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The generation of optical phonons as a result of intraband absorption of electromagnetic radiation by the 
conduction electrons of a semiconductor is investigated theoretically. The electron-phonon coupling 
constant is assumed to be small. Single phonon processes involving the emission of an arbitrary number of 
electromagnetic field quanta are considered, i.e., a theory nonlinear in the field intensity is constructed. 
Expressions for the rate of phonon generation are derived at various ratios of the electromagnetic field 
frequency to the limiting phonon frequency, and at different field intensities. The expressions are analyzed 
in detail for the case in which the conduction electron distribution is described by a Boltzmann function 
that depend on the erature. It is indicated that can appear in the optical-phonon system upon irradiation 
of the semiconductor by an intense electromagnetic field. This instability manifests itself in a change in 
the sign of the coefficient of the linear damping of the phonons. 

PACS numbers: 7 1.38.+i 

As is known, the laws of conservation of energy and 
quasimomentum forbid processes of direct intraband 
absorption of a phonon by an electron. These processes 
can take place only with participation of a third body. 
This latter is usually either a defect of the crystal lat- 
tice o r  a phonon (acoustic o r  optical). The process of 
infrared absorption with participation of an optical pho- 
non was studied by Lang, Firsov, and one of ust" for 
optically isotropic semiconductors and also by Lang and 
the authorsLz1 for semiconductors possessing optical 
anisotropy. In these papers the infrared absorption was 
considered a s  a second-order process, in which an elec- 
tron with energy ~ ( p )  absorbs a photon with energy AD 
(its quasimomentum can be assued to be zero within the 
limits of accuracy of our calculation) and absorbs o r  
emits an optical phonon with energy RDo(q), where q is 
the wave vector of the phonon. 

energy ~*Afi~+PilD, where Do is the limiting frequency 
of the phonon," D is the frequency of electromagnetic 
radiation, and I is an arbitrary integer, positive (ab- 
sorption) o r  negative (emission). We shall be interested 
in the case of Boltzmann statistics and sufficiently low 
temperature, when exp(- ADo /To) << 1 and the probability 
of absorption of an optical phonon is exp(tiD0/T0) times 
smaller than the probability of i ts  emission. Here To 
is the lattice temperature. For this reason we shall 
consider chiefly processes taking place with emission of 
an optical phonon. 

We distinguish between three cases, depending on the 
ratio of the frequencies D and Do. 

1) Resonance: D= Do with sufficient accuracy. As a 
result of the process of second order, the final state of 
the electron is identical with the initial. Therefore, the 

The purpose of the present work was to trace the heating of the electrons by the electromagnetic field is 
comparatively weak. The ra te  of generation of the opti- "fate" of the produced optical phonons. The basic pro- 
cal phonons with wave vector q is directly proportional 

cess that impedes their accumulation is the decay of the 
to the intensity of the electromagnetic radiation S in the 

optical phonon into two acoustic phonons. The corre- semiconductor, so  long as it remains significantly 
sponding characteristic decay time amounts, according 

smaller than some critical intensity S,(q), equal to 
to rough estimates, to lo-" sec, i. e., i t  is already not 
so small. And this means that, at a sufficient intensity s,(q) =~'"m~cS2~il8ne~q', 
of electromagnetic radiation in the semiconductor, a 

(1 

considerable number of optical phonons can accumulate. where e and m a r e  respectively the charge and the ef- 

For definiteness, we shall consider the interaction of 
conduction electrons with polar longitudinal optical pho- 
nons is optically isotropic (i. e., cubic) semiconductors. 
Then the qualitative picture depends weakly either on 
the character of the electron-phonon interaction o r  the 
isotropy assumption (cf. Ref. 2). We assume the elec- 
tron-phonon coupling constant to be sufficiently small 
and limit ourselves to single-phonon processes only. 

fective mass of the conduction electron, E is the permit- 
tivity of the semiconductor at the frequency D. At S 
> S,, the rate of generation of optical phonons, on the 
other hand, falls off with increase in the intensity. At 
q = loe  cm", m = 0 , l  mo (m, is the mass of the f ree  elec- 
tron), and D= 3x 10" sec-', S, amounts to about 10' W/ 
cmZ. The number of phonons produced per unit time a t  
S <<S, is easily estimated, for example, by the formu- 
l a s  of Ref. 1. It is also important to know the interval 

On the other hand, there exist very intense sources of the wave vectors q of the generated optical phonons. 
of electromagnetic radiation a t  the present time. Tak- In the resonance case the upper bound of this interval 
ing this into account, we shall investigate processes q ,  is determined by the spread of the electron energy, 
with participation of an arbitrary number 1 of electro- and is consequently equal in order of magnitude to 
magnetic quanta. As a result of such a process, an ( ~ T ) " ~ / A .  The lower bound of the interval that we 
electron with initial energy E goes over into a state with studied, q,,,, is described by the limits imposed by 
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electron collisions on the applicability of the theory de- 
veloped here, namely, the quantity Fiq should be greater 
than the uncertainty of the electron quasimomentum 
R ( ~ / T ) ~ / ~ T ; ~ ,  where T, is the characteristic time of 
electron collisions. To be sure, the case $2 = no encoun- 
t e r s  considerable experimental difficulties for  the fol- 
lowing two reasons. 

