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nonabelian gauge theories in which the mass arises by the Higgs mechanism. Integral equations are 
derived for the partial amplitudes of the elastic processes. 
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1. INTRODUCTION whose trajectory passes through j =  $ for ;= M, i. e., 
the fermion is reggeized in the same way a s  in the well- Field-theoretical models based on Yang-Mills gauge 
known case of quantum electrodynamics with a massive vector fields a r e  attracting great  attention a t  the pres- 

ent time.'" A large number of papers a r e  devoted to photon.''01 

the study of the high-energy behavior of the amplitudes 
in such models and, in particular, to the question of the 
reggeization of the vector meson. In Ref. 2, in the 
leading logarithmic approximation, the different small- 
angle scattering amplitudes were calculated to sixth 
order of perturbation theory in the simplest model, 
based on the isotopic-rotation group, and the reggeiza- 
tion of the vector meson in this order was demonstrated. 
This result has been generalized to other models.'31 
The results of the sixth-order calculation have been 
confirmed in a number of papers.c4*51 The eighth order 
of perturbation theory has been ~ a l c u l a t e d . ' ~ ~  In the cal- 
culation, a s  in Refs. 2, 3, the dispersion method was 
used; therefore, the amplitudes of inelastic processes 
in the multireggeon kinematics were also found. It was 
discovered that these amplitudes have a simple multi- 
reggeon form; this gave the possibility of generalizing 
the results of the eight-order calculations to arbitrary 
order in perturbation theory and of obtaining for the 

In the present work we have used the dispersion meth- 
od, which enables us  to calculate both the positive- and 
negative-signature par ts  of the amplitude. This method 
has been used successfully previo~slyC2*3*61 for the prob- 
lem of small-angle scattering. The method requires 
knowledge of the inelastic amplitudes in order  to estab- 
lish the elastic amplitudes from unitarity and analyticity. 
At the same time, therefore, we have calculated the in- 
elastic amplitudes in the multi-reggeon kinematics, 
which gives the principal contribution to the unitarity 
relation. The calculations, carried out to eighth order 
of perturbation theory, show that the ineIastic ampIi- 
tudes have a simple multireggeon form. As in the prob- 
lem of small-angle this form is easily 
generalized to arbitrary order of perturbation theory. 
Using this generalization we can se t  up the elastic am- 
plitude. The result can be written in the form of inte- 
gral  equations for the partial amplitudes; for the group 
SU(2) we have published these in a previous note.'"' 

partial amplitudes of the elastic processes an integral 
The plan of the discussion is as follows. In the next 

equation[6'T1 whose solution in the channel with isotopic section we obtain the Born amplitudes of the elastic 
spin T= 1 is a reggeon (i. e . ,  the vector meson is reg- processes and processes of creation of three particles 
geized), while in the vacuum channel a stationary in multireggeon kinematics and formulate simple rules 
square-root branch point appears to the right of j =  1, 

for obtaining the Born amplitudes of processes of crea- 
apparently because of the contribution of many-particle tion of an arbitrary number of particles in this kine- 
states in the t - ~ h a n n e l . ' ~ ~ ~ '  The eighth-order calcula- matics (rules 1-111 of Sec. 2). In Sec. 3 we derive the 
tions have been ~onf i rmed. '~ '  rules for calculating the contribution of the (n+ 2)-par- 

We consider the question of the high-energy behavior 
of the amplitudes of processes with fermion exchange 
in a channel with small momentum transfer. To be 
more specific, we a r e  concerned with calculating in the 
leading logarithmic approximation (g2 lns - 1, 2 << 1) the 
amplitude for scattering of a vector meson by a fermion 
a t  scattering angles close to 180°, and the amplitude for 
the annihilation at small  angles of a pair of vector 
mesons with creation of a fermion-antifermion pair. If 
we a r e  interested only in the positive-signature part  of 
the amplitude, which is greater than the negative-signa- 
ture part in each order of perturbation theory in Ins, 
we can formulate a simple prescription for i ts  deter- 
rninati~n. '~ '  It then turns out that the positive-signature 
part  is determined by the contribution of the reggeon 

ticle intermediate state in the unitarity condition to the 
partial waves of the elastic process for the case when 
the amplitudes of the inelastic processes a r e  taken in 
the Born approximation (rules 1-4 of Sec. 3), and the 
elastic amplitudes a r e  calculated to order g6. In Sec. 4 
the rules 1-111 of Sec. 2 for  inelastic processes a r e  gen- 
eralized to any order of perturbation theory and integral 
equations a r e  derived for the partial amplitudes of the 
elastic processes. In the Appendix the -$ corrections 
to the Born amplitude for creation of three particles a re  
calculated. 

