
else when the optical thickness of the medium is small 
(in the case of collinear observation direction). There 
are,  however, also other possible experimental condi- 
tions. If the distance between the active particles of 
the medium a r e  shorter than the radiation wavelength, 
then interference causes the coherent part of the scat- 
tered radiation, corresponding precisely to the narrow 
undisplaced line, to propagate collinearly with the ex- 
citing radiation. At a large optical thickness the follow- 
ing will take place under these conditions: The external 
radiation will attenuate a s  it passes through the medium 
and will be converted into scattered radiation. The 
scattered radiation, on the other hand, begins to act a s  
an excitation source with increase of i ts  intensity, i. e. ,  
it experiences secondary scattering. Since, however, 
the spectrum of the scattered radiation differs from the 
spectrum of the exciting radiation, then a change of the 
spectrum will take place a s  a result of the propagation 
effect. We hope to deal with this interesting question 
elsewhere. 

The author thanks S. G. Rautian for useful discus- 
sions and a number of valuable remarks. 
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Stationary spectra of high-frequency oscillations of a 
plasma in a magnetic field 

B. N. Breizman, V. M. Malkin, and 0. P. Sobolev 
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(Submitted September 14, 1976) 
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We consider weak turbulence of Langmuir and electromagnetic waves, the source of which is a beam of 
relativistic electrons. We take into account the processes of induced scattering of the waves by the ions in 
the plasma and the damping of the waves due to Coulomb collisions. We find for the case of a weak 
magnetic field (w,,<o,) stationary turbulence spectra and we calculate the power transferred from the 
beam to the plasma. We show that the threshold heating power at which a condensation of energy into the 
long-wavelength part of the spectrum begins increases linearly with increasing magnetic field. 

PACS numbers: 52.35.Hr. 52.35.Ra 

1. INTRODUCTION to induced scattering by ions. The role of the scatter- 
ing consists in that it removes the oscillations from 

We consider in the present paper within the frame- resonance with the beam electrons. This occurs, first- 
work of weak turbulence theory[''31 the non-linear stage ly, due to an increase in the phase velocity of the Lang- 
of the instability of a beam of relativistic electrons in muir oscillations when they a r e  scattered by one another 
a plasma with a weak magnetic field (w,, << w,,). We (11 process) and, secondly, due to the transformation of 
a re  dealing with the excitation by the beam of Langmuir Langmuir into electromagnetic waves ( I t  process). 
oscillations ( I )  and of the restriction of their level due Secondary waves arising in the scattering can be 
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damped, transferring their energy to the plasma par- 
ticles. We shall assume that their damping is caused 
by Coulomb collisions, 

As a result of the processes enumerated here a sta- 
tionary turbulence can be maintained in the beam-plas- 
ma system. Our aim i s  to find the turbulence spectrum 
and to evaluate the power of the plasma heating. The 
corresponding problem for  a plasma without a magnetic 
field was solved in Refs. 4 and 5. We remind ourselves 
briefly of the results of those papers and explain why 
it  is of interest to take a magnetic field into account. 

If It scattering is inhibited (e. g., due to a small op- 
tical depth) collisions a re  able to guarantee the dissi- 
pation of the whole of the energy given off by the beam 
only for the case where the instability growth rate y is 
not too much larger than the collision frequency 
v (y - v 5 v). In the case where y >> v the Langmuir os- 
cillations condense into the long-wavelength part of the 
spectrum which leads to the conditions for the applica- 
bility of the weak turbulence approximation being vio- 
lated and to the appearance of the modulational insta- 
bility. The development of the modulational insta- 
bility can be accompanied by a strong heating of a small 
group of fast electrons ("growth of tails") and an in- 
crease of loss of energy from the plasma. CT183 The 
threshold value of the heating power P for which such 
a dangerous situation arises is relatively low: 

v' M T 
Po---nT--. 

up, m mc' 

It i s  therefore very desirable to find conditions under 
which P>> Po while the modulational instability is never- 
theless not present. 

