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A perturbation theory for the calculation of the binding energy and the wave functions of a three-body 
system is developed for the problem of three bodies with Coulomb approximation. The zeroth 
approximation used was an adiabatic basis, i.e., solutions and terms of the two-center problem of 
quantum mechanics, and the kinetic energy of the relative motion of like charged particles is regarded as 
a perturbation. The method is illustrated with the calculation of the binding energy of the p d p  mesic 
molecule as an example. 

PACS numbers: 03.65.Ge, 36.10.Dr 

1. INTRODUCTION 

To calculate the binding energy of three particles with 
charges and masses (z,, Ma), (z,, M,) and (- 1, mu) 
several methods have been proposed and r e a l i ~ e d . ~ " ~ ~  
They were used to calculate the energies of the mesic 
molecules ppp, pdp, etc., and also that of the electron- 
positron system e*e'e'. 

In the calculation of the binding energy of the ground 
state of a three-body system, the most accurate result 
seems to be obtained by different modifications of 
variational calcuiation methods, C1p21 but on going over 
to the excited states these methods become much more 
complicated. The advantage of adiabatic calculation is 
their simplicity and lucidity, both in the case of the 
ground state and in the case of excited states. A clas- 
sical example of an adiabatic calculation is the Born- 
Oppenheimer method in the theory of molecular spec- 
tra.  c41 

It i s  knowncss4] that in the adiabatic representation of 
the three-body problem there appears a small param- 
eter (2M)", where M = Ma M,/(M, + M,)m,. The Born- 
Oppenheimer approximation consists of discarding from 
the equations for the relative motion of the nuclei all 
the terms - ( 2 ~ ) - ' .  The need for this approximation 
was dictated by insufficient knowledge of the adiabatic 
basis, i. e . ,  of the solutions of the two-center problem 
of quantum mechanics. c51 This was also one of the rea- 
sons for the loss of interest in the adiabatic method al- 

together. l )  By now these difficulties have been over - 
come to a considerable degree, 17] so that the scope of 
the Born-Oppenheimer approximation can be expanded 
and a consistent scheme can be developed for calcula- 
tions in the adiabatic basis, using the small parameter 
( 2 ~ ) " .  

We describe here a simple algorithm for the calcula- 
tion of the binding energy of a three-body system, ac- 
curate to terms - ( 2 ~ ) ' ~  inclusive. 

We recall that in the adiabatic approximation the 
wave function I \k) of a system of three bodies is ex- 
panded in the co2plete set  I @) of the eigenfunctions of 
the Hamiltonian W of the two-center problem: 

The initial Schrgdinger equation for the three-body sys- 
tem 

then goes over into an equivalent infinite system of 
homogeneous integro-differential equations for the func - 
tions ( ip l \k)c41: 

Here ?= - ( 2 ~ ) "  A, is the operator of the kinetic ener- 
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gy of the relative motion of particles Za and Z, (nuclei) 
having charges of the same polarity, R is the distance 
between them, and E i s  the total energy of the system. 
The Born-Oppenheimer approximation in this scheme 
corresponds to discarding all the off -diagonal matrix 
elements in the left-hand side of (4), which form the 
perturbation matrix that contains the small parameter 
( 2 ~ ) " .  

The perturbation-theory method proposed by Schrii- 
dingercB1 for the solution of eigenvalue problems of the 
type (3) consists in replacing the initial homogeneous 
problem 

by a system of inhomogeneous equations 

( f i l e )  - E(O)) 1y(") = (E'll _ p) I y(.-l)> + 
t - 2  

Here 

The metho_d of separating the Hermitian perturbation 
operator V is determined by considerations of conve- 
nience in the computations.c91 If the wave functions 
l*")) a re  normalized by the intermediate-normalization 
condition 

and the perturbation operator 3 is Hermitian, then the 
f ormulasflOl 

can be used to calculate the corrections to the energy 
E"~'" in terms of the corrections 9'') of order not high- 
e r  than s. 

Thus, the first-order approximation for  the wave 
function 

can be used to determine the binding energy accurate to 
terms of third-order inclusive: 

Formulas (6)-(9) a re  valid for  an arbitrary quantum 
system and in any representation of i t s  solutions. Let 
us spell them out concretely for  the case of the adiabatic 
representation of the three-body problem. 

