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A self-consistent system of equations is proposed which describes the effect of the deformation of the 
surface of liquid helium that accompanies the Wigner crystallization of the surface electrons on the 
collective-excitation spectrum of this two-dimensional crystal. The solution of the proposed system of 
equations in the harmonic approximation leads to the discovery of a threshold frequency o, of 
deformational origin in the spectrum of the longitudinal and transverse vibrations of the two-dimensional 
crystal. The dependence of o, on the parameters of the problem (the clamping field El, surface-electron 
density n, and temperature) is studied. 

PACS numbers: 67.70.+n 

INTRODUCTION 

The phenomenon of crystallization of electrons in 
various low-density systems1) with a compensating posi- 
tive background was predicted long ago by wigner.[ll 
Wigner's ideas subsequently received wide theroetical 
development. However, there is still no clear-cut ex- 
perimental confirmation of the existence of Wigner crys- 
tallization. The basic experimental problem has been 
to create suitable systems possessing the aggregate of 
properties necessary for the onset of crystallization-a 
low electron concentration, uniformity of the mean den- 
sity, the presence of a compensating background, the 
absence of strong random perturbations, etc. 

As suitable objects for this purpose it is currently 
proposed to use the two-dimensional electron systems 
that arise in the inversion layers near the surface of a 
semiconductor placed in a strong electric field,"' o r  
those which can be created artificially on the liquid- 
vapor surface of liquid helium.c3"' In the second vari- 
ant the electrons a re  supplied to a f ree  helium surface 
from an external source and a r e  held near the liquid- 
vapor boundary, which is for them a potential barr ier  
of height 1 eV, by electrostatic image forces and also, 
when necessary, by an external electric field. The 
neutralization of the electron gas is achieved by intro- 
ducing an additional metallic plate positioned a t  a mac- 
roscopic depth in the liquid helium. If L is the length 
of the electron system along the surface, k is the depth 
a t  which the metallic backing is submerged and X is the 
length-scale of localization of the electrons on the heli- 
um surface, the conditions that favor the observation of 
collective properties in the two-dimensional electron 
system a re  established by the inequalities L >> k >> X, 
which will be assumed to be fulfilled in the following. 

From a formal point of view the two-dimensional elec- 
electron systems in the inversion layers of semiconduc- 
to r s  and on a planar liquid-helium surface a re  equiva- 
lent. In particular, the spect ra  of the collective excita- 
tions of these systems have, in  the disordered state, 
the same branch of longitudinal vibrations: 

where q is the wave number of the vibrations, m and e 
a r e  the free-electron mass  and charge, n, is the mean 
density of the surface electrons, and T is a character- 
istic relaxation time. 

In the crystalline state, in addition to the longitudinal 
branch z,(q) there is one branch of transverse oscilla- 
tions, G, (q ) ,  which, in the long-wavelength limit, is 
sound-like: 

where a is the lattice constant; a-'=n,. The results  (1) 
and ( la)  f o r  two-dimensional electron systems on a pla- 
nar support a r e  contained, e. g., in papers by Chap- 
likC2' and  randa all. ''' * 

Besides the great similarity of the systems indicated, 
the liquid surface of helium possesses one important 
quality-it is atomically smooth, whereas the solid sur- 
face of a semiconductor contains, a s  a rule, various de- 
fects perturbing the electron system strongly and in a 
random manner. As a result, the observable proper- 
ties of the electrons on a helium surface admit a very 
much clearer interpretation than is the case for the in- 
version electrons in semiconductors. In particular, 
owing to the weak interaction between the surface elec- 
trons and the thermal vibrations of the f ree  helium sur- 
face, longitudinal weakly damped plasma oscillations 
with the spectrum (1) a r e  already observed in the sys- 
tem of surface electrons in the regime of comparatively 
low surface-electron densities n,k 10' cm4 and temper- 
atures T <  0.5 K.[~ '  

