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Instability of coherent propagation of light pulses in 
resonantly absorbing media 

L. A. ~ol ' shov ,  V. V. ~ikhansk;, and A. P. Napartovich 

(Submitted November 12, 1976) 
Zh. Ekp. Teor. Fiz. 72, 1769-1774 (May 1977) 

We show that the standard form of 2~ pulses (short and relatively powerful light pulses propagating in 
resonantly absorbing media without loss) is unstable with respect to transverse perturbations. A transverse 
structure develops when the pulse traversn a distance of the order of its length L in the medium. The 
characteristic scale length of the transverse structure arising is -(AL)'I2, where A is the wavelength of the 
light. 

PACS numbers: 42.10.Mg 

1. McCall and ~ahnl ' ]  showed experimentally and 
theoretically that a short light pulse with a sufficiently 
large energy can propagate in a resonantly absorbing 
medium without loss and retaining its shape (2n pulse). 
Subsequently this effect has been widely studied both 
theoretically and experimentally (see, for instance, the 
surveys by ~olu6ktov et al.C2]). Theoretically one 
usually considers the propagation of one-dimensional 
pulses which extend to infinity in the transverse direc- 
tion. The evolution of the transverse structure of a 2n 
pulse connected with its transverse dimension being 
finite has been studied numerically (see, e. g. , C2-41). In 
particular it was noted inC3s41 that a 2r pulse has a ten- 
dency for self -focusing. The problem of the evolution 
of a three-dimensional coherent light pulse is compli- 
cated for a complete analytical study. However, one 

neglecting inhomogeneous broadening. In that case the 
reduced equations for the field E, the polarization P of 
the particles in the medium, and the difference n in the 
populations of the lower and upper levels have the form 

(la) 

Here 

E=E,  cos (ot-kx) +E, sin (ot-kx), 

P=P, sin (at-kx)+P, cos (of-kx), 

can obtain a number of important conclusions by study- 
11 i s  the non-resonance refractive index, N the number 

ing the stability of a one-dimensional 277 pulse with re- of resonant particles, and the transition dipole mo- 
spect to transverse perturbations. The present paper ment. We assume that the light frequency i s  the same 
is  devoted to the solution of that problem. 

as  the resonance frequency of the medium. Equations 
2. To simplify the exposition we restrict ourselves (1) have a well known stationary solutionci1 in the form 

to the two-level model of a medium without degeneracy, of a one-dimensional soliton (2r pulse): 
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2h ( t - x i u )  
E,=E, = --sech- , &=O, 

t~ 'P  

where t, is the length of the pulse and v its velocity 
given by the expression 

The high-frequency loading (a cos(wt - kx)) describes 
photons which a re  emitted a t  the trailing front of the 
pulse and which propagate with a velocity w/k= c/q> v 
in the medium, overtaking the pulse and being absorbed 
a t  the leading front. We note that a s  the field amplitude 
E, increases, the length of the pulse (2) decreases and, 
hence, i t s  velocity increases according to (3). 

Let us f i rs t  of all study qualitatively what occurs 
when a one-dimensional 277 pulse i s  perturbed trans- 
versely. Let the surface of constant phase in the trail-  
ing part of the 277 pulse be modulated in the transverse 
direction with a period I , =  2n/n. In that case, a s  in the 
case when a plane wave passes through a phase diffrac- 
tion lattice, apart  from the main wave there appear two 
oblique diffraction waves a t  an angle n/k to the direc- 
tion of propagation of the 28 pulse. The interference 
of these waves with the main wave leads to a modulation 
of the amplitude of the field with the same period I ,  in 
the transverse direction. We noted above that this 
means that parts where the field becomes larger over- 
take parts of the pulse with smaller field values. If 
this is taken into account the curvature of the wave 
front is amplified and this leads to a growth in the ob- 
lique waves, and so on. In order that the mechanism of 
the instability described here is realized i t  is neces- 
sary that the inequality I ,>  Ln/k, i. e., I ,>  (xL)"' 
(L = vt,, X the wavelength of the radiation) is satisfied. 
In the opposite case the "oblique" photons emitted at the 
trailing front go through several maldma and minima 
of the field amplitude before being absorbed a t  the 
leading front and the feedback through the effect of the 
amplitude on the pulse speed will be made difficult. 