2. ADIABATIC REPRESENTATION OF THE THREE- 
BODY PROBLEM 

The Schriidinger equation fo r  the three-particle sys- 
tem consisting of two nuclei and an electron (or p' 
meson) with respective charges and masses (ez,, Ma), 
(eZ,, M,) and (- e, mu) is given by 

Here i? i s  the complete Hamiltonian of the system in 
units e =  ti= m* = 1C""21: 

where 

and we have introduced the following notation: R i s  the 
vector joining the charges Za and 2,; r,, r,, and r a r e  
the distances from the nuclei Za and Z, and from the 
center of the segment R to the electron (meson); Em < 0 
is the total energy of the three-particle system the state 
determined by the se ts  of quantum numbers n and r; 

is the wave function of the system, normalized by the 
condition 

The adiabatic basis 

(the index m will a s  a rule be  omitted) is defined a s  the 
complete set  of the eigenfunctions of the Hamiltonian 
h, of the two-center problemc51: 

where E~(R) a r e  the terms of the two-center problem, 
and the wave functions a r e  normalized by the conditions 

For  the case E,(R) < 0, the index js jm = ( ~ l m )  of the 
representation i s  a set  of three quantum numbers, prin- 
cipal (N), orbital ( I ) ,  and magnetic (m) (in accord with 
the classification of the unified atomc5]); in the case 
E~(R)  = k2/2 > 0, the quantum numbers I and m retain 
the same meaning, but the discrete number N i s  re- 
placed a s  the index of the representation ' j l  jm = (klm) 
by the momentum k of the two-center problem. 
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The bound state 1 nr) o f  the three-body system En, < 0 
is characterized by a se t  of seven quantum numbers and 
is expanded in the adiabatic basis I j )  = I jm) a s  follows: 

The index of the state n, just a s  the index of the repre- 
sentation j, is determined by three quantum numbers 
of the two-center problem, while the index of the state 
r=  (vJMX) characterizes the relative motion of the 
nuclei (vJM) and the total parity X of the three-particle 
system. The quantum numbers J and M a r e  the eigen- 
values of the operators of the total angular momentum 
of the system 5' and i t s  projection Jz on the Z axis of 
.the immobile coordinate system, while the parity X is 
defined a s  the eigenvalue of the operator of total in- 
version of the coordinates 

P,o,Ynr(r, R) =Y,,<(-r, -R) =hYnt(r, R). (21) 

Separating the angle variables ( 8, @) of the vector R, 
we change from the expansion (2) to the 

where the summation over I and m in the case Ej(R)< 0 
extends to N - 1, and in the case of E,(R) = k2/2> 0 it 
extends to infinity. 

The functions I jmJMX) = I j m ~ ~ ( * ) )  corresponding to 
the values X = * (-)' a r e  determined by the relations 

where the D-functions a re  normalized by the condition 

The functions (jm I nvJX) = x (R) depend only on the 
radial variable R and satisfy the orthogonality conditions 

m m 

+J dk I d~~. : . . ,  (k, R))X::..(L R ) }  =6...6..-&1-6u~, 
0 0 

(24) 

which follow from relations (16), (19) and (23a). The 
vibrational quantum number v is equal to the number of 
zeros of the wave function x:; (R) on the semi-axis 
O<R<.o. 

Substitution of the expansion (22) in Eq. (12) and 
averaging over the coordinates r ,  8,  and @ with the 
functions (imJMXI leads to an infinite-dimensional sys- 
tem of homogeneous integro-differential equations for 
the radial functions :& t"*'21(~)C"*'21 (the index X will 
henceforth be omitted) 

where 

The effective potentials v f j  (R) have the following struc- 
t ~ r e [ ' ~ ] :  

where 

The terms E,(R) and the matrix elements H,,(R), 
Qrj(R), and b,,, ,,.(R) a r e  defined and calculated intT1. 