2. THE BORN AMPLITUDES 
We shall consider, principally, the very simple model 

of Ref. 12, based on an isotriplet of Yang-Mills vector 
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fields V,, with mass m that ar ises  by the Kibble-Higgs 
mechanismc'3' a s  a result of the appearance of a non- 
zero  vacuum average of an isodoublet complex scalar 
field. The interaction of the fields_V, with the isodou- 
blet of fermions has the form - +sVT$.  A detailed de- 
scription of the model can be found in Refs. 12, 2, and 
6. Our results a r e  simply generalized to the case of 
the gauge group SU(N) with spontaneous symmetry 
breaking that conserves the global SU(N). A description 
of this model can be found in Ref. 6. The generalization 
to this case will be discussed in the course of the paper. 
In this model, the interaction of the Yang-Mills fields 
VO, with the fermions has the form - BgJ13a~a+. We 
shall use the notation adopted in Ref. 6, i. e. ,  we shall 
denote the particles by the let ters A, B, etc., and the 
corresponding momenta by PA, pB; we shall denote the 
isotopic indices of the vector (spinor) particles A, B by 
the let ters a, b (a, p),  and their polarizations by A*, 
XB (Y,,, yB). We choose the polarization vectors a s  in 
Ref. 2: 

To study the amplitudes for creation of n + 2 particles 
in the multireggeon kinematics A + B - Do + Dl + . . 
+ D,,, we introduce the momentum transfers 

and the Sudakov variables for them: 

The kinematics is determined by the conditions 

For n= 0 we shall use the notation A', B' for the final 
particles; q=p, .  -PA, q =  qL, - t= - q2-  m2. We use the 
spinor normalization Eu= 2M. 

The amplitudes in the multireggeon kinematics can be 
classified by the quantum numbers in the channels with 
momenta q, .  The amplitudes with the largest value 
(-s) a r e  those which have the quantum numbers of the 
vector meson in all these channels. The magnitude 
(- s )  of these amplitudes i s  explained by the fact that a 
vector meson with momentum q, gives a factor "s,, and, 
according to (4), the product of all the s,  gives s. 
These amplitudes were found in Refs. 6 and 7 in all  
orders  in the coupling constant in the leading logarith- 
mic approximation. Since we shall need them in the fol- 
lowing, we give them here: 

where 

is the trajectory of the Regge pole (the vector meson is 
reggeized); the vertices yf, a r e  equal to 

for emission of scalar particles a, and 

for emission of vector particles. The vertices I?:, a r e  
equal to 

for fermions, 

for vector particles, and 

for the transformation of a vector particle to a scalar 
particle. We note that formulas (9)-(11) give the ver- 
t ices r:, for well-defined polarizations in the center- 
of-mass f rame of the initial particles. A covariant ex- 
pression for them is given in Ref. 6. The generaliza- 
tion to the case of the group S U ( N )  is also given there. 

Only the given amplitudes were needed to study the 
process of small-angle scattering. In our problem 
(backward scattering; in accordance with the fact that 
the momentum q is carried by a fermion, the amplitude 
is of order s ' I 2 ) ,  we need all  those amplitudes for which, 
in the channels with momenta q,,  the quantum numbers 
a r e  either those of the vector meson o r  those of the 
fermion (each vector meson with momentum qi gives a 
factor - s ,  and each fermion with q, gives - s : '~) .  We 
shall proceed to the calculation of these amplitudes in 
the Born approximation. 

There exists a simple way of finding the Born ampli- 
tudes in multireggeon  kinematic^.'^' It consists in de- 
termining the pole parts, with respect to q:, of the am- 
plitudes. It turns out that these pole par ts  give the com- 
plete asymptotic behavior of the amplitudes. We do not 
have a rigorous proof of this fact for production of an 
arbitrary number of particles; for production of three 
and four particles it is verified by direct calculation of 
all  the Feynman diagrams. The determination of the 
pole par ts  with respect to q: in the case when the mo- 
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mentum qi is carried by a vector meson is described in 
detail in Ref. 6. The case when the momentum q, i s  
carried by a fermion will be illustrated below using a 
very simple example. 

We shall consider the Born amplitude for almost- 
backward scattering of a vector meson by a fermion. 
One of the Feynman diagrams fo r  this process is given 
in Fig. 1. In the channel with momentum q there is a 
fermion pole: 

Ta ^ T ~ '  XZ iir,eA- u7(q )  i i p (q )  en.  I a,. 
2 

We are  interested in the amplitude to within the leading 
terms -sif2 only (sU2 is provided by the spinors UA* and 
uB). Since at high energies the longitudinal polarization 
vectors el3' and ei3> almost coincide with pA/m and 
fie./m (cf. (I)), to our  accuracy the right-hand side of 
(12) is  equal to zero if at least one of the polarization 
vectors i s  longitudinal (the replacement eA -PA (eB. - pB8) makes (12) vanish). The longitudinal polarizations 
can be eliminated by making the replacement 

In fact, this replacement does not al ter  (to our accuracy) 
the contribution of the transverse polarizations, and 
makes the longitudinal ones vanish. This replacement 
is  completely analogous to that used in quantum elec- 
t r ~ d ~ n a m i c s . ~ ' ~ '  

The extraction of the pole part of the amplitude with 
respect to q2 reduces to the replacement 

of expression (14) by direct analysis of the Feynmh 
diagrams (there a r e  three in all in the given case). If 
the particle B' i s  an antifermion and B is a vector 
meson, then, obviously, 

where EB is given by formula (13) with the replacement 
B'- B. We note that the vertices rif2 and rif2 a r e  
gauge-invariant, a s  can be seen from (13). 