The observation, f i rs t  made by Grimes and Adams,"' 
of two-dimensional plasma oscillations with the spec- 
trum (1) in a system of electrons on a liquid-helium sur- 
face permits us to hope that, with lowering of the tem- 
perature into the region T << 0. 5 K, transverse oscilla- 
tions, whose presence is a characteristic indicator of 
crystallization of the electrons, should also ar ise  in 
this system. One must only keep in mind that the real  
spectrum of the longitudinal and transverse vibrations 
of the Wigner electron crystal on a helium surface 
should differ from the expressions (1) and (la). 
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The point is that in the presence on the liquid-vapor 
boundary of a lattice of electrons clamped to the sur- 
face from the gas-phase side by the strong electric field 
E l  necessary for good occupation of the ground surface 
level, the boundary does not remain planar but is self- 
consistently deformed under each of the electrons local- 
ized on the helium surface. ['' The shape of this defor- 
mation possesses great inertia and, in the problem of 
the electron-vibration spectrum, can be assumed to be 
static. As a result, electrons vibrating about their 
equilibrium positions experience the influence not only 
of the self-consistent Coulomb forces but also of the 
deformational forces tending to return each electron to 
the center of i ts  deformational potential well. The cor- 
responding calculation, carried out earlierCB1 in the 
hydrodynamic approximation, showed that a local defor- 
mation of the helium surface substantially alters the 
longitudinal-vibration spectrum of the system of surface 
electrons: 

where z, is given by (1) and w, is the characteristic vi- 
bration frequency of an electron in the deformational well. 
In the limit that the electron concentration tends to zero, 
w,= (e~,)~/21rEa, where a is the surface-tension coef- 
ficient. 

The more detailed theory of the vibrations of the Wig- 
ner electron crystal on a helium surface described in 
the present work makes i t  possible to study also the in- 
fluence of deformation of the helium surface on the 
transverse branches of the electron-lattice vibrations. 
In addition, the question of the dependence of the thresh- 
old frequency w, on n, and T is investigated in the paper. 

Basic definitions 

A. We shall consider a system of surface electrons 
arranged on a square o r  triangular lattice on the liquid- 
vapor boundary and clamped to the helium surface by a 
field E l .  The potential energy of an individual electron 
above a deformed surface is changed (in comparison 
with the planar problem) by the quantity Vt(r): 

where 5 ( r )  is the deviation of the helium surface from 
the planar state and r is the two-dimensional radius 
vector along the surface. 

A depression in the helium surface is induced by the 
pressure of the electrons on the surface: 

P.=eE,n (r) . (4) 

Here n(r)  is the distribution of electron density over the 
helium surface. It is natural to assume that a deforma- 
tion of the surface does not have time to adjust to the 
rapid vibrations of the electrons in the lattice and, con- 
sequently, the quantity [(r) is determined by the aver- 
age value (n ( r ) )  of the electron density. The conditions 
under which such an approach is correct  will be indi- 
cated below. 

Following our previous paper,c'' we represent (n(r ) )  
in the following form: 

where 1 is the position vector of a certain lattice site, 
and (u2)  is the mean-square displacement of an elec- 
tron from its equilibrium position. For the moment the 
value of (u2)  remains undetermined. 

Deploying the definitions (4) and (4a), we can solve 
the problem of the deformation of the helium surface 
under the action of the pressure (4). The size of the 
dip ( ( r )  in the helium surface near a certain lattice site 
then turns out to be equal toC7' 

Oclul<<n, -lf2. Here u is a two-dimensional radius vec- 
tor  measured from the center of the given lattice site 
and a is the surface-tension coefficient. 

For displacements u satisfying the stronger inequality 
u2 << (u2 ) , the expression (5) takes the form 

It must be remarked that the vibration amplitude of 
electrons localized a t  the lattice s i tes  has the scale u2 - (u2) .  This implies that, for the deformational part 
V, (3) of the potential energy of the electrons, there is 
not, strictly speaking, a consistent harmonic approxi- 
mation, since the corresponding expansion of ( ( r )  (5a) 
has a smaller region of applicability (u2 << (u2)  ) than is 
necessary from the point of view of a harmonic descrip- 
tion of the dynamical properties of the electrons in the 
lattice. Nevertheless, aiming principally at qualitative 
results  in the present paper, we shall confine ourselves 
to investigating the solution of the electron problem in 
the harmonic approximation, being guided in this by the 
following considerations. 

1. It can be shown, using the more general expres- 
sion (5) for ((r) ,  that the results  of the harmonic ap- 
proximation for the excitation spectrum of the two- 
dimensional electron crystal a r e  qualitatively correct. 

2, There exist well-known methodscg1 for taking into 
account the effect of anharmonicities on the vibration 
spectrum of different periodic structures with mean- 
square displacements of relatively large amplitude. 
These methods will be used in the following to refine the 
details of the spectrum w,(q) of the Wigner electron 
crystal on a liquid-helium surface. 