The state index n numbers the eigenvalues of the 
three-body system and determines the character of the 
motion of the meson in the two nuclei + p- meson sys- 
tem. To make its meaning clearer,  we consider the 
wave functions of the system at  fixed values of T =  (vJX). 
The aggregate of such solutions 

constitutes an infinite-dimensional matrix. In the Born- 
Oppenheimer approximation, this matrix becomes 
diagonal: 

and the system of equations (25) takes the form 

Figure 1 shows schematically the system of poten- 
tials vfj(R) and the level ei:)= E;:) - ( 2 ~ ) "  vin(-) in one 
of these potentials. It is easily seen that in this approx- 
imation the energy of the three-body system En,= E$) 
is completely determined if the quantum numbers ( j ,  J) 
(which determine the form of the potential Vij(R) 
= V &  (R)) and the vibrational quantum number v (which 
determines the number of the level in the chosen poten- 
tial) a re  given. Thus, the state index n and the repre- 
sentation index j a re  equal to each other in the Born- 
Oppenheimer approximation. When the off -diagonal po- 
tentials V$R) a re  included, this agreement is violated 
and each state I nr) of the three-body system is repre- 
sented in the form of the expansion (20) 
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In the limit a s  R - m ,  the wave functions of the two- 
center problem 

which differ only in parity, correspond to the same val- 
ue of the energy Ej,(m) = E~,(-) and to the identical sets 
j = [ni%m] of the parabolic quantum numbers. [51 At 
m = 0, the even states (g) correspond to the value 1 = 2% 
and P, = + 1, while odd states (u) correspond to values 
1 = 2 n , + 1  and P , = - 1 .  

It will be convenient in what follows to choose a s  the 
representation index j a set  of three parabolic quantum 
numbers j = [nin,m] and the value of the parity P#,,. 
Accordingly, the vector column (30) will be represented 
in the form of a pair of states 

FIG. 1 .  Schematic behavior of the effective potentials ( 2 7 )  in 
Eq. ( 2 5 ) .  The potential V!~(R)= Vig,t determines in the Born- 
Oppenheimer approximation the relative motion of the nuclei 
of the three-body system in the ground state relative to the 
electron motion (n = j = l g  = l s v , )  . The binding energy in the 
state T = (vJA) = (vO +) is equal'to ci, . 

which satisfy the system of equations 

but the identification n- j remains meaningful a s  before, 
since (as will be shown below) the contribution of the 
states I j) with j f  n to the sum (20a) amounts to - ( 2 ~ ) " ,  
i. e., 

where 

3. ADDITIONAL SYMMETRY OF THE SOLUTIONS 
IN THE CASE Z, = Z, AND TWO-LEVEL 
APPROXIMATION.IN THE THREE-BODY PROBLEM 

As R - a, when the system ZapZ, with equal charges 
Za = Z, breaks up into two subsystems pZa + Zb and 
Z, + pZ,, the motion of the electron in the state j of 
atoms pZa and WZ, respectively is represented respec- .- 

tively by the functions @fa and $I,, which a r e  connected 
with the functions @I, and @,, by the transformation 

Each three-body-system state I ~ T )  with fixed state 
indices n and T corresponds in the adiabatic approxima- 
tion to a vector-column of the functions 

which induces the transformation A on the functions 
Xjg and Xju  

which satisfy the infinite-dimensional system of equa- 
tions 

with the matrix 

where EaE,, Vij= v:~(R), x ~ = ~ ~ ~ ~ ( R ) ,  and the sum 
over j is understood, for example, in the sense of the 
definition (26). 

The functions jij satisfy the system of equations 

The representation index j, defined by the three quan- 
tum numbers (19), numbers uniquely the two-center 
basis I j) and the corresponding components of the so- 
lution vector (30). In the symmetric case of equal nu- 
clear charges Za = Z,, however, a complete classifica- 
tion of the soIutions calls for one more quantum num- 
ber ,  the parity Pg,,= (-)', which is defined a s  the eigen- 
value of the electron (@'-meson) coordinate inversion 
operator: 

where 

ulj=o,rn,. ,(-I st, &=A V,J -I, 
(40) 

e=e,.=E,,- (2M)-'U,.. ,(-I. 

