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The time evolution of certain equidistant multilevel systems in a resonant monochromatic field is 
investigated. For a system having a constant dipole moment of the successive transitions it is shown that 
unlimited excitation takes place and the mean value increases in proportion to the time. The threshold 
characteristics of the passage of the system through a given level are investigated. For a system with a 
transition dipole moment that decreases like ( n  + I ) - " ~  it is found that the quasienergy spectrum is 
discrete and escape to infinity does not occur. Interesting features are also observed in the excitation of 
systems in which the dipole moment of the lowest transition differs from the dipole moment of the 
subsequent transitions. Analytic solutions are obtained for all of the cases under consideration. 

PACS numbers: 42.50. +q 

1. INTRODUCTION 

The phenomenon of the collisionless dissociation of 
polyatomic molecules in the intense field of radiation 
from a pulsed CO, laser was discovered in 1973. cl*el 

The subsequent discovery of isotopically selective dis- 
sociationL3**' revealed the practical importance of the 
effect. These experiments stimulated theoretical in- 
v e ~ t i ~ a t i o n s ~ ~ " ~ ~  of the interaction of polyatomic mole- 
cules with a quasiresonant field. 

One of the fundamental questions in the theory of this 
phenomenon is, by what manner can a polyatomic mole- 
cule in principle be excited to the dissociation limit? 
At the present time the point of view which has already 
been expressed in Refs. 13 and 1 is generally accepted. 
It i s  noted that the excited vibrational states of poly- 
atomic molecules have a high density (see, for example, 
Ref. 14) which i s  due to the superposition of levels be- 
longing to different vibrational modes, the presence of 
composite vibrations, and also a splitting of degenerate 
levels due to the Coriolis interaction. Therefore, start- 
ing at a certain energy which i s  different for different 
molecules, resonant cascade transitions from a given 
vibrational-rotational level right up to the dissociation 
limit are  possible within the limits of the width of the 
laser spectrum. Apparently the dipole moments of such 
transitions should beC5p7*9*101 much smaller than typical 
dipole moments for allowed transitions. But the com- 
plete forbiddenness, which exists in the harmonic ap- 
proximation, may in principle be removed due to the 
interaction between the different vibrational modes. 

It is  natural to assume that the quasiresonant se- 
quences of transitions make the largest contribution to 
the excitation of the quasicontinuum of high vibrational 

sideration differ with regard to the dependence of the 
dipole moment of the transitions on the quantum number 
of the transition. The form of this dependence for tran- 
sitions between highly excited vibrational-rotational 
levels of a polyatomic molecule i s  not clear beforehand. 

Although the approach developed here i s  simple, it 
reveals a number of interesting qualitative effects and 
quantitative relationships which are also of independent 
theoretical value. 

The formulation of the problem and certain general 
properties of the solutions a re  formulated in Sec. 2. 
The dependence of the transition dipole moment p,,l,, 
on the transition quantum number n i s  concretely spelled 
out in the following sections. One of these depen- 
dence~-p,_~,,  = pfi, that is, the harmonic oscillator- 
is  well investigated. 

The exact solution i s  well known for the harmonic os- 
cillator in an arbitrary variable field. The probabili- 
ties for occupation of the levels of an oscillator that i s  
in the ground state at t =0, are  given by a Poisson dis- 
tribution: 

nn 
W ,  = - exp (-fi) . 

n! (1.1) 

In the special case of a field of the form C ( t )  cosSlt, 
where the field frequency SZ coincides with the oscillator 
frequency, the mean value increases without limit with 
time according to the law 

levels of polyatomic &olecules.  heref fire, an investi- 
We note that the oscillator's escape to infinity, which gation of the interaction of various multilevel systems 
has a clear physical meaning, i s  also understandable 

with a quasiresonant field is of practical interest. within the framework of the quasienergetic ap- 
In the present article exact results are obtained con- proach. c15*1s1 If the field is at kxactly resonance with 

cerning the coherent excitation of certain equidistant the oscillator, the quasienergy spectrum i s  continuous 
multilevel systems consisting of nondegenerate levels, and an analogy exists with the escape to infinity of sta- 
the field being exactly resonant for successive transi- tionary quantum systems having a continuous spec- 
tions between these levels. The systems under con- trum. 'I7' 
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The excitation of an infinite system having a constant 
dipole moment (p,-,,, = p) for all successive transitions 
i s  considered in Sec. 3. Just a s  for the harmonic os- 
cillator, in this case the quasienergy spectrum is con- 
tinuous and escape of the system to infinity takes place. 
But in contrast to the harmonic oscillator, the mean val- 
ue increases according to the law 