In the model under consideration there is also the 
scalar particle o; but since there is no direct OFF-in- 
teraction, in order g2 there i s  no a F  scattering and the 
backward scattering amplitude for VF - F a  is negligibly 
small  (- s-'I2), like the amplitude of the annihilation Va - FF, in accordance with the fact that in a channel with 
small  momentum transfer there i s  no fermion pole. 
This implies that the vertices Fif2 and ria a r e  equal to 
zero for F t  a transitions. The generalization of formu- 
l a s  (14)-(16) to the case of the group SU(N)  is trivial: 
it reduces to the replacement 7 - h. The method of set- 
ting up the amplitude from its  pole parts with respect 
to q: makes it possible to write down simply all  the 
three-particle production amplitudes, whereas an analy- 
sis of all the Feynman diagrams here would be rather 
cumbersome. We shall consider the process A + B 
-Do + Di + D2. We associate the diagram of Fig. 2 with 
it. This, of course, is not a Feynman diagram; it sim- 
ply shows the kinematics of the process. We need to 
consider three cases: a)  the case when there is a vec- 
tor  meson in the channel with momentum q i  and a fermi- 
on in the channel with momentum q2; b) the opposite 

In our case this pole part  gives the whole amplitude. case; c) the case when there is a fermion in each chan- 
We write it in the form nel. In case a )  the particle with momentum p,, is a 

fermion. Using the-usual replacement of the sbin ma- 
(I4) trix of a vector meson V with momentum qi: 

where, for our case, i. e . ,  when A and B' a r e  vector 
mesons and A' and B a r e  fermions, 

we obtain 
(1 5) 

I'L(A+A') = ( r I l , (A1+A)  )+yo. 

The subscript indicates the isospin in the t-channel. 
It is not difficult to convince oneself of the correctness where the sumbol Yi indicates that the pole part with r e -  

spect to g: is taken; i is the isotopic index of the vector 
meson with momentum qi, and in place of the polariza- 
tion vector of this meson in A' we must substitute (2/ 
S ) " ~ P ~ .  The amplitude A' is given by formula (14); sub- 
stituting the quantity ( ~ / s ) " ~ P ~  in place of e ,  in E, and 
using the fact that 
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we obtain 

Calculation of the pole part  with respect to q: gives the 
same expression, so  that, for case a), when we have a 
vector meson in the channel with momentum qi and a 
fermion in the channel with momentum q2, the ampli- 
tude can be represented in the form 

where we have introduced the vertex yyj, equal to 

Case b) is treated completely analogously, and the re- 
sult can be written down immediately: 

where 

In case c), an analysis of the pole parts with respect to 
q: and q; gives (in this case Dl is a vector meson) 

where 

The formulas (19)-(24) give all the three-particle pro- 
duction amplitudes in multireggeon kinematics when ex- 
change of a fermion occurs in a t  least one of the chan- 
nels with small momentum transfer. The generaliza- 
tion of these formulas to the case of the group SU(N) 
reduces'to replacing 7- X and using the vertices I?;,. 
found in Ref. 6 for the group SU(N). 

The method we have used to calculate the amplitudes 
also makes it possible to determine simply the ampli- 
tudes for production of a large number of particles. It 
leads to a prescription for determining the amplitude 
for production of an arbitrary number of particles that 
is already clear from the factorized form of formulas 
(19)-(24) and (5) and consists in the following. Suppose 
that we a r e  considering a process A + B - Do + Dl + - . . 
+ D,,, in multireggeon kinematics, and the quantum 
numbers in the channels with small momentum trans- 
f e r s  q, a r e  either those of the fermion o r  those of the 
vector meson. We associate the diagram of Fig. 3 with 
this process. The amplitude of the process in the Born 
approximation is calculated from this diagram in ac- 
cordance with the following rules. 

I. If there i s  a vector meson in the channel with mo- 

mentum qi, we associate the propagator (q; - m2)-' with 
the line q,; if it is a fermion, the propagator is (M 
- G L i 1 - l .  

11. If in the channel qi (q,+J there is a vector meson 
with isotopic index c, we associate S"~I?;, (si12r&,+i) 
with the leftmost (rightmost) line (cf. (9)-(11)); if we 
have a fermion, the factors a r e  T i l 2 ( ~  - D,)(I?,,~(B 
-D,+i)) (cf. (151, (16)). 