~f this definition is used, the binding energy of a system 
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of three particles is reckoned from the value 
E, = (~M)"u~,, which is equal to the binding energy 
of the insulated atom pZa in the state j = n and with 
nuclear mass Ma 3 M, in the adiabatic approximation 
and coincides with the true energy Ea of the atom pZa, 
accurate to terms - ( 2 ~ ) "  inclusive. [I3] 

The explicit expressions for the matrix elements of 
the effective potentials 

in terms of the elements of the matrix Cjj take the 
form 

In practically all the calculations performed to date, 
a two-level approximation was used, i. e., the only 
terms retained in the system (39) were those with i= j 
= 1, which correspond to the pair of states i= [OOO], 
and i =[000], of the two-center problem. Accordingly, 
only the two upper components were retained in the 
column vector {x,} of the solution: 

In the next section we shall construct a calculation 
scheme that makes i t  possible to determine more pre- 
cisely the energy Em and the wave functions I n r )  of a 
system of three bodies with a consistent account of the 
discarded terms i, j #  1. The calculated formulas a r e  
particularly simple in form for the state index n = 1. 

4. PERTURBATION THEORY SCHEME IN  THE 
ADIABATIC BASIS 

We represent the matrix (40) of the potentials 6 in 
the form of a sum 

where the block matrix of the quasidiagonal approxima- 
tion is 

and the matrix of the perturbation potentials is 

When the matrix of the potentials i s  so subdivided, 
the following relation is satisfied: 

Naturally, other methods of separating the matrix u(') 
a r e  possible, equivalent to rearrangement of the per- 
turbation-theory series.  19] The system (39) now takes 
the final form (we shall henceforth omit the tilde over 
the function i )  

where 

and the summation sign is understood in the sense of 
the definition (26). The vector function and the sys- 
tem binding energy & a r e  constructed in the adiabatic 
approximation in the form of the expansions 

the successive approximations of {Xy'} being obtained 
a s  the solutions of the system of inhomogeneous equa- 
tions 

where the corrections to the energy E"' a r e  calculated 
in accordance with the formulas (s = l , 2 ,  . . . ) 

In the derivation of formulas (49) we used the_fact that 
the perturbation operator is Hermitian, 6"' = u"" , a 
property that follows from the definition (27) and the 
symmetry relations['21 

In addition, formulas (49) a r e  valid only under the as -  
sumption that the solutions xi a r e  normalized by the 
intermediate-normalization condition 

(n,nzm - discrete spectrum ' = \knzrn - continuous spectrum. 

On the other hand, if the condition (51) is not satisfied 
for  the functions {Xy'}, then i t  is necessary to substitute 
in (49) functions constructed from the solutions of the 
system (48) by means of the formulas 
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The system of inhomogeneous equations (48) together 
with relations (49), (51), and (52) constitute the scheme 
of the Schrijdinger nondegenerate perturbation theory. 

Let us examine this scheme in greater detail for  the 
important particular case n= 1, i. e., for  the calcula- 
tion of the adiabatic corrections to the energy Em of a 
three-body system in the ground state with respect to 
the quantum numbers of the electron motion. We con- 
fine ourselves here to a calculation of the energy cor- 
rections up to third order inclusive; i t  suffices for  this 
purpose to find only the functions x:'). 

In the Born-Oppenheimer approximation (see Fig. 1) 
the case n = l  corresponds to levels E,, in the potential 
v~, (R)  with quantum numbers j =  lg= lsu, ( N =  1, I = 0, 
m = 0), i. e. , in the potential W,(R) which is well known 
in the theory of the molecular hydrogen ion Hi. C51 Our prob- 
lem is to find the adiabatic corrections to the energy 
c ,, ,,,, i. e . ,  to go outside the framework of the two- 
level approximation (43) and take successive account of 
the contributions of all higher discrete levels ( j  22), 
and also the contribution of the continuous spectrum of 
the two-center problem. 