There may ar ise  a problem about the connection be- 
tween the mechanism of the instability described above 
and the mechanism for  the self-focussing of intense 
radiation in non-linear media, f i rs t  suggested by Aska- 
ryan. C51 The well known self-focussing effect is caused 
by the non-linear refraction of the radiation when the 
radiation is confined to regions with a large refractive 
index. This occurs in media in which the refractive 
index increases with increasing light intensity. Self- 
focussing (a purely geometrical optics effect) i s  sta- 
bilized by the diffraction of the light when the radiation 
is constricted to sufficiently small transverse dimen- 
sions. In the case of the coherent interaction of the 
light with the medium considered in the present paper 
the situation is exactly the opposite. The effective re -  
fractive index (the ratio of the light velocity to the 
propagation velocity of the pulse) decreases with in- 
creasing intensity and diffraction causes instability. 
This is connected with the specific coherent interaction. 
Indeed, for  a qualitative explanation of the instability 
of 2n pulses we used an analogy with a phase diffraction 

lattice. We emphasize that to f i rs t  order in the phase 
perturbation the light intensity after passing through 
the phase lattice is unchanged. The specific feature af 
the coherent interaction consists in that the medium 
affects the field amplitude and not i t s  intensity. The 
non-uniformity of the amplitude in the transverse di- 
rection which ar ises  in f i rs t  order also leads to in- 
stability. In its outward appearance-the development 
into filaments-this instability reminds us of the self - 
focussing instability of solitons in dispersive mediac6] 
o r  of plane waves in non-linear media (the f i rs t  results 
in that field a r e  due to Bespalov and ~alanov"]). 

3. We proceed to an exact analysis of the stability of 
the set  (1) with respect to transverse perturbations, 
choosing them to be proportional to cos(x r,). Linear- 
izing the material Eqs. (lb) near the stationary solu- 
tion (2) we have 

Here Po= p2 titi- '  8 ~ ~ / 8 t ,  no= t i  E;' 8'I3,/8t2, EO i s  giv- 
en by Eq. (2), and the tilde indicates the perturbations 
of the quantities P,, P,, El, E,, and n. The equations 
for the field have the form 

Here w =  I x I . For  what follows it  is useful to change 
to the "proper" time of the pulse, i. e., to a system af 
coordinates moving with the 2n pulse a s  all coefficients 
in Eqs. (4), (5) depend only on the quantity T = (t -x/v)/t,. 
Equations (4), (5) take a simpler form in the dimension- 
l e ss  variables: 

a&, ae,  ae,  ae, + qzez=nl, - - r-- - q2el=-RZ, 
a z  ae a? a~ 

anl an, az 
-= eJi+e,n,, -=- elno, -=- eon,-elno. ar a T a% 

Here 

As the coefficients in the se t  of Eqs. (6) i s  independent 
of 5 i t s  solutions a r e  proportional to eY'. It i s  possible 
by using the properties of the stationary solution to re-  
duce the set  of five ordinary equations to a se t  of two 
ordinary second-order differential equations for the 
quantities 
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namely: 

The standard substitution u = cp eYT 12, w = $ eYTl2 leads to 
the set of equations 

which differs from (7) in that the left-hand side of both 
equations is a self -adjoint operator. Our problems con- 
s is ts  in determining the eigenvalue spectrum y(q) (dis- 
persion curves) and the corresponding eigenfunctions 
satisfying the vanishing boundary conditions a s  T- *m. 

We note that the se t  (8) for  q = 0 splits into two identical 
Schradinger equations with a potential no = 1 - 2 sech2r. 
The eigenvalues of the energy in such a potential - y2/4 

0, which corresponds to neutral stability of the 27 
pulse with respect to longitudinal perturbations. The 
eigen€u?ctions corresponding to y = 0, cp, = $, = sechr 
(i. e . ,  El a d ~ d d ~ ,  Z2a E,,) correspond to small shifts 
in the initial position of the envelope and a small phase 
shift of the high-frequency loading of the 2 r  pulse. 

The fact just noted enables u s  to use perturbation 
theory to find y(q) when y << 1 (or in terms of quantities 
with dimensions I,= 27r/x >> (xL)"~). The unperturbed 
state is two-fold degenerate (cp= pa, $ = 0 and cp = 0, 
$ = $,). The solution of the corresponding secular equa- 
tion has the form 

We thus found that the 2 r  pulse is unstable with re-  
spect to transverse perturbations. The growth rate is 
then the larger the smaller the wavelength of the per - 
turbation 1,. Changing to variables with dimensions we 
get (El,,, ?,,, a erx) 

The field then has the form 

E=E,(t-x/u+atpe'"cos (xr,)) cos ( a t - k x )  

+E, ( t -x lu)  ( ' / , ) '"aerxcos  (xr,) sin ( o t - k x )  ; (11) 

here a<< 1 is the initial amplitude of the perturbation. 

It follows from (10) that when n- (XL)-'I2 the trans- 
verse structure of the 2 r  pulse develops over distances 
of the order of i t s  length in the medium L = vt,. The 
growth rate of the transverse instability reaches i t s  

maximum value a t  the boundary of the region of applica- 
bility of perturbation theory, q - 1. The problem ar ises  
of the stability of transverse modes with finer scale 
lengths. We note that Eqs. ( la)  and (5) a r e  applicable 
for  n<<k, i.e., q2<<kL.  As kL>>l ,  the equations 
studied a r e  applicable also when q >> 1. It is more con- 
venient f a r  a study of the function y(q) to use in that 
case Eqs. (7). From the asymptotic behavior of their 
solutions a s  r - f c ~  i t  follows that when q >> 1 the eigen- 
value y can be written in the form y = iq2 + yi where y, 
is a number of order of magnitude unity. In the limit 
of large wavenumbers of the perturbations we can re-  
duce the order d the set  of Eqs. (7) by splitting off one 
of the solutions corresponding to the fast  oscillations 
of u and w. This can be done formally by isolating in 
(7) the operator 

and reducing the set  of the two Eqs. (7) to a single equa- 
tion 

In the limit a s  q - c ~  Eq. (12) reduces to an equation 
without parameters: 

