recently published two new 
papers, L21*221 the second of which is devoted to the com- 
parison between the quantum-mechanical results for 
the Ly-LY line (n = 1 level) and the classical result. The 
main difference a s  compared with the present work is 
that Tran Minh et al. considered the problem in a gen- 
era l  form and did not, therefore, use the additional 
symmetry properties of the dipole potential associated 
with the constant of motion A [cf. (2.4)]. The contribu- 
tion of the different A-channels to the broadening is, 
therefore, not isolated right from the outset by Tran 
Minh et al. [221 This leads to much more complicated 
expressions for the line contour than those given by 
(3.6) and (3.9). The separation of the A-channels can, 
in fact, be carried out at the initial stage by considering 
the wave functions (2.7) and (2.13). The use of the 
A-integral shows that the generalization of the results 
to other lines involves only an increase in the additive 
contribution of the A -channels [see (3. 9)]. 

Comparison of (3.9) in the special case of the Ly-LY 
(n = 2) with the results reported by Tran ~inh '"]  [see 
their formulas (5.7) and (5.811 enables us to establish 
that the two sets of results a r e  completely equivalent 
once the intermediate summations a r e  completed. This 
establishes the equivalence of the two treatments of the 
Ly-a! line. We note that the approach used above re- 
veals the possibility of obtaining simple quantum- 
mechanical solutions for higher-lying lines. 

We note in conclusion that the wave functions given 
by (2.7) and (2,131 a re  of independent interest for  the 
solution of other physical problems, for example, the 
quantum-mechanical determination of the cross sec- 
tions for scattering accompanied by transitions between 
degenerate sublevels of an atom. 

The authors a re  grateful to V. I. Kogan f o r  valuable 
discussions. 
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We consider, in the multi-fluid hydrodynamical approximation, induced Langmuir oscillations of an 
inhomogeneous plane plasma layer in an external harmonic hf field. We study the limitation of the electric 
field amplitude near the plasma resonance point as the result of a linear transformation into plasma waves, 
the self-intersection of electron trajectories, the anharmonicity of the Langmuir oscillations, and the non- 
stationarity of the plasma for various density profiles. We study numerically the generation of non-linear 
plasma waves and the acceleration of particles when resonance break down takes place which leads to an 
effective dissipation of the energy of the oscillations in the resonance region. We analyze qualitatively the 
role of the ion motion which is the result of striction forces and we indicate conditions under which 
modulational, parametric, and other instabilities which are connected with ion motion turn out to be 
unimportant. 

PACS numbers: 52.35.M~ 

1. The amplification of a n  hf field n e a r  the  p lasma 
resonance point is of g r e a t  in te res t  in connection with 
the  problem of the  anomalous absorption of electromag- 
netic waves in a non-uniform p lasma and the  generation 
of accelerated The magnitude of the  field 
a t  the resonance is determined by collisions, the l inear  
t ransformation into p lasma waves, and in s t rong  f ie lds  
by the  electron non-linearity and the change in the plas-  
m a  density under  the  influence of s t r i c t ion   force^.'^'"' 

In the presen t  paper  we  consider  the  establ ishment  of 
t h e  field in the p lasma resonance region under  conditions 

where  the modulational, pa ramet r ic ,  and other  instabili- 
ties, connected with ion motion in the self-consistent 
field, t u r n  out to be unimportant (see inequalities (68), 
(70)). 

We consider  a plane layer  of p lasma with ion density 
n, which is non-uniform in x. The p lasma is in a uni- 
f o r m  external  electric field which depends on the t ime  
as E = E, sinwt and is para l le l  to  the  inhomogeneity g r a -  
dient.  We choose the origin x =  0 at the p lasma reso-  
nance point, i. e., w= w , ( ~ =  0). We denote by s the 
ra t io  of the amplitude of the acting field to the maximum 
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