Thus, the se t  of requirements on the deformation po- 
tential V,(r) (3) consists of the condition that the defor- 
mation 5 ( r )  be periodic, the possibility of using the adi- 
abatic approximation (4a) for the calculation of ((r), 
and the existence of the harmonic approximation, in 
which V,(r) has the form (3) with 5(r )  from (5a). 

B. Proceeding to the solution of the dynamical elec- 
tron problem in the harmonic approximation, we write 
the total potential energy V of the mutual Coulomb in- 
teraction of the electrons, each of which s i t s  in the well 
V,(r) (3), (5a), in the following form: 
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Z v = - A~ ( 1 - 1 1 )  ui(1)u, (il), 
2 Il'i, 

The tensor A:;)(l - 1') is determined by the Coulomb 
interaction of the electrons. The explicit form of this 
tensor is given in the papert4' by Crandall. It is worth 
noting that the tensor ~:y ' ( l  - 1') possesses the property 

At the same time, 

This difference ar ises  from the fact that in the for- 
mation of the crystal on a planar helium surface a dis- 
placement of all electrons by a constant vector u<<a  
leads to a displacement of the crystal a s  a whole with 
respect to the surface, without changing the total poten- 
tial energy. But in the case of the crystal on a self- 
consistently deformed helium surface the analogous 
procedure of displacing all electrons by a small  vector 
u <<a is accompanied by an increase of the deformation- 
al potential energy. 

According to (6), the deformational part of A,,@ - 1') 
arising from V&r) turns out to be diagonal. This means 
that the problem of the vibrations of the lattice electrons 
above a deformed surface is reduced to the already- 
solved problem of the vibrations above a planar surface 
by making, in the equations of motion, the replacement 

Consequently, the required dispersion law has the fol- 
lowing appearance: 

Here Z#(q) is the spectrum of the electron vibrations 
over a planar helium surface, a s  determined by formu- 
l a s  (1)- (la); the index p denotes the polarization ( I  or  
t )  of the spectrum. In other words, the deformation of 
the surface leads to the appearance of a threshold fre- 
quency w, in both the longitudinal and the transverse 
branch of the spectrum. 

The expression (8) contains the undetermined quantity 
(u2) ,  appearing in the denominator of w i .  To eliminate 
this indeterminacy we shall make use of a well-known 
relation connecting (u2) with the spectrum of a lattice 
of the given type: 

Here N is the number of electrons and the index p de- 
notes summation over the possible polarizations of the 
spectrum. When the spectrum (8) is substituted into the 
right-hand side of (9) an equation for (u2) arises,  the 
solution of which completes the investigation of the 

question of the spectrum of the Wigner electron crystal 
on a helium surface in the harmonic approximation. 

C. We shall consider the system of equations of mo- 
tion of the surface electrons in the more general case of 
the deformation interaction v,(r) (3) with 5 (r)  from (5): 

where A;,(l- 1') is given by (6). The question is: how 
does the dispersion law of the given system of equations 
of motion behave in the region of small wave numbers? 

To answer this question we shall make use of the cir- 
cumstance that, in the absence of the deformational in- 
teraction, the solution of the corresponding dynamical 
problem leads to the following long-wavelength asymp- 
totic forms of the vibration spectrum of the electron - - 
crystal: w, l ,,0aq'/2, w,l ,,,=q. c4' Thus, in the limit 
q - 0 in the system (10) we can neglect the Coulomb part  
of the problem, both for the longitudinal and for the 
transverse vibrations. As a result 

With the aid of the replacements 

Eq. (10a) reduces to the dimensionless form 

This means that the scale of variation of u and w, is de- 
termined, to within numbers of order unity, by the ex- 
pressions (lob). It is clear that the structure of w, 
from (lob) is analogous to that of wo from (7). This 
agreement serves a s  an argument that the harmonic ap- 
proximation is reasonable, at least for the long-wave- 
length limit o r  for vibrations with small dispersion. 

Investigation of limiting cases 

It is possible to  obtain an analytic solution of Eq. (9) 
for (u2)  only in certain limiting situations. 

A. We shall consider f i rs t  the case of low electron 
concentration and sufficiently low temperatures: T 
<<Awe. Neglecting the dispersion of w,(q) in this limit 
and taking into account the asymptotic behavior 
coth@w0/2 T)- 1, i t  is not difficult to obtain from (9) 
the relation 

Substituting (9a) into the definition (7) of w,, we find an 
explicit expression for wo : 

The result (11) corresponds to the characteristic fre- 
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quency w, of a single electron localized at the helium 
surface by the action of the clamping field El. The 
structure that ar ises  (localized electron+ surface defor- 
mation) has been dubbed a surface anion.L101 The char- 
acteristics of this structure (the localization energy 15s 
and effective mass M) a r e  finite provided that the capil- 
lary constant x of liquid helium is finite: 

where g is the acceleration due to gravity and p is the 
density of the helium. 