It was not possible to find the eigenvalues y, of Eq. (13), 
but one can show that Re y, = 0. To prove this we multi- 
ply (13) by u* and add it  to the complex conjugate ex- 
pression and integrate the equation obtained over the 
infinite range of values. After simple transformations 
we get 

- 
(Re 7,) lu l l 'd~=O.  

As u* 0 because of the boundary conditions, a non- 
trivial solution of (13) corresponds to an eigenvalue with 
Re y, = 0. We have thereby shown that Re y, - 0 a s  
q - m. As in the initial problem (7) there a re  no other 
parameters than q, it is clear that Re y i s  maximal 
when q - 1 and then we have a s  to order of magnitude 
Rey-1 ( ~ e r = L " ) .  

The results obtained agree with the qualitative con- 
siderations given by u s  a t  the beginning of the paper. 

4. We have thus shown that the transverse structure 
of a 2 r  pulse develops roughly during the same time a s  
the one over which the 2 r  pulse is itself formed. The 
change in the transverse structure can then also be 
large provided a sufficiently wide pulse of radius 
1,>> (AL)"~ is incident upon the medium. A study of the 
non-linear stage of the evolution of the instability con- 
sidered is of great interest. Here, the problem re -  
mains unsolved of the existence of a stable three-di- 
mensional 2 n  pulse which, a s  one may expect, has a 
radius - (kL)'I2. At the present moment this problem 
is studied numerically. 
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We note in conclusion that taking the inhomogeneous 
broadening into account can be done trivially in the 
linear theory of the stability of a 2* pulse; the answer 
is also given by Eq. (10). 

The authors a r e  grateful to A. M. Dykhne for  usefuI 
discussions. 

Note added in proof (March 31, 1977). Recently a 
paper by Gibbs e t  al. has been published ( ~ h y s .  Rev. 
Lett. 37, 1743 (1976)) in which the observation of the 
instability predicted by us was reported for  the case 
where a resonant light pulse traversed a cell with so- 
dium vapor. 
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Undisplaced resonant scattering line of a strong 
quasimonochromatic field 

A. M. Shaiagin 
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The change in the shape of a narrow undisplaced resonant-scattering line of a strong quasimonochromatic 
field is investigated. At low field intensity it is known that the fine duplicates the spectrum of the exciting 
radiation. The change in the shape and width of a narrow undisplaced line depends essentially on the 
statistical field of the exciting-radiation field. The dependence of the line width on the field intensity is 
investigated for typical radiation statistics. The physical phenomenon in question can, in particularly, 
serve as the basis of an investigation of the statistical properties of an electromagnetic field. 

PACS numbers: 4 1.90. + e 

In view of the progress made in the development of 
tunable lasers,  interest has greatly increased of late in 
investigation of resonant scattering (resonant fluores- 
cence) of a strong laser  field. In the last few years 
many theoretical papersc1'i21 '' have been devoted to the 
analysis of the spectrum of resonant scattering of in- 
tense laser  radiation. The results of the f i rs t  experi- 
mental investigations in this direction have also been 
published. ['3-191 The physical concepts developed 
inc'-'21 a r e  based on simplified models, and i t  is there- 
fore obvious that many more advances will be made in 
the nearest future in the study of the spectrum of reso- 
nant scattering, both theoretical and experimental. 

ting of the atomic levels into quasi-energy levels under 
the influence of a strong field. ["I The analysis in[lB1 
pertained to scattering by atoms in excited states. In 
the "classical" formulation of the resonant-scattering 
problem one of the combining states is assumed to be 
the ground state. [201 Of course, in view of the funda- 
mental character of the physical cause (level splitting), 
the multiplet structure of the spectrum (three compo- 
nents) and the position of the components on the frequen 
cy scale a r e  valid also for the classical formulation. 
However, the participation of the ground state leads 
to a redistribution of the intensity between the compo- 
nents and to the development of a more complicated 
structure within the individual components, this being 
connected with the singularities of the relaxation pro- 

The first  theoretical analysis of the spectrum of the cesses under the given conditions. The problem of res-  
resonant scattering of a strong monochromatic field onant scattering in which the ground state participates 
(analysis of the variation of the spectral density of spon- is therefore of independent interest. 
taneous emission in the presence of a strong field) was 
carried out by Rautian and Sobel'man. [i81 They have The question of the spectrum of resonant scatter- 
shown, in particular, that the resonant-scattering line ing of a strong field in the classical formulation (the 
splits into three components, corresponding to the split- only one dealt with henceforth) was first  raised by 
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