One possibility consists in suppressing the electro- 
magnetic waves and to work in a regime where both 
types of scattering (I1 and It) a r e  allowed. " It was 
shown in Ref. 5 that in that case the condensation of 
energy into the long-wavelength part of the spectrum 
starts at P - ~ , r n c ~ / T  rather than at P= Po. The condi- 
tions for the applicability of the weak turbulence ap- 
proximation are then correspondingly weakened. 
Another possibility is the introduction of a magnetic 
field. A field changes the dispersion law for the waves 
and we shall see that this appreciably affects the con- 
ditions for the occurrence of the condensate. 

In order that a wave excited by the beam reaches the 
condensate its frequency must be decreased due to scat- 
tering by a well-defined amount 6w before the wave is 
damped through collisions. In the case of a plasma 
without a magnetic field the following estimate holds 
for 6w: 6w- wPe~/mc2 (see Refs. 4 and 5). When the 
field increases, 6w increases: 6w - w,T/rnc2 + w ,. 
Together with 6 0  the characteristic time for the trans- 
fer of waves from the region where they a re  excited to 
the condensate also increases. As a result energy dis- 
sipation through collisions is made easier and the for- 
mation of the condensate starts at a higher heating 
power than for a plasma without a magnetic field. Of 
course, the gain is most important when the rrmagnetic" 

FIG. 1. Dispersion curves of the electronic oscillations of a 
plasma in a weak ( w s  << wH) magnetic field. The angle between 
the direction of the wavevector and the magnetic field is differ- 
ent from zero; 1) slow extra-ordinary branch, 2) ordinary 
branch, 3) fast extra-ordinary branch (we use the terminology 
of Ref. 10). 

contribution to 6w is large compared to the "thermal" 
one, i.e., when 

This is just the situation which we shall consider. 

The present paper is essentially a continuation of Ref. 
9 in which estimates were given for the role of a mag- 
netic field for the case when there was no It scattering. 
A difference will consist, firstly, in that we take into 
consideration all scattering channels and, secondly, 
that we obtain not only estimates, but also an exact so- 
lution d the problem. Section 3 of this paper is devoted 
to estimates; Secs. 4 and 5 to the exact solution. 

2. BASIC EQUATIONS 

We show in Fig. 1 typical dispersion curves for the 
waves of interest to us. The excitation of the waves, 
their damping, and the induced scattering by the ions in 
the plasma are  described by the following set of equa- 
tions for the occupation numbers N,.(k) (A numbers the 
branches of the oscillations): 

In a weak field the growth rates of the beam instability 
a re  very small for branches 2 and 3. We can therefore 
put 

where y(k) is the growth rate for branch 1 and v of the 
collision frequency. 

If the change in the wave frequency in each scattering 
process is much smaller than the width of the spectrum 
(and we assume in what follows that this is just the case) 
we can apply for the kernel Ax&, the differential approx- 
imation 
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Here S(k, A) is the polarization vector of the wave and 
the prime on the 6-function indicates differentiation with 
respect to its argument. 

Bearing in mind the form of the kernel, it is conve- 
nient to characterize each wave by its frequency and the 
quantities x=cos9 and cp (9 is the angle between the 
vectors k and H, cp is the azimuthal angle). Moreover, 
it is expedient to change from variables with dimensions 
to dimensionless ones and to do this to make the follow- 
ing substitutions: 

For the sake of simplicity we consider in what fol- 
lows only axially symmetric spectra, assuming also 
that the functions n,(f;x) a r e  independent of the sign of 
x. Of course, the growth rate must have the same sym- 
metry. On the basis of the results of Ref. 4 we can say 
that in the stationary state the spectrum must have a jet 
character, i. e., 

The jet parameters nf'(f) and xf ' ( f )  a re  given by the 
equations 

(PI  r , [ f ;  xA (1)  I =o, (6) 
a 

- r , ( i ;  t )  I.~.~,P)~,,=o, x : P J ( f )  ++it a t  (7) 

and the condition for the instability of the spectrum is 
r,(f; x) -C 0. An exception i s  the so-called degenerate 
spectrum. For  it r,(f; x) =O. 