The case when the dipole moment decreases like 
pnml,, = p/(n +I)"' i s  investigated in Sec. 4. This case 
has a qualitative difference from the preceding cases. 
Here the quasienergy spectrum i s  discrete and there 
is no escape to infinity. Thus, to some extent the re- 
duction of the dipole moment i s  analogous to an increas- 
ing potential for stationary quantum systems. 

Systems in which the dipole moments for certain 
transitions differ markedly from the characteristic di- 
pole moment of the remaining transitions a re  also of 
interest. The case of an infinite system for which 
p ,-,, , = p = const for n > 1 and h1 # p is investigated in 
Sec. 5. The most interesting effect, arising here for 
hl >> p, i s  that if the system i s  in the ground state at 
the moment of time t =0, it subsequently remains in the 
two lowest states, with a probability close to unity. 

A system with p,,, >> p is a particular case of a more 
general class of multilevel systems consisting of "fast" 
and "slow" subsystems, whose investigation is impor- 
tant in regard to understanding the mechanism for the 
excitation of polyatomic molecules. C5s9s101 Certain qual- 
itative aspects of the kinetics of the excitation of such 
systems are  discussed in Sec. 6. 

2. FORMULATION OF THE PROBLEM. SOME 
GENERAL PROPERTIES OF THE SOLUTIONS 

Let us assume that the wave function of a system 
situated in a field g(t )  c o a t  is at any instant of time a 
superposition of stationary wave functions of the equi- 
distant levels, the field being exactly resonant for suc- 
cessive transitions between these levels. The standard 
procedurec1T1 for the substitution of a general expres- 
sion for the wave function into the time-dependent 
Schradinger equation and averaging over the high-fre- 
quency terms leads to the following system of equations 
for the amplitudes a,(t): 

Here y,,,,, = p,,,l,ng/2Fi; denotes the dipole moment 
operator; for the sake of definiteness it is assumed that 
y,-,,, = yn,,-, > 0. In addition, we shall assume later for 
simplicity that the amplitude of the field i s  constant. 
The corresponding changes in the solutions can be ob- 
tained by the following substitution: 

The general solution of the system (2.1) can obviously 
be written in the form 

where A and pn(A) a r e  the eigenvalues and eigenvectors 
of the following system of equations: 

The summation in formula (2.3) runs over all  eigen- 
values, and in the case of a continuous spectrum the 
summation should be replaced by an integral. 

The eigenvalues of the system (2.4) are, to within a 
sign, none other than the eigenvalues of the quasi- 
energyc15*161 in units of E, and the eigenvectors char- 
acterize the structure of the quasienergy eigenstates 
(QES). For infinite systems the spectrum X may be 
both discrete and continuous. 

The eigenvectors of the system of equations (2.4) 
with arbitrary y,_,,, possess the following important 
orthogonality property: 

z p n ( h ) p n ( L ) = O  for h + ~ ,  (2.5) 

which may be obtained directly from Eqs. (2.4) and is 
also a special case of the general orthogonality proper- 
ties of QES wave functions. C15*161 Just a s  for the time- 
independent states of quantum systems, the eigenvec- 
tors of the discrete QES spectrum can be normalized 
to unity, and those of the continuous spectrum can be 
normalized to a 6-function. It will be more convenient 
for u s  to normalize the eigenvectors such that 

and to include the renormalization in the function u(A) in 
the general solution (2.3). 

The function u(X) should be chosen such that the solu- 
tion (2.3) satisfies the initial conditions. We shall be 
interested in the initial conditions when the system i s  in 
the ground state at time t =0, that is, 

If the eigenvalues and eigenvectors are  known, it i s  no 
work to find the general form of the function u(A) by 
using the orthogonality property (2.5) and the normal- 
ization condition (2.6). The relationship for the deter- 
mination of the function u(A) has the form 

After these preliminary remarks, let us proceed to 
the investigation of specific systems. 