111. With each vertex formed by particles with mo- 
menta q,, qie1 and ppi, depending on the type of parti- 
cles we associate 

a )  (qi, gilt) (cf. (7), (8)) if qi and qi+i correspond 
to vector mesons with isotopic indices c and c'; 

b) yfj(qi, qi+J (cf. (20)) if q, corresponds to a vector 
meson with isotopic index c and q i + ~  to a fermion; 

c) y;:(q,, q,,,) (cf. (22)) in the opposite case; 

d) yDi(qi, q,+J (cf. (24)) if q, and q i + ~  correspond to 
fermions. 

The rules 1-111 solve the problem of calculating the 
Born amplitudes. The generalization of these rules to 
the group SU(N) reduces to replacing 7- X and using the 
vertices r;, and found in Ref. 6 for the group 
SU(N). 

3. AMPLITUDES OF ELASTIC PROCESSES TO 
ORDER g, 

The determination of the scattering amplitudes in 
higher orders of perturbation theory reduces to finding 
their s-channel imaginary parts: 

21m.A(AB+A'Br) = vj  dp,A (AB+N)A'(A'B1+N).  (25) 
5 

Up to order g6, only two- and three-particle intermedi- 
ate states N give a contribution to the sum; it is more 
expedient, however, to deal straight away with an a r -  
bitrary number of particles. We shall consider a term 
in the sum in the right-hand side of (25) in the case 
when A@B- N) and A@'Bt - N) a r e  Born amplitudes for 
production of 2 + n particles Do, Dl, . . . , D,,, in multi- 
reggeon kinematics. Then, . 

where the range of variation of the a,  is determined by 
the conditions (4). In the Born approximation, A*(A'B' - N)=A(N-A'B'); we therefore associate the diagram 
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of Fig. 4 with the term under consideration. We a r e  
interested in the amplitude A@B-A'B') with exchange 
of a fermion in the t-channel; therefore, in each section 
of the diagram of Fig. 4 (where the numbers from 1 to 
n+ 1 label the sections) one of the horizontal lines cor- 
responds to a fermion and the other to a vector meson. 
The amplitude Az- z+n = AMB - DO . D,,,) is found using 
the rules 1-111 from the preceding section; the rules for 
determining A(Do . . . D,,l - A'B') =Az,n,z are easily ob- 
tained starting from the fact that A (N- A'B') =A* (A'B' - N): in I1 it is necessary to make the replacement A 
-Do, Do-A', B -  D,,,, D,,, - B'; in I I Ib)  and III(c) we 
must replace yfF - Y,"~, y#, - ygc; this change in the sub- 
scripts on y signifies the change of spinors &- 5, v -  u; 
the other rules remain unchanged. But this is still not 
all. The point is that, because of the anticommutativity 
of the fermion operators, the sign of the amplitude de- 
pends on their order in the definition of the state vectors. 
We have defined the amplitudes without worrying about 
their sign o r  fixing this order, a s  if the operators were 
commutative. However, in (25) the relative signs of 
the amplitudes must be taken into account. In order to 
do this we must associate a factor - 1 with each anti- 
fermion in the intermediate state. 

Thus, the amplitudes Az,z+n and Az+,,z a r e  determined. 
After multipolying them it  is necessary to carry  out the 
summation over the states of the intermediate particles. 
To perform the sum over the states of the "internal" 
particles Dl, . . . , D,, we stipulate that in the i-th sec- 
tion of the diagram the momentum q, flows along the 
horizontal fermion line, so  that q - q, flows along the 
vector-meson line. For the case when D, is a fermion 
o r  antifermion we obtain, using (20), (22), 

where ED, denotes summation over the spin and isospin 
states of the particle D,, 

and PC,C' a r e  the projection operators on to the state with 
the isospin T in the t-channel: 

In KF we have neglected quantities of the type piIIiB, 
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aijA, since p, and pA acting on the corresponding 
spinors give - M and a,, j3i+1 << 1; in pulling, e. g. , aipA 
through to i ts  spinor it is necessary to commute i t  only 
with 2, for k a i; this gives - sa,p, <<m2. 

The generalization of formula (27) to the case of the 
group SU(N) is that C, in (27) for this case denotes a 
sum over three representations; the corresponding pro- 
jection operators PC,C' and coefficients d; a r e  equal to 

p",- 1 . 1 I" I"' Y' h" 
-T~~"---- N+i 2 2  + l - i -*  

1 1  A' LC' R" b" P : ' ' ' ~ ~ .  - --- - 
N - 1 2 2  2 2 '  

P?' is the projection operator on to the fundamental 
representation according to which the fermion trans- 
forms. 