For the states of a three-body system with index n= 1, 
the series (47) for  the column vector of the solutions 
{Xj} i s  of the form 

It follows hence immediately that the condition (51) i s  
satisfied, and in correspondence with the definitions 
(44) and (49), that e(') = 0. 2' The system (48) simplifies 
in this case and its expanded form becomes 

The functions xi0' a r e  normalized by the condition (51): 

The functions X j o  for  j > 2 a r e  obtained from the sys- 
tem of inhomogeneous equations 

where 

and the representation index j runs through the values 
j = 2,3, . . . , including the states of the continuous spec- 
trum of the two-center problem. 

The corrections to the energy 

a r e  obtained from the formulas 

where the double sum must be understood in analogy 
with the preceding one: 

The total energy El, of the three-body systein is cal- 
culated in the adiabatic representation from the formula 
(it is assumed throughout that Ma a M,) 

We shall demonstrate the effectiveness of the de- 
scribed scheme by using a s  an example the calculation 
of the binding energy d the mesic molecule pdp. 

5. CALCULATION OF THE SYSTEM pd 

The calculation of the binding energy of the mesic 
molecule pdp has been the subject of many papers, and 
a complete bibliography is contained in the reviews.c31 
~ a r t e r ' s c ~ ]  most accurate variational calculations of 
the ground state (J=  0, v = 0) of the mesic molecule pdp 
make use of a function with 84 variational parameters 
and yield for  the total energy of the three-body system 
and for  the binding energy of the pdp molecule the re-  
spective values 

The binding energy E, of the mesic molecule pdp is 
reckoned from the energy E, of the ground state d an 
isolated mesic atom (p.2,) 

TABLE I. Components of the total energy of the ground state 
(J = 0, v = 0) of the mesic  molecule pdp . 

Value Value 

-- 

Eo -0.473250 -2662.66 -0.039451 -221.96 
~( 0 )  -0.512100 -2864.62 

~( 2 )  
dlwr ( 1"":: -0.CW549 1 -'!:g -3.09 / -0.473335 1-2663.14 

e(2) 
-0 039366 -221.48 

cant 

Note. Carter's variational calculation (1968) yields for the total ener- 
gy a value E =-2884.42 eV (- 0.512665 m. at. un.); and accordingly 
for the binding energy e=-221.28 eV (-0.039329 m. at. un.). 
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TABLE 11. Contributions &j2' of different states j =  [npzml  of 
the discrete spectrum of the two-center problem to the energy 
of the ground (J= 0, v = 0) state of the mesic molecule* pdk . 

*The numbering of j corresponds to that used in[''. The states 
i=[n,n,mI with m+O make no contribution to the energy of the 
levels with J =  0. The following particle-mass values were used in the 
calculations: m, =206.769, M,  = 1836.109, M ,  =3670.398. The 
mesic atom energy unit (e = E=m, = I) is &, =5626.33 eV. 

j 1 m l  1 C'- 1 sj2) ev ) j I n,n*m] 1 ." 'm-. 1 .p .v 
m. at. un. 

The total energy E of the three-body system i s  an in- 
variant and should not depend on the manner in which it 
is broken up into a sum of subsystem energies; this 
yields the equation 

2 
3 
5 
6 
7 

The energy E, of an isolated atom (pZa) is equal in the 
adiabatic representation totts1 

Thus, by calculating the binding energy & in the 
adiabatic representation, we can obtain from the rela- 
tion (61) the true binding energy &,. Table I l i s ts  the 
components of the total energy El, of the ground state 
r(J= 0, v = 0) of the mesic molecule pdp, obtained in 
this paper by the described method. 

In the calculation of the contribution from the higher 
states of the discrete spectrum of the two-center prob- 
lem, we took into account in the sum 

100 
010 
200 
110 
020 

all the states j=[n,%m] with m=O to n = n , + n , + 1 = 4  
inclusive. The relative contribution of each of these 
states is'given in Table 11. It is easily seen that the 
decisive contribution to &A::, is made by the states 
j= [qlO], which correspond a s  R-0 to the pairs of 
terms Nda, - Nfu,, (see Figs. 2-4). This i s  apparently 

-2.44 
-3.89 
-0.44 
-0.68 
-0.00 

-1.37 
-2.19 
-0.25 
-0.38 
-0.00 

FIG. 2.  The wave functions x::)@) and XI:)@) and the correc- 
tions x :I)@) to them for the ground state(J= 0, v = 0) of the 
mesic molecule pdp ; it is seen that xji) 5 (.~M)-'X:~), in accord 
with the statement made in Sec. 2. 