919 Sov. Phys. JETP 45(5), May 1977 A. A. Makarov 919 



FIG. 1. Time dependence of the probability SSO for finding 
a system with a constant dipole moment in levels with quantum 
numbers n 3 50. For comparison the dashed line denotes the 
function g(t ) determined by relation (3.6). 

3. A SYSTEM WITH Y,,,, = -y = const 

By comparing Eqs. (2.4) for this case with the re- 
currence relations for Tschebyscheff polynomials, E18' 

we find that p,(X) can be expressed in terms of poly- 
nomials of the second kind: 

In this case the spectrum of eigenvalues is  contained in 
the segment - 1 c z GI. 

The expression for a,(t) satisfying the initial condi- 
tions (2.7) is  determined by the following integral which 
reduces to a Bessel function: 

2 '  n+i 
a. ( t )  = - ( ~ - Z ' ) ' ~ U .  ( z )  exp(2iytz) dz=P -I.+, (2y t ) .  

-1 r t  

As t-.o the amplitudes a,(t) tend to zero, i. e., the 
system escapes to infinity. 

Let us investigate the properties of the system's dis- 
tribution W,(t) =a:a, over its levels. From the well 
known smooth asymptotic expansions of the Bessel func- 
tions, '"' one can conclude that at each instant of time 
for yt>> 1 the maximum of the distribution corresponds 
to levels with quantum numbers n,,,, occurring in the 
interval 

Outside of this interval the probability W,, falls off ex- 
ponentially in the region n + 1 > 2yt and oscillates in the 
region n + 1 < 2yt ,  with its mean value smoothly de- 
creasing toward the side of smaller n according to the 
law 

It is clear from what has been said that passage of 
the system through a given level has a clearly expressed 
threshold character. For k >> 1 the time for attainment 
of the k-th level is tk -k/2y. We note that a similar esti- 
mate t,,,- M/2y was made in Ref. 12 for the charac- 
teristic time associated with the establishment of a 
quasiequilibrium distribution in a finite M-level system 
with a constant dipole moment of the transitions. 

It is  convenient to characterize the passage of the 
system through a given level by the quantity 

One can obtain a rough expression for Sk(t) at an excess 
above threshold (k + 1 < 2yt) by substituting expression 
(3.4) for levels below the k-th one into (3.5) and replac- 
ing the summation by an integration. As a result we 
find that for arbitrary k the quantity Sk is the following 
universal function of the variable q = 2yt/(k + 1): 

The function g(q) falls off rapidly, reaching a value 
= 0.94 already at twofold excess above threshold. 

More accurate estimates are required near threshold. 
Starting from Eqs. (2. I), with (3.2) taken into account, 
we find the following equation for Sk(t): 

By integrating (3.7) (see Ref. 20) and making a numeri- 
cal calculation, we obtain (Fig. 1) the typical Sk(t) de- 
pendence. Above the threshold, relatively rapid oscil- 
lations are superimposed on the monotonic growth of 
the function Sk(t), but on the average the behavior of 
Sk(t) i s  well described by formula (3.6). 

The important characteristics of the system's dis- 
tribution with respect to its levels a re  the mean value, 
the root-mean-square value, and the variance. We ob- 
tain the following equation for the mean value directly 
from Eqs. (2.3): 

After integrationCeo1 we obtain the following exact ex- 
pression for iZ: 

The asymptotic form of the Bessel functions for yt>> 1 
reduces this expression to the form 

that is, ii-0. 85nmy. 

There are also no difficulties in deriving a formula 
for the root-mean-square value. After simple trans- 
formations we obtain 

because the sum of the series in Eq. (3.11) i s  well 
known. 
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TABLE I. 

The following formula for the variance of the distri- 
bution for yt >> 1 follows from formulas (3.10) and (3.11): 

From here we find that the quantity 0'12 characterizing 
the halfwidth of the distribution i s  related to ii by the 
approximate relationship 0'" - 0.2ii. Thus, for yt >> 1 
the relative width of the distribution i s  constant, in con- 
trast to the harmonic oscillator where it  decreases with 
time (formulas (1.1) and (1.2)). 