In order to sketch in general outline the distribution 
of the waves over frequencies we turn to the balance 
equation for waves with frequency f. It is easily ob- 
tained from (3): 

Here II(f) is the flux of waves along the spectrum in 
the direction of low frequencies which is caused by 
scattering. The second term describes the change in 
the number of waves due to pumping and damping. It 
is convenient to consider i t  a s  the product of twice the 
number of waves and some effective growth rate ye,,. 
We show the function yaf(f)  in Fig. 2a. In the reso- 
nance region i t  is positive; in the remaining frequency 
range y,,= - v/2. The lower limit and width of the 
resonance region a r e  in Fig. 2 denoted by f, and Af+ . 
If the waves a re  excited by a relativistic electron beam 

In a stationary state the flux II ( f )  increases in the 
resonance region with decreasing frequency, while i n  

FIG. 2. Sketch of the dependence of the effective growth rate 
yaf and the flux n ( f )  of the number of waves along the spec- 
trum on the dimensionless frequency f .  We denote by - a the 
minimum frequency allowed by the dispersion law (see Eq. 
(9)). 

the non-resonance region i t  decreases and when there 
is no condensation i t  vanishes for f = fo > - 'Y (see Fig. 
2b). We shall assume in what follows that 

In this case the role of the magnetic field manifests 
itself fully and a t  the same time the solution of the 
problem turns out to be rather simple. The reason for 
this is that the spectrum for  - fo << a! consists of oscil- 
lations with wavevectors which a re  of different orders 
of magnitude. The Langmuir (1) oscillations have the 
largest values of k. For  them 

where k(f;x) >> (~, , /q , )"~.  The other waves (which 
we shall call electromagnetic t waves) correspond to 
much smaller values of k(f ;x). Taking into account 
the smallness of the wavevectors of the t waves and 
the non-potential corrections to the polarization vec- 
tors of the 1 waves we can perform in Eq. (5) the ap- 
propriate corrections and, in particular, we can com- 
pletely neglect the interaction of t waves with one 
another. We finally get instead of (4): 

r r ( f ;  t)=Fl'+x2FZ'+kz(f;  x )  [ P J ' + x Z F i ' ] + 2 y ( f ;  t ) - v ,  

r, ( f ;  S )  =Fl'+S2Fz'-v, 
(11) 

1 1 

w : ( j ) = x  J ( ~ - - ~ ~ ) n l t ( f ; t ) d . ~ ,  w : ( j ) = z  J F n t ( ~ x ) d x .  
A (1 A 0 

(13) 
Here k(f; x) is the wavevector of an I wave given by 
Eq. (10); S is the projection of the polarkation vector 
of the t wave onto the direction of the magnetic field. 

937 Sov. Phys. JETP 45(5), May 1977 
" 

Breizrnan et a/. 937 



We note that the contribution of the t waves to the 
functions I', and r, is fully characterized by two quan- 
tities: wf, and w:. These quantities a re  both non-vanish- 
ing only when the t spectrum is degenerate ( r t  (f; S) = 0). 
In a jet spectrum of t waves, on the other hand, there 
may be present those for which S =0, o r  those for which 
S = l .  

The set  of equations which is obtained when we sub- 
stitute the functions r, and r, into Eqs. (61, (7) will be 
solved in Secs. 4 and 5. 

3. ESTIMATES OF THE STATIONARY SPECTRUM 
PARAMETERS 

When giving estimates we shall assume that inequality 
(9) is satisfied. The total width of the  spectrum is then 
large compared to the width of the resonance region and 
approximately equal to I fol (see Fig. 2). The charac- 
teristic value of If l in the spectrum is also of the 
order of I fo I. 

We denote by N ' the number of I waves pe r  unit vol- 
ume and by N' the number of t waves: 

One can easily express the characteristic t imes for 
El-, It-, and tl-processes in the non-resonance region 
in terms of these quantities: 

Here k is a characteristic value of the wavenumber of 
the non-resonance l waves which i s  equal to  I ~f~l'''~ 
(see (10)). 