In the case when D, is a vector meson we obtain from 
(81, (24) 

where 

dyq--'/, 

In the case of the group SU(N), 

It remains to carry  out the summation for the external 
lines in Fig. 4. We shall consider the line BB'. Two 
variants a r e  possible; either the lower o r  the upper 
horizontal line in the section (n+ 1) is the fermion line. 
In the f i rs t  variant the summation gives 

where, for the case when B' is a vector meson and B a 
fermion, 

and for the opposite case, i. e., when B  is a vector 
meson and B' a fermion (more precisely, an antifermi- 
on), 

Here the minus sign has arisen because there is an anti- 
fermion in the intermediate state. In the second variant 
we obtain 
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The formulas (34)-(37) a r e  obtained using the explicit 
form of the vertices (9), (10) and (15), (16). We note 
that, inasmuch a s  there is no direct interaction of u 
with fermions, the particle Dn+i can only be either a 
fermion o r  a vector meson. Since the vertices ri12 a r e  
nonzero only for transverse polarizations of the vector 
meson, and rCv, is nonzero only for transformation of u 
into an arbitrarily polarized vector meson, in our ap- 
proximation and in higher orders  of perturbation theory 
backward scattering (or annihilation) processes with 
participation of a do not appear. 

The summation formulas for the line AA' a r e  obtained 
from (34), (37) by taking the conjugate and changing the 
indices: 

The formulas (34)-(38) also remain valid for the case 
. of SU(N), with PT and dT defined in (30), (33). The re-  

lations (26), (27), (31), and (34)-(38) make it possible 
to calculate the contribution to the imaginary par t  from 
any diagram of the type of Fig. 4. As can be seen from 
these relations, the matrix element associated with a 
diagram depends only on q,, and does not depend on a,; 
the dependence on q,, is such that all the integrals over 
qi, converge in the region qi,-m, and the integration 
over a, (cf. (26)) gives powers of logarithms; i. e., the 
multireggeon kinematics makes the principal contribu- 
tion to the integral. 

It is convenient to transform from the amplitude 
A(AB-A'B') to partial waves with well-defined isospin 
in the t-channel and signature. We represent the am- 
plitude in the form 

The possibility of such a representation is clear from 
(34), (37) and (38). Next we separate the par ts  of MT 
with positive and negative signature: 

and transform to the j-representation (w = j -$) 

In the Born approximation only M ilz = +(,I4 - is non- 
zero; (for the group SU(N) we have Mi= ( N ~  - 1)/2N(M 
-q));  according to (41), in this approximation we obtain 

For the group sU(N) we have Ci= (N'- 1 ) / 2 ~ ,  CiVg 
= C;,2,,= 0. We note that the C', can be defined a s  a r -  
bitrary quantities independent of w, since, because of 

the cancellation of the pole a t  w = 0 in the negative sig- 
nature (411, their contribution is negligibly small. 

In higher orders  Ff,(o, q) is determined from the s- 
channel imaginary part: 

We can now formulate simple rules for determining 
the contribution to F; from the (n+ 2)-particle inter- 
mediate state in the unitarity relation (25) when the am- 
plitudes A2,2+, and A2,,2 a r e  taken in the Born approxi- 
mation. 

Fi rs t  we shall see  what the integration over a, and 
over s/m2 gives us. As we have already said, the whole 
"inner part" of the diagram of Fig. 4 depends only on 
q,; s-I in the phase volume cancels with the product 
&&from the lines AA' and BB'; using (4), we obtain 

i. e., with each section of the diagram we associate l/w. 

Since the factors associated with the lines AA' and 
BB' do not depend on the q,,, over which i t  remains to 
integrate, the lines Do and Dn+i can be contracted to a 
point; therefore, with the contribution of an (n+ 2)-par- 
ticle intermediate state to F$ we shall associate the s e t  
of diagrams of the type depicted in Fig. 5, with all  pos- 
sible paths of propagation of the fermion from the ex- 
treme left to the extreme right of the vertex. In the 
case when the amplitudes A2,2+n and A2,n,z of the inelas- 
t ic processes a r e  taken in the Born approximation the 
contribution to F: corresponding to each diagram of this 
se t  is calculated by the following rules. 

1) With the horizontal fermion line in the i-th section 
we associate (M - q,,)", and with the vector meson line, 
[(q-qr): - m2ri.  

2) With the transverse lines between the i-th and (i 
+ 1)-th sections we associate d ~ ~ , ( q ~ , q ~ , ~ )  (for a fermi- 
on line) and d ~ ~ ~ ( q ~ , q ~ + ~ )  (for a vector-meson line) (cf. 
(27)-(33)). 

3) With each section we associate a factor g2(2n)-3w-i 
xd2qi. With each diagram we associate a factor equal 
to [dT@ - B') * dT(B1 - B)]dT(A - ~ ' ) ( [ d ~ @ '  - B) *dT@ 
-B')]dT(A1-A)) in the case when the fermion line is the 
lower (upper) line in both the (n+ 1)-th and the first  sec- 
tion, a factor - [dT@-B') f dT@'- B ) ] ~ ~ ( A ' - A )  in the 
case when the fermion line in the (n+ 1)-th section is the 
lower line and that in the first  section is the upper line, 
and - [dT@'- B) *dT@- B ' ) ] ~ ~ ( A - A ' )  in the opposite 
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case ((34)-(38)). Since, a s  follows from rules 1)-3), 
the whole "inner part" of the diagram is unchanged un- 
der interchange of "upper" and "lower," this rule can 
be formulated in a simpler form: 

4) We consider only diagrams in which the fermion 
line in the (n+ 1)-th section is the lower line. With 
each such diagram, in the case when the fermion line in 
the first  section is the lower line, we associate a factor 
d?,  or, if it is the upper line, r d?,  where 

(the upper signs a r e  for the positive signature and the 
lower for the negative). Here and below all momenta 
a r e  two-dimensional: qi = qi,. The y-matrix factors 
a r e  arranged in the usual order-from the f i rs t  section, 
against the fermion line. The rules a r e  valid for the 
group SU(N) for any N, with d, defined in (30), (33). 