The derivation of the relation (11) from the general 
equation (9) gives an indication of the correct  asymptot- 
ic behavior of w, a s  T and n, tend to zero. Written out 
to the first  nonvanishing terms in T and n,, the expres- 
sions for wi and ( u 2 )  have the following appearance: 

son with w,. Using the numerical value a =  0.36 erg/ 
cm2, we find from (13a) the value of the limiting density 
above which the dispersion of the longitudinal vibrations 
becomes small: n: - 10" cm". 

For the transverse vibrations the corresponding in- 
equality (13) has, to within a constant of order unity, a 
form analogous to (13a). Thus, in the region n>n:, a s  
for n,- 0 also, the dispersion of the vibrations of the 
electron crystal on a helium surface disappears. The 
only difference is that in order to produce a finite value 
of w, in the limit n,- 0 it is necessary to use a field E L  
>> 21ren,. But if n ~ n :  the dispersion already vanishes 
automatically for the minimum field El= 27rens ensuring 
stability of the electron system on the helium surface. 

C. To conclude the discussion of the low-temperature 
limit, we shall give the solution of Eq. (9) in the Debye 
approximation for arbitrary n, and T = 0. In this case 
the quantity (u2)  (9), represented in the form 

where w,(O) is given by formula (11) and w: by formula 
(8), and q, is the maximum value of q: q i  = y%,, y "- 1. 
The formulas ( l lb )  generalize our results  inc1'' for w, 
to the case of finite (low) temperatures and n,. 

B. It is interesting to note that the vibrations of a 
Wigner crystal composed of the electrons on a helium 
surface become dispersionless not only at small but 
also at large values of the density n, . In fact, to pro- 
duce a finite density of electrons on a helium surface i t  
is necessary to use a clamping field El of intensity 

Otherwise, the electrons, under the influence of their 
own field, will move away from the surface into the 
volume of the gas phase. It is of importance for  the 
following that compensation of the external field E, by 
the intrinsic field of the electrons occurs over a dis- 
tance of the order of the lattice constant, i. e., of the 
order of nilf2, from the helium surface. Consequently, 
if the localization length X of the electron wavefunction 
in the direction of the gas phase satisfies the inequality 
X<<n;lf2 (which is always the case), the surface elec- 
trons themselves a r e  situated in an uncompensated elec- 
t r ic  field EL. 

Taking into account what has been said, we write 
down the condition for small dispersion for the longitu- 
dinal and transverse vibrations of the electron crystal: 

Using the definition q;= -y2n, (-y = 1), wo from ( l l ) ,  and 
an intensity El equal to i ts  minimum value from (12), 
namely, El= anen,, one can convince oneself without 
difficulty that, e.g., the inequality (13) for the longi- 
tudinal vibrations takes the form 

turns out, after replacement of the corresponding sums- 
by integrals and use of the long-wavelength asymptotic 
forms of w,(q) (8), to be equal to 

The value of q, in the relation (14) has been chosen us- 
ing the condition that Eq. (14) goes over into (9a) a s  
n,- 0. 

Combining (14) with the definition (7) of w,, we find 
an equation for wo . Written in dimensionless form, this 
equation has the following appearance: 

i t s  solution is 

The value of a,,, is determined by equating the expres- 
sion in curly brackets in (15) to zero. 

As the characteristic frequencies w,(O) and w, Eq. 
(15) contains the frequency w,(O) from (11) and also the 
frequency w, that a r i ses  in the problem of the vibrations 
of a given electron in a field of stationary neighbors. 
This specific choice of the characteristic frequencies 
w,(O) and w, has been made with the purpose of com- 
paring the results  for wo that follow from the relation 
(1 5) with the definition of w, used by us previously. 'I1 

There. the calculation of the effect of the Coulomb in- 
n.>n.', (n.')'/a-2yfi2alnmee. (13a) teraction on the value of w, was carried out, following, 

in the static model, in which all electrons in the lattice, 
In other words, in the region n,>n: the dispersion of apart  from the given one, a r e  stationary. The corre- 
the longitudinal vibrations can be neglected in compari- sponding expression for 0 fromc1' has the form 
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Thus, the determinations (15a) and (16) of $2 are  qual- 
itatively the same over the whole range of x. 