In the stationary state each of the quantities T", T", 
and rt' must equal the time for the damping of the 
waves, v". Hence we get the following relation: 

At the same time the characteristic time for  the excita- 
tion of I waves must be equal to the time of their pump- 
ing from the resonance region due to scattering, 7,. If 
we assume that the pumping i s  mainly caused by It scat- 
tering we must give for an estimate of rR the number 
of t waves in the resonance frequency band. We assume 
that there a r e  here per unit frequency range approxi- 
mately just a s  many t waves a s  in the res t  of the spec- 
trum, that is, Nt/l fo I. This will be confirmed by the 
exact solution of the problem. Assuming that the reso- 
nance region has a width 1 + P-' (see (8)) and that the 
wavevector in it is of the order of magnitude of unity we 
have 

The inverse pumping time T',' is clearly the same a s  the 
beam instability growth rate y, i. e. , 

Combining Eqs. (14) and (15) we find 

We now estimate the power of heating the plasma P 
and the number of I waves interacting with the beam, 
Nk. The power dissipated due to collisions differs from 
the total wave energy only by a factor v, i.e., in dimen- 
sionless units 

In the stationary state this quantity is equal to the power 
which the beam loses. The latter, on the other hand, 
equals, apart from a numerical factor, y ~ k .  Therefore 

We note that when y >> v the spectral density of the I 
waves in the resonance region turns out to be small 
compared to their  average spectral density N '/ I fo I .  It 
is clear from Eq. (18) that the efficiency of plasma 
heating increases with increasing magnetic field. When 
/3 >> 1 the power is proportional to the first  power of the 
field strength, and for /3 << 1 to the fourth power. To 
show how the power depends on the other parameters 
we rewrite Eq. (18) in variables with dimensions: 

For  a comparison we remind ourselves that when there 
is no magnetic field the expression for P has the fol- 
lowing form (see Ref. 5): 

y mc' P-P.===vnT--- I < - < -  
cope m mc' ' v T '  

The criterion for the applicability of Eq. (19) is given 
by inequalities (9). Substituting into these the exact ex- 
pression for I fo I (see (17)) we get 

r mc' OH. 
(I+!)'< T(l+fi) <p2u2, a = -- 

3T UP. 

We note that according to condition (2) a>> 1. The left- 
hand inequality (20) means that P>> P,. If i t  i s  not sat- 
isfied the heating power will be  close to P,, and the 
correction connected with the magnetic field will be  
small. If, however, the right-hand inequality i s  vio- 
lated, the width of the spectrum, formally found from 
(17) turns out to b e  larger  than CY and this means that 
there occurs an energy sink a t  the point f = - a! (see 
Fig. 2). The maximum heating power, fo r  which the 
sink will already be  absent is equal to 

It is larger by a factor a! then the corresponding quan- 
tity for a plasma without a magnetic field. The inclu- 

V 
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sion of the magnetic field thus enables u s  to increase 
substantially the power of plasma heating and appre- 
ciably widens the conditions under which the energy 
given off by the beam can be absorbed due to Coulomb 
collisions without the "growth of tails. " 

4. STATIONARY SPECTRA IN THE NON- 
RESONANCE REGION 

The construction of a stationary spectrum reduces to 
finding different solutions of Eqs. (6), (7), the selection 
of stable solutions, and the joining up of them with one 
another. When applied to the non-resonance region, 
where y Cf; x) = 0, this problem possesses a well-defined 
generality a s  there is in Eqs. (6), (7) no dependence on 
the actual form of the source of the waves. It thus has 
sense to give a complete classification of the "non-reso- 
nance" spectra and we shall do this in what follows. 

It is convenient to s tar t  the classification, starting 
by considering the frequency range 

in which the dispersion law (10) is close to a power-law 
one3): 

Direct evaluation of I', and I', shows that the solution 
(23), (24) is stable only when ZCf) 3 1, i. e., in the re- 
gion 

4.2. Jets of I and t waves polarized across the magnetic 
field 

The spectral functions of the waves a r e  determined 
by the conditions I?, V ;  0) = I',Cf; 0) = 0 and have the fol- 
lowing form: 

Here k2(f; 0) i s  evaluated from Eq. (10) in which we 
must put x =  0. The constants of integration A and B 
a r e  determined from the condition that the solution (26) 
must join up with the jet (23) a t  i ts  lowest limit. In the 
point of joining wi = 0 and dwi/df 3 0. This last  condi- 
tion is equivalent to the inequality Z Q 1 which is the 
opposite of (25). Hence it follows that joining up is pos- 
sible only when Z =  1. Using this fact and the continuity 
of the spectral functions we have 