First, it is difficult to choose an intense source of 
electromagnetic radiation with 51 = 0,. Second, in opti- 
cally isotropic crystals, the frequency no is the bound- 
ary of the region of opaqueness of the crystal. For 
this reason, we consider other cases, in which the fre- 
quency S2 is quite different from a,. 

2) The case no, from the viewpoint of the possi- 
bility of experiment, is much more realistic than the 
preceding one. The distribution function of the phonons 
has a maximum at q = q, = [2rnti-'(ln- no)]1/2. Since the 
quantity S, is proportional to Si4, intensities of the order 
of S, a r e  hardly achievable a t  the present time. If S 
<< S,, then the height of the 1-th peak is proportional to 
the 1-th degree of the s m a l  parameter S/S,; therefore 
the principal role is played by the process with 1 = 1. It 
must be noted that the nonequilibrium optical phonons in 
this case a r e  not generated only in the process of multi- 
phonon transition itself. The conduction electrons, 
thrown into a state with high energy, then return to the 
bottom of the conduction band, emitting in succession a 
series of optical phonons. If the frequency is a multiple 
of no and the interaction with the optical phonons is ap- 
preciably greater than the interaction with the acoustic 
phonons, the distribution function of the electrons at the 
bottom of the conduction band can differ comparatively 
little from a Boltzmann function with temperature 

The intensity of the generated optical phonons is com- 
paratively small. As has been mentioned, even a t  1 = 1, 
it is proportional to the f i rs t  power of the ratio S/S,, 
i. e., a t  fixed intensity S, it is proportional to n-'. 
Therefore, it is tempting to consider also in the oppo- 
site limiting case 51 << no. 

3) in the case SZ <<a,-, , if exp(- Rno/T) << 1, there is a 
threshold in the intensity S, beginning with which the 
process of generation of optical phonons takes place. 
The position of the threshold depends on the phonon wave 
vector q. It is easy to understand the cause of the 
threshold effect from the following discussion. 

Let SZ belong to the microwave band. For a wave- 
length of 1 cm, the ratio nO/n is of the order of one 
hundred, i. e., the emission of the optical phonon is ac- 
companied by absorption of a large number of electro- 
magnetic quanta. In this situation, we shall describe 
the interaction of the electron with the electromagnetic 
field in classical terms (the corresponding criteria will 
be formulated in detail below). In an alternating elec- 
tromagnetic field of frequency $2 the electron undergoes 
classical oscillatory motion and the amplitude of the al- 
ternating Component of i ts  quasimomentum is tiAp= e ~ ~ /  
n. The location of the threshold is obtained if the quan- 
tity FiAp reaches the minimum value of the electron 
quasimomentum, Rp,,,(q), a t  which the conservation 

laws permit the radiation of a phonon with a wave vec- 
tor q. We have 

whence 

where a! is the angle between p and q. This expression 
is a minimum at C O S ~ =  1, when 

Equating this value to Ap, we find the threshold field 
Eo(q)= m n n o  /eq and the threshold intensity 

where a,= 52,+fiq2/2m, With further increase in the in- 
tensity, the number of generated phonons falls off in 
comparison with the threshold value. 

In order to deal with the lowest possible intensities, 
it is convenient to use the lowest microwave frequencies 
51 compatible with the condition 

which is one of the basic cri teria for the applicability 
of the theory developed here.2' 

The quantity S,,(q) reaches a minimum value at q = q, 
= (2 m no /ti)'I2: 

which then represents the absolute threshold in intensity 
for generation of optical phonons by the microwave field. 
At 52 of the order of 10" sec-', this quantity turns out to 
be of the order of hundreds of watts per square centi- 
meter. 

In this situation, an important role can be played by 
the "heating" of the conduction electrons by the micro- 
wave field, and then all  the quantitative results obtained 
below a r e  valid if we take T to mean the electron tem- 
perature, which is generally not identical with the tem- 
perature To of the crystal lattice. The electron-temper- 
ature approximation is useful if the characteristic time 
re,  of the electron-electron collisions, which is of the 
order of 

where L is the Coulomb logarithm, is smaller than the 
relaxation time of electrons with respect to the optical 
phonons. At an electron concentration no= 10" cm-', 
E =  10 and T =  100 K, we have ~ , , - 1 0 - ~ ~  sec. How can 
the generation of optical phonons be recorded? The 
most effective a r e  apparently the optical methods, for 
example, Raman light scattering. If we use visible light, 
such a method allows us to record phonons with q small- 
e r  than o r  of the order of several units in lo5  cm-'. 