Here we must note an important fact. The positive- 
signature part  of the amplitude is nonzero, a s  follows 
from rule 4) and the definition of dT, only in a channel 
with the quantum numbers of the fermion; this, general- 
ly speaking, is a consequence of the gauge-invariance 
of the original theory, or,  more  concretely, of the fact 
that the generators $hi of the group appear in the vertex 
of the interaction of the vector meson with fermions 
while the structure constants file appear in the three- 
point Yang-Mills vertex. We note also that, since the 
positive-signature part  of the amplitude is greater than 
the negative-signature par t  in each order of perturba- 
tion theory in Ins, only it is used in the unitarity rela- 
tion (25). 

The rules 1)-4) that we have formulated make i t  pos- 
sible to obtain the partial amplitudes F$ to order  $ 
(i. e. , A(AB -A'B') to order g6; cf. (39) and the defini- 
tion of r;). Next, for definiteness, we shall consider 
the scattering of a vector meson by a fermion, i. e . ,  
the particles A and B' a r e  vector mesons and B and A' 
a r e  fermions (changing to the other channel can only 
change the sign of FT). Then, 

The relations (45) a r e  written for the group SU(N). For  
SU(21, 

In order g2 there is only one diagram for F? according 
to our rules; 

In order $ the contribution from the three-particle in- 
termediate state is given by two diagrams; we obtain 

However, in order g4 there is also a contribution to F*, 
from the two-particle intermediate state, when one of 
the amplitudes in (25) is taken in the Born approximation 
and corrections -g2 a r e  taken into account in the other. 
According to formula (51, allowance for this correction 
in the amplitude with exchange of a vector meson in the 
channel with momentum q leads to the replacement 
(q2 - m2)-I - (q2 - m2)"(1 + cr(q2) lns) (for the group SU(N) 
the replacement a(q2) - aN(q2) = $ ~ a ( q ~ )  is necessary C61), 

and in the amplitude with exchange of a fermion, ac- 
cording to (46), (42), (41), to the replacement (M - ;)" - (M - G)"(l+ 6,(g) Ins), where for SU(N) 

Using (44) we find that, to take into account the cor- 
rection -g2 to the amplitude with fermion exchange, in 
rule 1) i t  is necessary to make the replacement (M - ;)-I - (M - G)-'(I + ~ " 6 ~ ( ~ ) ) ,  and, for the correction to the 
amplitude with exchange of a vector meson, to make the 
replacement (q2 - my)-' - (q2 - m2)"(1 + o-la, (q2)); as a 
result we find the contribution from the two-particle in- 
termediate state: 

Combining (49) with (47) we see  that in the channel with 
positive signature (with the quantum numbers of the 
fermion) the term proportional to p(q) has been can- 
celled; to order $, 

i. e. ,  the fermion is reggeized. In the negative-signa- 
ture par ts  the cancellation of p(q) does not occur, i. e. ,  
they a r e  not an expansion of simple Regge poles 

4. INTEGRAL EQUATIONS FOR THE PARTIAL 
AMPLITUDES 

For  the calculation of F t, in the next orders  of per-  
turbation theory, corrections to the Born amplitudes of 
the inelastic processes a r e  necessary. In the Appendix, 
corrections to the amplitude for creation of three parti- 
cles in multireggeon kinematics a r e  calculated. The 
calculation is rather cumbersome, but the result is per- 
fectly simple: taking the - g 2  correction into account 
reduces to the result that if the particle in the channel 
with momentum q, is a fermion we must make the re- 
placement (M - ;,)" - (M - Gi)-'(l + 6,(qt) lns,) in the 
Born amplitude, while if it is a vector meson we must 
make the replacement (q! - m2)"- (q: - m2)"(1 + 
xlnsi), i. e . ,  the usual propagators a r e  replaced by 
reggeized propagators. We generalize the result ob- 
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tained to arbitrary order of perturbation theory; i. e. ,  5. CONCLUSIONS 
we assume that in the leading logarithmic approximation 
the amplitude of the process A + B - Do + Dl + - - . + Dn+, 
can be obtained from the rules 1-111 of Sec. 2 if in rule 
I we make the replacement 