I 
FIG. 3. First-approxxmation corrections X:~)(R) and X:~'(R), 
which determine the contribution of the higher states j of the 
discrete spectrum of the two-center problem to the total energy 
El, of the three-body system pdp  , J= 0, v = 0). 

ti 
12 
13 
14 

discr 

due to the presence of a weak minimum of the terms 
Wj(R) corresponding to the states Ndo,.  l5] 

In the calculation of the contribution from the continu- 
ous spectrum of the two-center problem 

we took into account in the sum (64) the states j=[k%m] 
corresponding to the values m = 0, n, = 0, 1, 2, 3, 
while the functions c i$  and the wave functions X!,$(k, R) 
corresponding to them were calculated a t  
k = 0,2(0,1)1(0,2)2(1)10. Plots of these functions a r e  
shown in Figs. 5 and 6, while the contributions to the 
binding energy a r e  given in Table III. 

-0.09 
-0.15 
0.00 
0.00 

-4.43 

300 
210 
120 
030 

In the employed calculation scheme, when the diago- 
nal terms U,,(R) of the matrix u,,(R) a r e  included in the 
operator 8, in accordance with formulas (44), (44a), 
and (46), the greater part of the contribution from third- 
order perturbation theory is effectively taken into ac- 
count already in the calculation of c ' ~ ) ,  and in this con- 
nection the contribution E ' ~ )  turns out to be small. In 
this case ~ ' ~ ) = 3 * 1 0 - ~  eV (=6x10" m.at.un.) when ac- 
count is taken of the potentials U, ,(R) for  the state pairs 
( i , j ) =  (3,2), (5, 2), (5,3), (6,2), (6,3), (6 , 5) , (12,3), 
(12,6), which make the decisive contribution to the sum 
(58). 

-0.16 
-0.27 
-0.00 
0.00 

-7.87 

To solve the systems of equations we used a contin- 
uous analog of Newton's method, which ensures an 
absolute calculation accuracy to within - l0-~-10-~ in 

(21 
L, , fdV m. at. un. 

FIG. 4. Values of &j2)=&~~,!2,, which determine the contribu- 
tion of the discrete spectrum from the shells with principal 
quantumnumbern=2,3, a n d 4 a t m = O  ( p d ~ ,  J=O,  v=0) .  
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a!,yi(h/, 10-~rn. at. un. 

FIG. 5 .  First-order approximations x ~ ~ , , ( k ,  R )  and ~ f n i ~ ( k ,  R ) ,  
which determine the contribution of the continuous spectrum of 
the two-center problem to the total energy of the three-body 
system ( p d p ,  J =  0, v = O ) .  

TABLE 111. Contribution of various 
states j = [kn2m] of the continuous spec- 
trum of the two-center problem to the 
binding energy of the state (J= 0 ,  v = 0 )  
of the mesic molecule pdp . 

I I 

n2 .m. at. un. 

the case of integration intervals AR = 0.025 on the seg- 
ment 0 R 6 20. 

CONCLUSION 

The described scheme of perturbation theory in the 
adiabatic representation of the three-body problem is 
simple enough and convenient in use. In the case of 
p-mesic molecules of hydrogens, for  which ( 2 ~ ) "  - 0.1, 
the described schemes makes i t  possible to calculate 
their binding energies with high accuracy both in the 
ground state ( ~ ~ 0 ,  v = O), and in the excited vibrational 
(v= 1) and rotational ( J =  1 ,2 ,3)  states. 

For example, our calculated value EM, = - 0.51270 

FIG. 6 .  The functions &A:),&), which determine the contribu- 
tion of the continuous spectrum from states with different values 
of nz ( p d ,  J = 0 ,  u=O) .  

m. at. un. is in good agreement with the variational val- 
ue E,,, = - 0.51267 m. at. un. C21 of the total energy of 
the ground state of ,the mesic molecule pdp and meets 
the specified calculation accuracy requirements (- 
in the realized scheme. 