However, in summarizing the results of the present 
section we note that the excitation of an equidistant sys- 
tem having a constant dipole moment i s  subject to the 
same qualitative regularities a s  the excitation of a har- 
monic oscillator. Foremost among these regularities 
is the possibility, in principle, of unlimited excitation. 

4. A SYSTEM WITH rn-,,n =$(,I+ 1)"2 

For this case let us make a replacement of the un- 
knowns in Eqs. (2.4) according to the formula 

Combining Eqs. (4.3)-(4.5) and (2.8), after simple 
transformations we find that the solution of the initial 
system of Eqs. (2.1) satisfying the initial conditions 
(2.7) has the following form for the case under consider- 
ation: 

Since the quasienergy spectrum of the system under 
consideration i s  discrete, the amplitudes do not attenuate 
to zero with time and a re  so-called almost periodic 
functions, C221 that is, the system does not escape to in- 
finity. One can nevertheless estimate how, strongly in 
principle sufficiently high levels a r e  occupied, having 
averaged the distribution over an infinite time interval. 
Such averaging leads to the following formula: 

' i  ' 2  mzm-4-n 

V,= lim - a,'(t)a.  ( t ) d t=  -(n+ l )  ! e-"[~r-"-' ( m )  la .  
r - -  T 2 

m- l 
[ I m - I ) ! ] '  

(4.7) 

The results of a numerical calculation of the levels' 
average populations according to formula (4.7) a re  par- 
tially reflected in Tables I and 11, where the average 
level populationdistribution i s  givenfor excitation, by a 
resonant field, of an equidistant multilevel system whose 
transition dipole moment decreases according to the 
law p ,,+, = p/(n +I)"~.  In the lowest transition, in- 
version takes place on the average. This is followed 
by a monotonic decrease of the populations. This de- 
crease, however, i s  slow and the probability of the sys- 
tem being at very high levels i s  appreciable. The as- 
ymptotic behavior of V ,  has the form 

The corresponding system of equations for s, i s  given 
by 

where x = (Y/A)~.  

Equations (4.2) coincide with the special case of the 
recurrence relationsc1" for Laguerre polynomials of the 
form L;""(X), which tend to zero a s  n-.o if x i s  equal 
to a positive integer, but increase without limit in the 
opposite case. Therefore, the spectrum of the eigen- 
values X i s  discrete and i s  given by the formula 

The components of the eigenvectors which a re  expressed 
by the formula 

pnfm= ( T I ) " [  ( n + l )  I ] " ' ~ - " ' ~ L P - ~ - '  ( m ) ,  (4.4) 

represent, apart from a factor, a special case of the 
Poisson-Charlier polynomials, C211 where the normal- 
ization factors may be determined from the known prop- 
erties of these polynomials: 

The calculation also shows that the basic contribution 
to the sum in formulas (4.7) and (4.6) i s  given by terms 
with m contained within the interval 

It follows from the asymptotic behavior (4.8) of V,  
that the energy of the system increases without limit. 
The asymptotic behavior of the energy can be obtained 
from the following considerations. The averaging lead- 
ing to formula (4.7) is carried out over an infinite time 
interval. Averaging over a finite interval must also 
take into consideration averaging of the oscillating 
terms containing sum and difference frequencies of the 
form 

TABLE 11. 
I I 
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Since terms with m -n (see Eq. (4.9)) make the main 
contribution to expression (4.6) for the amplitude a,(t), 
the minimal difference frequencies essential for averag- 
ing are  of the order of y/nS". Hence the characteristic 
time t, for excitation of the n-th level may be estimated 
at 

T, (cos 8 )  =cos no, U, (cos 8) =s in (n+ l )  0/sin 0, 

and regarding 8 = x  +iy a s  a complex variable, we find 
that condition (5.4) reduces to the following system of 
equations for the determination of x and y: 

(pa-I-ezlvl) cos x-0,  (pa--l+e'lrl) sin x=O. (5.5) 

The system (5.5) has solutions only under the condition 

Now, using the asymptotic expression (4.8) for V, one 
can easily derive 

These solutions are: 

In concluding the present section we note that the time 
for excitation of the nth level for the systems under con- 
sideration, including the harmonic oscillator, may be 
expressed by the following universal formula: 

and in the plane of the variable z = cos(x +iy) their ag- 
gregate reduces to the following two eigenvalues: 

The corresponding eigenvectors may be written in the 
form 

5. A SYSTEM HAVING FOR'THE 0-1 TRANSITION 
A DIPOLE MOMENT DIFFERENT FROM THE DIPOLE 
MOMENT FOR THE SUBSEQUENT TRANSITIONS 

Once the eigenvalue spectrum and the eigenvectors of 
the system under consideration are  found, we obtain 
for the amplitudes a solution satisfying the initial con- 
ditions (2.7). 