This generalization enables us  to obtain integral equa- 
tions for the partial amplitudes of the elastic processes. 
In Sec. 3 we derived rules for determining the contribu- 
tion to FfT in an (n+ 2)-particle intermediate state in the 
case when the amplitudes A2,2+n and A2+n,z a r e  taken in 
the J3orn approximation; in order to obtain this contribu- 
tion when these amplitudes a r e  taken in all orders  of 
perturbation theory, i t  is necessary only, according to 
(51) and (44), to make the replacement 

in rule 3). We represent F$(w,q) in the form 

We denote the contribution to fi,(w;ql, q) from an (n+ 2)- 
particle intermediate state by f $'*(w;qi, q). According 
to the rules 1)-4) (with the replacement (52)), we obtain 

Taking into account that f ~O'*(w;ql, q) = [w - GN(qi) 
- aN((q - q1)2)]-i, for  f ;(w;qt, q) we obtain the equation 

- 6 ~ 1 - N - q  I T ;  q  = + @ J d ~ q ,  ZP- 
X ~ T " K v ( Q I .  q 2 ) r d ~ ~ K ~ ( q ~ ~  Q Z )  I [ (q-q2)2-m21-1 ( M - & ) - ~ ~ ~ * ( o ;  q2, q ) ,  

(55) 
where dT and K(qt,q2) a r e  defined in (28)-(33) and GN(q) 
in (48); aN(q2) = $-~a(q') (cf. Ref. 6). It i s  easy to veri- 
fy that in the case of positive signature (the channel 
with the quantum numbers of the fermion) the solution 
of (55) is 

In this case, 

Cl+ a 
F,+ ( a ,  q ) =  - - 

(M-q)  ( w - ~ N  ( q ) )  

i. e. , the fermion is reggeized, which demonstrates the 
self-consistency of our assumption. For the negative 
signature i t  has not been possible to solve Eq. (55). 

For the group SU(2 ) ,  Eq. (55) was published by us 
earlier."" There the case of quantum electrodynamics 
was considered, for which the results that we obtained 
coincide with those of McCoy and WU.''~' 

The Born amplitudes that we found in Sec. 2, fo r  in- 
elastic processes in multireggeon kinematics for cases 
when in some (or all) channels with small  momentum 
transfers qi the quantum numbers correspond to ex- 
change of a fermion, have a simple factorized form, a s  
for the case treated earlierc6' in which the quantum 
numbers in all  channels a r e  those of the vector meson. 
The claculation of the -g5 corrections to the Born am- 
plitudes for creation of three particles gave the possi- 
bility of generalizing this form to arbitrary order of 
perturbation theory. The generalization consists in r e -  
placing the propagators of the fermion and vector meson 
by reggeized propagators. Using this generalization we 
obtain integral equations for the partial amplitudes of 
elastic processes with fermion exchange in a channel 
with small momentum transfer. The solution of the 
equation for  the positive signature shows that the fermi- 
on is reggeized; thus, our generalization is self-consis- 
tent. For the negative signature we can state that, be- 
sides poles, the partial amplitudes have branch points 
arising from the exchange of a reggeized fermion and a 
reggeized vector meson. Since there operates here a 
mechanism that leads to the appearance of a stationary 
branch point in the vacuum channelcT1 (the existence of 
arbitrarily high thresholds with respect to t) ,  we may 
also expect the appearance of stationary branch points. 

APPENDIX 

We shall seek the amplitude A,,, in order g5 from its  
s-, st-, and s2-channel discontinuities, represented 
schematically in Figs. 6a, b, and c, respectively. We 
must consider three cases: 1) there is a vector meson 
in the ql channel and a fermion in the q2 channel; 2) the 
opposite case; 3) there is a fermion in both charnels. 
The case when we have vector mesons in both cilannels 
was considered in detail in Ref. 6. 

We begin with case 1). We have (see Fig. 6a) 

where the summation symbol denotes summation over 
the types of particle and over the spin and isospin (uni- 
tary) states of the particles. Substituting the amplitudes 
(there a r e  vector mesons in the q- and (ql - 9)-channels 
and a fermion in the (q2 - q)-channel), we obtain 

FIG. 6.  
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The summation over B' is performed in accordance 
with (34), (37) and that over A' in accordance with for- 
mulas (13), (A. 6) of Ref. 6. We need the amplitudes in 
the leading logarithmic approximation, i. e . ,  we do not 
distinguish between Ins and Inu, and, therefore, after 
the s- and u-channel contributions a r e  combined, only 
the part that is antisymmetric in i, j survives in the for-  
mulas for summation over A': 

so  that, when the u-channel contribution is taken into 
account (as will be understood to be the case in the fol- 
lowing), the diagram of Fig. 6a give 

A 2-3- -  - - """ ig2ik,js3h ~ D J Z , ~  ( d r ( ~ - ~ i ) + d r ( ~ , + ~ )  ) ~ = ' ( B + D , ) .  
2n 

T 

(A. 4) 

Since d T ( ~  - D2) + dT (D~ - B) = dr - d: i s  nonzero only for 
the fundamental representation (then, dy - d: = (N2 - I)/ 
2N) and a i f k , , ~ f ~ i  =$Nkk, we have 

c N g2 
A?::= ( I n ~ ) ~ ' ~ r ~ ~ . - - R , r , , , ( B - t o , ) .  