As a rule, in cases of physical interest it suffices to 
consider states with index n = 1, i. e., in the ground 
state relative to the meson motion, for which all  the 
higher states ( j  32) of the two-center problem play the 
role of closed channels in the system of equations (46). 
This means that for  states with n =  1 we do not encounter 
the difficultiesc1" connected with the long-range charac- 
t e r  of the matrix elements Bi,,,,,(~) of the Coriolis- 
interaction operator (they a r e  altogether nonexistent 
for states with J= 0). We hope, however, that the de- 
scribed scheme can be extended successively also to 
the case of states with index nP1, i. e. , for  excited 
states relative to the meson motion. 

The authors a r e  sincerely grateful to K. N. Danilova, 
I. V. guzynin, T. P .  Puzynina, L. N. Somov, anduM. 
P. Faifman for constant help, and to S. S. Gershtein 
and Yu. N. Demkov for  constructive discussions. 

"1t is of interest in this connection to compare the sections 
devoted to the adiabatic method (or to the method of perturbed 
stationary states) in three successive editions of the book by 
Mott and ~ a s s e ~ ~ ~ ' .  

 he relation xja) = O  at j 32 2 follows from the first equation of 
the system ( 4 8 ) ,  since the difference 2Mei,- u;)(R) <O and 
does not reverse sign over the entire interval ?f variation of 
R (see, e.  g. , [l4]). By virtue of the relations ~ 1 : '  = 0 and 
E(')= 0 ,  the right-hand side of the second equation of the sys- 
tem ( 4 8 )  vanishes at i = 1 ,  and the resultant equation has only 
one solution that does not coincide with xia), namely xi1) = 0 .  
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Two-photon absorption of light emitted in a two-photon 
process 
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Two-photon absorption of light emitted in two-photon spontaneous emission in the decay of metastable 
levels of atoms or ions is considered. It is shown by a quantum-mechanical calculation that the 
simultaneity of the emission of the two photons in such spontaneous emission leads to a sharp increase of 
the probability of two-photon absorption as compared with the case of light from ordinary sources. The 
probability of two-photon absorption is determined by the large instantaneous intensity of the two-photon 
spontaneous emission and does not depend on the mean intensity of the light beam. 

PACS numbers: 32.80.Kf 

1. INTRODUCTION 

As is well known, two-photon absorption of light is a 
nonlinear process and depends essentially on the fluctua- 
tions of the intensity of the light. In the present paper 
i t  is shown that two-photon spontaneous emission from 
metastable atoms or  ions is a source of light whose 
fluctuations change the character of the two-photon ab- 
sorption a s  compared with that of light from ordinary 
sources. 

According to existing ideas, the photons emitted in a 
single act of spontaneous emission come out almost 
simultaneously, in a time interval of the order of the 
optical period; this interval can be estimated by apply- 
ing the uncertainty principle to the intermediate state 
of the radiating system. Experimental ~ t u d i e s ~ ' - ~ '  of 
two-photon spontaneous emission from atoms and ions 
by means of photon-coincidences confirm the simulta- 
neity of the emissions to within the limits of experi- 
mental error .  A quantum-mechanical calculation made 
in the present paper shows that owing to the grouping 

of the photons in time in two-photon simultaneous emis- 
sion, such radiation is perceived by a two-photon ab- 
sorber a s  radiation of large instantaneous intensity. 
This instantaneous intensity determines the effective- 
ness of two-photon absorption. 

The probability of two-photon excitation of an absorb- 
ing atom, calculated per two-photon decay in the source, 
is independent of the mean luminous flux. 

In order to increase the probability of two-photon ab- 
sorption i t  is necessary to eliminate the divergence in 
space of the simultaneously emitted photons, say by 
focusing the spontaneous radiation with a concave mir- 
ror. In this case the coefficient of two-photon absorp- 
tion of the light emitted in two-photon processes [see 
Eq. (4) of the present paper] is mainly governed by the 
same physical factors as the coefficient of ordinary one- 
photon absorption-the concentration no of absorbing 
atoms and the ratio of the radiation width r of the meta- 
stable level to  the Doppler width w, of the absorbing 
transition. 
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