Such a relation between k and f gives a self-similar 
spectrum a s  the quantities I', and I', (see (11)) turn out 
to be invariant under a replacement off by cf, n' by 
c2n', where c is an arbitrary constant. In the self- 
similarity region I', is, a s  function of x, a polynomial 
which has no more than two maxima in the interval 
0 c x  1. Hence it follows that the number of I jets in 
the non-degenerate spectrum is also not more than two 
(we a r e  dealing here with the range 0 S x  Q 1). A simple 
sorting out of all possible variants of the arrangement 
of I and t jets shows that the total number of different 
solutions which can make up a self-similar spectrum is 
equal to six. Two of them a r e  single-jet, three two- 
jet, and one solution is degenerate. We consider now 
each of these solutions separately and analyze the con- 
ditions of their joining up. 

4.1 Jet of I waves moving across the field 

This solution is noteworthy a s  it i s  realized near the 
lower limit of the spectrum fo. Here there a r e  no t 
waves, i. e., w:= wf = 0 and i t  is convenient to write 
the spectral function of the 1 waves in the following form: 

Using the self-similarity of the spectrum we introduced 
instead of the intensity of the jet the function Z(n which 
does not change under a similarity transformation. We 
shall make similar substitutions also in the other cases. 
The function ZCf) is determined from the equation 
I',(f; 0) = 0 and the boundary condition ZCf,,) = "s' 

The solution which we have found is stable in the whole 
of the non-resonance region up to i ts  upper limit. 

4.3. Jets of oblique I waves 

In this spectrum 

We obtain the equations for the functions Z V )  and q v )  
directly from the conditions (6) and (7): 

Here 
D ( q )  = 8 ( l - q ) z - ( 3 q z - 2 ~ + 1 ) ' .  

The s e t  (28) and (29) allows u s  to express the quantities 
I', and I?, and with them the requirement for the stabil- 
ity of the spectrum in t e rms  of Z and q. Finally, the 
criterions for stability reduce to the following two in- 
equalities: 

Equations (28) and (29) can only be  integrated numer- 
ically. The results a r e  given in Fig. 3. The solutions 
for  which ZI ,., 2 1 a r e  extensions of the spectrum con- 
sidered in Sec. 4.1. The other solutions.can for  small 
values off be  joined to the spectrum of Sec. 4.5 (see 
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FIG. 3. Integral curves of 
the set (28), (29). The ar- 
rows indicate the direction 
of change of Z and q when 
the frequency increases. 
The instability zone of the 
spectrum (27) is hatched. 
The solutions for which 
Z I ,,, < 1 are shown in the 
insert of Fig. 4 .  

'below). When the frequency increases all curves reach 
the limit of the stability region and after that the nature 
of the solution changes. 

The family of curves in Fig. 3 is bounded on the right 
by the solution going through the singular point (q = qd  
~ 0 . 6 5 5 ,  Z=Zd=1.060). Inthatpoint D(q)=O. Atthe 
same time the right-hand sides of Eqs. (28), (29) also 
vanish. As f - 0 the singular solution has a simple 
asymptotic behavior: 

which shows that the jet reaches the longitudinal direc- 
tion. In fact, q becomes unity not when f = 0, but for 
a small positive value of f which is connected with the 
fact that the exact dispersion law (10) differs from the 
power law (22). Using Eq. (10) one can show that 

When f = 0.909/(81 fo I )  this solution changes to the spec- 
trum consisting of 1 and t waves, polarized along the 
field. This can be found easily from the relations 
r , (  f ;  1) = I?,( f ;  1) = 0. It turns out to be stable and can 
be continued up to the resonance region of frequencies. 

4.4. Jets of oblique I waves and / waves moving across 
the magnetic field 

In.this case 

In the region of the self -similarity the equations r , ( f ;  0) 
= 0, I?,( f ;  6) = 0,. ar , ( f ;  6 ) / a q =  0 can easily be inte- 
grated and give the following relations: 

30-1 1 A Zq(1-q) B 
---=- 

Z 
1, z 2, j"' I 

The constants A, B and C a re  determined from the 
condition that the solution (31) should at  its lower limit 
be joined to the jet (27). 4 '  

The requirement that the function Zo be positive 
leads to the following limit on the quantities Z and q in 
the point of joining: 

Comparison of this inequality with (30) shows that join- 
ing is possible when + s 17 s q d  at the limit of stability 
of the jet (27) and when q>%. In the latter case (31) 
joins up with the jet going through the singular point. 
We note that the value of the quantity q in the point of 
joining uniquely (apart from similarity) determines the 
form of the solution (31). 