Let us assume y,_,,, = y = const for n z 2, y,,/y = 8. 
For this case the system (2.4) takes the following form: 

1. First let us consider the case of a purely con- 
tinuous spectrum, that is, when the condition In order to find the solutions of the system of Eqs. (5.1) 

it is convenient to investigate a truncated system from 
which the first two equations a re  eliminated. Such a 
truncated system obviously has two linearly independent 
solutions, and its general solution can be represented 
in the form 

which is the reverse of condition (5.6), i s  satisifed. In 
agreement with Eq. (2.8), the function u(z), which ef- 
fects the expansion of the solution in terms of eigen- 
vectors, is sought from the relationship 

where, just a s  in Sec. 3, z = ~ / 2 y  and T,(z) and U,(z) 
are  Tschebyscheff polynomials of the first and second 
kind, respectively. Using the explicit form of the 
Tschebyscheff polynomials for n = 1, 2 and taking Eq. 
(2.6) into consideration, we obtain from the first two 
equations of the system (5.1) the following expressions 
for the constants C, and C,: 

(5.10) 

The simplest way of obtaining u(z) in explicit form i s  
to multiply both sides of (5.10) by (1 -zf)'I2 and inte- 
grate with respect to 2, in the interval - 1 a z ,  r 1. Here 
only the integral containing T,(z,) gives a nonvanishing 
term in the sum. As a result we obtain the following 
expressions for the amplitudes a,(t): 

We note that for B =  1 (the case investigated in Sec. 3) 
we have C, = O  and C, =1, that is, the solution (5.2) 
agrees with (3.1). 

Just a s  in Sec. 3, the continuous spectrum of eigen- 
values i s  contained in the segment - 1 S z  6 1. However, 
in contrast to Sec. 3, for certain values of p there a r e  
also discrete eigenvalues z which can easily be deter- 
mined from the following condition: 

(5.12) 
It i s  obvious that for j3- 1 the solution does not differ 

essentially from that derived in Sec. 3. Let 1, i. e., 
the dipole moment of the 0-1 transition i s  considerably 
smaller than the dipole moment of the following transi- 
tions. In this case the rate of the system excitation i s  
determined by the rate of attenuation of the ground-state 
amplitude. The neighborhood of the point z = O  plays a 

limp. ( z )  =O. "..- 
Bearing in mind that 
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major role in expression (5.11) for ao(t). Therefore 
we can retain only the oscillating term in the numerator 
of the integrand and extend the integration to the entire 
infinite axis. As a result we obtain 

Thus, the amplitude i s  damped exponentially without 
oscillations, a s  is typical of a two-level system having 
an upper-level width exceeding the rate of the induced 
transitions. C23p241 In the case under consideration the 
role of the width of the first excited level i s  played by 
the quantity y which characterizes its rate of decay due 
to transitions to higher levels. 

At y$ t/y<< 1 the total probability S, for excitation of 
the system increases linearly: 

It was shown in Sec. 3 that excitation of the n-th level 
has a threshold character with a time tn-n/2y. Hence 
the average population of the levels with n < 274 i s  given 
by 

At y2,, t/y > 1, the amplitudes of the states with n << 2y t  
are also attenuated together with the ground state-am- 
plitude. 