2 n 
(A. 5) 

We shall consider the st-channel discontinuity (Fig. 
6b; there a r e  vector mesons in the k- and (q, - k)-chan- 
nels) 

Substituting the expressions for the amplitudes and per- 
forming the summation over A' with allowance for the 
u,-channel contribution in accordance with (A. 3), we ob- 
tain 

g a'k, ~ 2 ! ) ~ = -  ( ln  s*)T (+) iihijr:D* j (k,z-mz) ( (q , -k)  lz-mz)  
( 2n)  

D '  1 x ~ I ' ~ , ~ D , r t  (k ,  q2) - - ; - - r s (B+D~) .  

D, .  
M-q2, (A. 7) 

Here we have written f&,, in order  to emphasize that i t  
is necessary to take the covariant expression for the 
vertex (cf. Ref. 6). Performing the summation 
over D;, we obtain, after straightforward transforma- 
tions, 

N ga A??,= ( ~ n s , ) s ' " r : ~ . - - ~  j d'kl 
2 (2n)  ( k 2 - m 2 )  ( ( q t - k ) ~ ' - m Z )  

1 
(A. 8) 

xrerD'(ql, q a ) - - - ~  - r,rD'(qi-kl,  4 1 - k ~ )  1 r 4 ~ , ( B + D 2 ) .  
M-qz, M -  (&-k)  1 

We turn to the st-channel discontinuity. In the diagram 
of Fig. 6c the fermion line can be either the upper o r  

the lower line. The summation over B' is performed 
in accordance with (34), (37); after taking the u2-channel 
into account, using the fact that dT (B - D2) + dT (D2 - B) 
= dr - d: is nonzero only for the fundamental represen- 
tation, we have 

(A. 9) 

Performing the summation over D{ and using the rela- 
tions 

we obtain 

Summing the individual contributions and taking into ac- 
count that Ins = lns, + Ins2, we find 

1 
~ 2 , ~ = A : ~ ~ + ~ ! ? ~ + ~ ! e l a = s " ' r ~ ~ ~ -  ~ c r ~ ' ( q i ,  P I )  

(q l  -m ) 
1 

X- (aN (q,')ln s t+ &(q2)1n s2) r,i>(B + D 4 .  
~ - i z ,  (A. 11) 

Comparing (A. 11) with the Born approximation, we see 
that the corrections reduce to the reggeization of the 
vector meson and fermion. 

The case 2) is treated entirely analogously and, ob- 
viously, leads to the same result. We turn to the case 
3). In the diagrams of Fig. 6a the fermion can now 
pass  along either the line with momentum q o r  the lines 
with q, - q, q2 -9. After performing the summation over 
A', B' using formulas (33), (37) and (38), we obtain for 
the contribution of Fig. 6a 

X ( M -  - 1 6 , , ~ D ~ ( q t - q ~ .  qz-ql) (M- (&-G),)-' 
+ ((qi-q)l"mz)-1~,iD'(qt-q~7 42-91) ( (42-q)i2 

-mz)  ( M - C ~ )  -11 r: ( B  + Dl) .  
(A. 12) 

We turn to the diagram of Fig. 6b. Here the fermion 
can pass either along the line with momentum k o r  along 
that with qi - k. After the summation over A' we obtain 
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g  6-kL 
AI(!.),= ( l n  ~ , ) 2 " ( d , ~ - d , ~ ) r , '  ( A  + D,)---S ( 2 ~ ) '  - 2s, 

(A. 13) 

Again it is necessary to take the covariant expression 
for The summation over D; leads, after simple 
but rather unwieldy transformations, to the form 

where 9,{qi, qz) is defined in (8). 

The diagram of Fig. 6c is treated entirely analogous- 
ly; the result can be written out immediately: 

1 g" A!C,),= (ln s , ) ~ ~ , ~  ( A  -t D o ) -  
(M-91,) ( 2 ~ )  = 

N I 

hd' (M-;I,) 1 
+g- e ~ : p ~ ( q t - k ~ .  G - ~ L ) ]  

2  ( ( a - k ) Y - m 2 )  (M-k,) 

-- I ' [ r " ( q l .  a )  - ( M -  E,) 1 
2N (kL2  - m Z )  ( M - ( & - ~ ) L )  

I 
x r D ' ( q l  - k,, qz  - k,) ) ~ ~ , . ( B - D , ) .  

(A. 15) 

Summing the individual contributions for the case 3) 
under consideration gives 

A,,, = A:2, +A!:; = 7,;: ( A  -+ Do) 
1 

{GX(q,)yDt(q1,  q2)ln s 
(Jf - 4t1) 

Comparing with the Born approximation, we see  that 
the corrections reduce to the reggeization of the fermi- 
ons in the qi- and qz-channels. 
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