The condition of stability of the spectrum (31) re-  
duces to the inequality 

The limit of the stability region in the Z, q plane i s  
shown in Fig. 4 by the line c e .  In the same figure we 
show typical integral curves Z(q). When the curve 
reaches the stability limit the spectrum (31) changes 
into the degenerate one (see below). 

4.5. Jets of oblique I and t waves polarized across the 
magnetic field 

It is convenient to write the spectral functions ntf;  x )  
and wi(  f )  in the following form: 

The quantities ~ ( f  ), q( f ), and u( f )  a r e  determined by 
the equations r , ( f ; O ) = ~ ,  r , ( f ; G ) = ~ ,  and a r , ( f ; G ) /  
av = 0, which leads to the following set: 

FIG. 4.  Integral curves Z(q) and boundaries of the stability 
regions of the self-similar solutions of Secs. 4 . 3  to 4 . 5 .  In 
the region lying above the line abed the solution has the form 
of Sec. 4 .3 ;  in the region Oabc that of Sec. 4 . 4 ,  and in the re- 
gion cde that of Sec. 4 .5 .  The direction of the arrows corre- 
sponds to increasing frequency. In the insert with a larger 
scale we show the vicinity of the line ab. 
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-- -2u+ 
a l n  l f l  4 ~ ( i + q )  ( 1 - q ~  

(36) 

Here A is integration constant. 

The condition of stability for  the spectrum (35) is giv- 
en by the inequality 

The limit of the stability region is shown in Fig. 4 (line 
Oc). We have also drawn the sections of the integral 
curves ~ ( q )  which have a physical meaning. They all 
lie within the tetragon Oabc. If the integral curve starts 
on the side bc the solution (35) joins a t  i ts  lower limit 
to the jet (27). Z and q a re  then continuous, and u"= 0. 
The condition that the quantity u is positive (dumi/df 2 0) 
gives for Z and q in the point of joining the inequality 

which in conjunction with (30) shows that joining is pos- 
sible only a t  the limit of stability of the jet (27) when 
q" 5. If, however, the curve Z(q) starts on the side 
Oa, the solution (35) i s  a continuation of (23) and to each 
value Z(0) there corresponds a single (apart from simi- 
larity) solution of the set  (36). All these solutions lie 
in the region q<<1 which enables us to integrate the set  
(36) analytically. It turns out that for 0.893 Z(0) s 1 
the intensity of the t waves vanishes with increasing f re-  
quency and the spectrum becomes a single jet one. The 
values of q and Z in the points where the t jet termi- 
nates cover the line 

(line ab in Fig. 4). The point b has the coordinates 
qa= 0.013, Zb= 0.785. 

We note finally that a s  in the case 4.4 when the curve 
Z(q) reaches the stability limit this corresponds to a 
transition of the jet spectrum to the degenerate one (see 
below). 

4.6. Degenerate spectrum 

. In that case there a r e  only integral restrictions on 
the spectral functions: 

(the functions F,, F,, F,, and F4 are  given by Eq. (12)). 

We note that the degenerate solution conserves essen- 
tially the positive quantity 3F3 + F4, and i t  can therefore 
certainly not be extended to the point f o  where 
3F3 + F4 = 0. At i t s  lowest limit which we denote by f, 
the spectrum (37) must thus join to one of the jet solu- 
tions. A comparison of the condition that the spectral 
functions a r e  positive to the right of the point of joining 
(f = f, + 0) with the condition for  the stability of the jet 
spectrum shows that joining i s  possible either with the 
solution (27) when q(f,) 9 q, 2qe = 0.831 o r  with the so- 

lutions (31) and (35) a t  the limit of their stability. In 
principle the degenerate spectrum can be continued from 
the point of joining to the side of high frequencies up to 
the resonance region. It is merely necessary that the 
relations between the quantities F,, F,, F,, and F4 do 
not violate the requirement that the spectral functions 
must be positive. Simple estimates enable us  to estab- 
lish that for this the value of the quantity q, must not be 
too close to zer  o r  unity (q, >> pi + B-"~)/ 1 f O  I ; 1 - 5* 
>> (1 + /3)/B2 f :). We shall not consider here the situa- 
tion when one of these conditions is violated a s  i t  is a 
priori clear that then the shape of the spectrum is close 
to the one found in the limit q* = 0 o r  q, = 1. 