2. Let us go on to an examination of the case when 
there a re  two discrete eigenvalues together with the con- 
tinuous spectrum, i. e., when condition (5.6) i s  satis- 
fied. In this case the amplitudes a,@) a re  determined 
by the following expression: 

Here a',(t) denotes the already obtained part of the solu- 
tion which is associated with the continuous spectrum 
(formulas (5.11) and (5.12)); z(,, and p:' are  deter- 
mined by formulas (5.8) and (5.9). In accordance with 
Eq. (2.8) we obtain the following result for the coef- 
ficients u(,, of the expansion in the discrete eigenvalues: 

As t - m the &(t) part of the solution (5.16), associ- 
ated with the continuous spectrum, i s  attenuated. There 
is left the oscillating part of the solution which pre- 
dominates at p>> 1, i. e., when the dipole moment of the 
0-1 transition i s  much larger than the dipole moment 
of the subsequent transitions. In fact, the probability 
W, of finding the system in the two discrete QES i s  given 
by 

For p >> 1 we have W d =  1 -p- ' ,  i.e., the probability Wd 
is close to unity. 

The probability Wi of the system's escape to infinity, 
which i s  equal to the probability of finding the system 
in the continuous QES, i s  obviously given by 

that is, for p >> 1 we have W, I,- p-' << 1. 

The physical cause of the effect becomes clear if we 
consider the structure of the eigenvectors correspond- 
ing to the discrete QES. For  p >> 1 

Thus, the system only oscillates between the two lowest 
levels. This is associated with that well known fact that 
a resonant field in a two-level system splits each level 
into two quasienergy sublevels which differ from the 
position of the steady-state level by the amounts *yo,. 
Therefore, the transition from the QES corresponding 
to the first excited level to the next level automatically 
becomes nonresonant, and this detuning cannot be can- 
celled out because y<< yo,. 

Thus, the examples examined in the present section 
have shown that in multilevel systems an estimate of 
the rate of coherent excitation in a resonant field based 
on the minimal dipole moment of the subsequent transi- 
tions i s  not always adquate. In those cases when the di- 
pole moment of one o r  several transitions differs mark- 
edly from the characteristic dipole moment of the se- 
quence, important factors limiting the effectiveness of 
the excitation are: 

a) the broadening of a relatively weak transition by 
stronger neighboring transitions; 

b) splitting of a relatively strong transition, which 
causes the weaker neighboring transitions to deviate 
from resonance. 

6. CONCLUSION 

The results of the present work a s  applied to the ki- 
netics for excitation of the quasicontinuum of a poly- 
atomic molecule should be regarded as  a first step. 
Further elaboration of the model should take the follow- 
ing factors into consideration: 

1) the actual linewidth of the laser radiation; 

FIG. 2.  Comparison of f</ifi! f 
the probability Wi of es- 
cape to infinity for three 
multilevel systems having 
a dipole moment for the 
0-1 transition much larger 
than the dipole moment 
of the remaining transi- '- - L!QL tions: a) W i < < l  (Sec. 5); 
b) and c) W , - 1 / 2  (Refs. 
9 and 10). 

a b c 
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2) the contribution made to the process by all reso- 
nant transitions located within the limits of the laser 
line; 

3) the role of not-strictly-resonant transitions, which 
may turn out to be substantial. 

Another feasible approach is that of Ref. 8, where 
the influence of the quasicontinuum reduces to intra- 
molecular decay by an excited anharmonic vibrational 
mode. It is not clear, however, how to allow such an 
approach for the evolution of finite states of decay for 
transitions between which the f isld is also quasireso- 
nant . 

The excitation of multilevel systems that simulate 
the molecule a s  a whole, and not just its quasicon- 
tinuum, is of special interest. Such an investiga- 
tionc5*0s10' leads to systems consisting of two subsys- 
tems. The upper subsystem simulates the quasicon- 
tinuum. The lower subsystem consists of several levels 
of an excitable mode, and the dipole moment for its 
transitions is much larger than for the transitions to 
the quasicontinuurn. 

It was shown in Sec. 5 that in this case a situation is 
possible when no excitation is present even under con- 
ditions of resonance between all successive transitions. 
Excitation becomes e f f e c t i ~ e ~ ~ * ' ~ ~  if the radiation is at 
resonance with the transition between the lower level of 
the upper "slow" subsystem and the upper quasilevel of 
the lower "fast" subsystem. This situation is illus- 
trated in Fig. 2 a s  applied to the case considered in 
Sec. 5. In this connection for the decay of the ground 
state a s  t - .o with probability - 1, two upper subsys- 
tems are required. 

The author thanks V. S. Letokhov for helpful dis- 
cussions of the results of this work. 
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