The real parameters determining the variation of the 
frequency wo a re  the intensity E l  and surface electron 
density n,. Here it is necessary to remember that in 
the region of small n, <<n: the magnitude of E, can ap- 
preciably exceed anen,. But in the region n,-n: it is 
technically difficult to violate the equality E L =  2nen,. 
Therefore, to obtain a complete picture of the depen- 
dence of wo on E, and n, it is natural to take for the 
characteristic clamping field E l  the expression E l  = E: 
+ 2nen,, where E! is the clamping field for n,- 0, and 
supplement the expressions for $2 in terms of x by the 
dependence of x on n, and E!: 

According to (17), the quantity x in the region of 
small n, and finite values of E!>> 2ren, increases with- 
out limit: ~ = n ; ~ " .  With increase of n, the value of x 
decreases, passes through a minimum and, in the re- 
gion of large values of n,, again begins to grow, like 
xanZf4. When the asymptotic form ~ l ( x ) - x  a s  x -  m is 
taken into account, this behavior of x with monotonic 
increase of n, is evidence of a relative increase in the 
role of the threshold frequency in the dispersion law of 
the collective vibrations of the electron crystal on a 
helium surface a t  small and large values of n,. This 
conclusion correlates with the phenomenon, noted in the 
preceding section, of the disappearance of dispersion in 
w,(q) at small and large values of n,. 

D. In the region of finite temperatures i t  is possible 
to obtain an explicit expression for (u2)  only in the lim- 
i t  wo << z,(q,,,) ( p  = 1, t), wo << T. The f i rs t  two inequali- 
ties permit us in the calculation of the integrals from 
(9) in the Debye approximation to neglect the frequency 
wo everywhere except in the contribution to (u2)  from 
the transverse vibrations, which diverges logarithmi- 
cally at the lower limit of the frequencies. As a re- 
sult, 

(u2>=(u12>+<ulz>, 

b'" -* 5(3) T 
(18) 

<ulZ> = - n. + - 
2nSbn' (Y.) ' v,=ezn; , 

6n (2n)  '" (184 

where b is the Bohr radius b =ti2/me2, g(x) is the Rie- 
man l-function and s is the sound velocity from (la). 

Using now the assumption wo<<T and also the rela- 
tion (7) between w, and (u2) ,  we bring Eq. (18) to the 
form 

This equation has two roots (z,> 1 and z,< I), but only 

one of them (z > 1) satisfies the inequality Ew0 c< T used 
above. In this limit the number v is large and, there- 
fore, to solve Eq. (19) we can make use of the method 
of successive approximations. 

For the k-th approximation we obtain the formula 

For v >> 1 we can confine ourselves to the approximation 
with k = 1: 

The corresponding expression for wo is obtained by sub- 
stituting (20) o r  (20a) into formula (7). 

Passing on to the discussion of the results of this 
section we note f i rs t  of all the absence of a logarithmic 
divergence in the expression (20a) for (u2) .  The di- 
vergence in (u2)  that is characteristic for  two-dimen- 
sional systems and ar ises  on account of the contribu- 
tion of the long-wavelength transverse vibrations to 
(u2)  is cut off in the present case at the finite value wo, 
a s  a result of which the expression for (u2)  turns out 
to be finite and independent of the size of the system, 
It i s  necessary, however, to bear in mind that the ab- 
sence of this divergence is in fact a consequence of the 
approximation chosen in the present paper, in which the 
shape of the deformation of the helium surface is static 
and perfectly periodic. In reality, for very low frequen- 
cies the assumption that the deformation is static is no 
longer reasonable. In this region of frequencies an 
electron and i ts  deformational well begin to move self- 
consistently a s  a certain new quasi-particle (a surface 
anion) with a strongly renormalized (in comparison 
with the electronic) effective mass M. The scale of this 
mass can be estimated in analogy with the determination 
of M (l la),  in which the capillary length is replaced by 
the spacing between the electrons in the lattice: 

As a result, in addition to the optical vibrations with the 
spectrum (8) the lattice of electrons on a helium surface 
should possess a very soft branch of acoustic vibrations, 
having the dispersion law (I), ( la)  with effective mass 
M from (21). The presence of acoustic vibrations in 
the system of surface anions leads to the usual logarith- 
mic divergence of the magnitude of the mean-square 
displacements of the surface anions about their equilib- 
rium positions. 