In conclusion we give a list of all possible variants of 
constructing a stationary spectrum from the solutions 
described in sections 4.1 to  4.6. The family of spectra 
i s  characterized by two parameters for which i t  is con- 
venient to choose fo and 77,. The spectrum can be con- 
structed in the seven following ways: 

Each solution in this list is denoted by the number of 
the appropriate section. The symbol R denotes the so- 
lution in the resonance region and the symbol L the two 
jet solution consisting of Z and t waves polarized along 
the magnetic field (see Sec. 4.3). The arrows indicate 
how the type of the solution changes when the frequency 
increases. The variants a r e  numbered in order of in- 
creasing parameter q, . 

5. RESONANCE REGION. EVALUATION OF THE 
HEATING POWER 

The distribution of the waves in the resonance range 
of frequencies depends significantly on the actual form 
of the source. Below we assume that the oscillations 
a r e  driven by two identical counterstreaming relativistic 
electron beams each of which has a small angular 
spread A8 << 1. In that case the growth ra te  y( f ;  x) is 
in the region x >  0 non-vanishing in the vicinity of the 
line xk( f ;  x) = 1 and for  each fixed value off has a sharp 
maximum in x (see Ref. 11). 5' If we denote the position 
of the maximum by xo(f) we may with good accuracy 
assume that x, k ( f ;  x,) = 1. In the maximum the growth 
rate i s  given by the following formula6): 

Here n' i s  the beam density, Z the energy of the relativ- 
istic electrons and A@ their angular spread. 

To construct the resonance spectrum we need to carry 
out a procedure analogous to the one given in Sec. 4 
with the sole difference that we must include the growth 
rate y(f;x) in the equations. After that i t  i s  necessary 
to join the solution found to the non-resonance spec- 
trum. The corresponding calculations a r e  simple in 
principle but rather cumbersome. They show that ioin- 
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FIG. 5. The dependence of 
the heating power on the 
magnetic field (see Eq. (39)) 

10 p s l 2 n n ~ / ~  2. 

ing is possible only when the non-resonance spectrum 
consists of the solutions 4.1, 4.3, 4.4, and 4.6, i. e. , 
when it refers to number 5) of the scheme (38). The 
spectrum obtained is described in detail in Ref. 12. 
Its most important feature i s  that the number of I waves 
in it  i s  larger than in the analogous spectrum in a plas- 
ma without a magnetic field. This, naturally, leads to 
an increase in the power transferred from the beam per 
unit plasma volume. The result of the calculations of 
the power turns out to be the following7': 

(the function Q(B) is shown in Fig. 5). The first term 
in Eq. (39) i s  the same a s  the heating power when there 
i s  no magnetic field (see Ref. 5), and the second one 
describes the increase in dissipation caused by including 
the field. Its dependence of the beam and plasma pa- 
rameters corresponds completely to the estimates given 
in Sec. 3. 

l ) ~ o r  the suppression of the electromagnetic waves it is  suf- 
ficient that the density of the plasma through which the beam 
passes be somewhat below the density of the neighboring 

plasma. The required drop in density &n/n is a s  to order of 
magnitude equal to T/mc2, 

2 ) ~ s i n g  the fact that the spectral functions are  even, we take 
the interval in which the variable x changes to  be the section 
(0, l ) .  

 he lower limit of the spectrum considered f o  lies just in 
this region (see (9)). 

4 ) ~ t  is impossible to join (31) with other solutions at the lower 
limit. 

 he function k ( f ;  x )  is given by Eq. (10). 
 ere and in what follows we use variables with dimensions, 
')TO avoid confusion we point out that Eq. (39) was obtained 

for the case where the instability growth rate was well above 
the collision frequency. The number standing under the log- 
arithm sign is  thus appreciably larger than unity. 
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