Unfortunately, the concept of the effective mass of a 
surface anion positioned a t  a lattice si te does not have 
a well-defined meaning (in comparison with the defini- 
tion of M from ( l l a )  for a single anion), since in the lat- 
tice problem the surface anions touch each other and, 
consequently, interact strongly with each other. In 
view of this the expression (21) for M can be used only 
a s  an estimate for arriving at various suggestive con- 
siderations. In particular, the possibility of subdivid- 
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ing the problem of the calculation of the vibration spec- 
trum of the electron crystal on a helium surface into an 
optical and an acoustic part is based on using the fact 
that the parameter m / ~  << 1 is small. In reality this 
ratio is of order m / ~  5 

Here it is already pertinent to discuss the second 
adiabaticity condition, which permits us to define the 
electron pressure on the helium surface in the form (4), 
(4a). In order that the helium surface respond only to 
the mean electron density, i t  is necessary that the in- 
equality 

which requires that the characteristic frequency we of 
an electron at a site be greater than the characteristic 
frequency wc of capillary waves with wavelength X 
- ( u ~ ) " ~ ,  be fulfilled. This choice of scale for the cap- 
illary wavelength follows from the definition (5) for 
{ ( r ) .  Taking into account the capillary-wave dispersion 
law w2= ap-lq3, where q is the wave number of the vi- 
brations, and noting that the bound we~l i /m(u2)  is valid 
for the characteristic electron frequency (the sign > 
refers to the high-temperature case), we find from (22) 
the relation 

This inequality is fulfilled up to (u2 )' "6 lo-' cm, i. e. , 
in the whole region lo6 cm"$n,$ 10" cm4 of interest 
to us. 

Among the results of this section it is worth noting 
also the expression (18a) for ( u , ) ~ .  Using this expres- 
sion we can ascertain in which temperature region fo r  
a given density n, there exist only longitudinal vibra- 
tions with the spectrum (1) and determine where we may 
expect transverse vibrations and a threshold frequency 
w, to appear a s  the temperature is lowered. This esti- 
mate is of real interest in connection with the experi- 
ments of which make it possible to detect longitudi- 
nal vibrations in the system of surface electrons. 

The boundary temperature separating the regions of 
purely longitudinal vibrations and the region in which 
transverse vibrations may possibly appear is determined 
by the order-of-magnitude relation 

Neglecting the contribution of the zero-point vibrations 
in the expression (18a) for (u t )  and substituting the 
simplified expression for (u:) into (23), we find an ex- 
pression for the required boundary temperature T *: 

CONCLUSION 

We shall summarize some of the results, One of the 
necessary conditions for the existence of a Wigner crys- 
tal  is the requirement (u2)  <<nil. In the case of the for- 
mation of an electron crystal on a liquid-helium surface 
this same requirement i s  sufficient for the appearance 
of deformation effects due to the local pressure on the 
surface by the electrons located at the lattice sites and 
clamped to the f ree  surface by a strong electric field. 

The onset of deformation of the helium surface leads 
to a number of observable consequences, the most in- 
teresting of which is the appearance of a threshold fre- 
quency in the spectrum of both the longitudinal and the 
transverse vibrations of the crystal. In the present pa- 
per a self-consistent system of equations is proposed 
making it possible to display the effect of the deforma- 
tion of the helium surface on the spectrum of the elec- 
tron crystal on the liquid-vapor interface of the liquid 
helium. Solving this system of equations in the har- 
monic approximation gives a determination of a number 
of quantitative characteristics of the threshold frequency 
wo in the electron spectrum. In particular, we have 
shown that the dispersion of the vibrations of the Wigner 
crystal becomes small not only in the region of low sur- 
face electron density but also in the region n,>nz, 
where nz i s  given by (13a). It has been noted that in 
conditions of small dispersion the solution in the har- 
monic approximation of the problem of the spectrum of 
the Wigner crystal on a self-consistently deformed he- 
lium surface has not only qualitative but also quantita- 
tive significance. 

The author is grateful to A. I?. Andreev for discus- 
sion of the results of the work and to Yu. P. Monarkha 
for a number of critical comments and help in the calcu- 
lations. 

"An electron system has low density if the distance between 
the electrons in the system is much greater than the electron 
Bohr radius. 

"1t should be noted that in the determination of the spectrum 
of the transverse vibrations of a two-dimensional Wigner 
crystal inc2'41 the transverse electric fields that arise on ex- 
citationof the transverse vibrations in the electron crystal 
were not taken into account, and this, in the general case, 
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