Another optical method applies, in f irst  degree, to 
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optically anisotropic semiconductors. In such crystals, 
the optical phonons a re  generally not purely longitudinal 
o r  transverse, but mixed."' Being coupled with both 
the longitudinal and transverse electric fields, they 
should on the one hand interact with the conduction elec- 
trons, and on the other, they should emit at a frequency 
no on approaching the boundary of the crystal. From 
this viewpoint, the greatest physical interest, in our 
opinion, attaches to the case $2 c< no, which means that 
the crystal emits infrared light under action of micro- 
wave radiation. 

It should also be noted that in all circumstances, the 
principal mechanism of the loss of the optical phonons 
is not the transition to the external electromagnetic 
field, but decay into acoustical phonons. Therefore, 
their nonequilibrium distribution function is larger the 
smaller the probability of this decay. From this point 
of view, there is special interest in the case considered 
by one of the  author^,^^' when the frequency of the lon- 
gitudinal optical phonons in the entire optical branch o r  
in a significant part of it exceeds twice the frequency of 
the phonons of any other branch. Then the longitudinal 
optical phonon cannot decay into two phonons, and i t s  
lifetime can turn out to be anomalously large. 

We proceed to the quantitative solution of the problem. 
We shall see below that, by virtue of the unusual mech- 
anism of generation of the optical phonons, the frequen- 
cy interval in which i ts  distribution is different from 
zero at given q can be small in comparison, for exam- 
ple, with i t s  natural width r. In this case, the state 
of the phonons is not conveniently described by specify- 
ing their usual distribution function. We shall therefore 
formulate the problem in terms of Keldysh diagram 
technique,c6' which allows us to introduce a generalized 
phonon distribution function. 

In the Keldysh technique, the phonon Green's function 
D is the matrix 

Here T (T) is the symbol of chronological (antichrono- 
logical) product, x is the se t  of variables r and t , and 
the angular brackets denote averaging over some initial 
density matrix, the explicit form of which does not play 
a role.[61 The rules of the diagram technique a r e  es- 
sentially those of Feynman, with only the addition that 
each vertex is characterized by an index 1 or  2, which 
is the matrix index of the ends of the propagator that 
meet at this vertex. The indices 1 (2) correspond to 
the factor 1 (- 1); summation is carried out over the 
matrix indices corresponding to each vertex. 

The Hamiltonian of the system is the sum of the energy 
operators of the electrons in an external periodic field, 
which we assume to be linearly polarized, with a vec- 
tor potential A(t), of the phonons (with account taken of 
the phonon-phonon interaction due to the anharmonicity), 
and of the electron-phonon interaction (see Ref. 7). 
Carrying out a canonical transformation,[" we can 
transfer the entire dependence on the field to the elec- 
tron-phonon interaction, a s  a result of which the ex- 

pression for the electron-phonon vertex is of the form 

where 

Here E,, is the static permittivity, E ,  is the permittivity 
at the plateau of the dispersion curve, and ff is the 
FrShlich coupling constant.c71 

Since the external field depends explicitly on the time, 
the Green's function of the phonons not only depends on 
the time difference tl - t , ,  but is also a periodic func- 
tion of the combined variable t = (t, + t,)/2 with period 
2n/$2. We shall assume that the damping of the phonons 
r is small: 

It can be shown that all the harmonics of the Green's 
function, except the zeroth, a r e  small quantities in 
terms of this parameter. Therefore, we shall calculate 
in what follows only the zeroth harmonic. In the station- 
ary state, it depends only on the differen_ce x - x' and 
we can calculate i t s  Fourier component D(k), where k 
denotes the set  of variables w and q. 

In addition, we need the transformed phonon Green's 
function 

where the unitary matrix U =  (1 -icy) a, oy is the sec- 
ond Pauli matrix. Here Dr(Da) is the retarded (ad- 
vanced) Green's function; in place of the function Dd(k), 
i t  is convenient to introduce the generalized phonon 
function N(k) ": 

The various Green's functions satisfy the following re -  
lations, which a r e  useful in specific calculations: 

Dd=D'+D'=D++D-, 
D"=Dc-D-=D+-D=, 
D'=D-D+=D- -B=, (I11 

Using these relations and the definition (lo), we obtain 
the following expressions for the functions D*(k) in 
terms of the generalized distribution function: 

We wish to derive the kinetic equation for  the function 
N(k) . -  It is contained in the Dyson equation for the func- 
tion D(k), in which the polarization operator fi(k) en- 
ters.  It constitutes a matrix of the form 

which has the following properties: 
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where the asterisk denotes the complex conjugate and 
the superscript T denotes the transposed matrix. Using 
these properties, we break up rIT'" into a sum of real  
and imaginary parts. 

where A and I' a r e  real functions satisfying the relations 

By means of the above relations we can verify that the 
function is real and has the property 

Further, limiting ourselves to the lowest approximation 
in the electron-phonon and phonon-phonon interactions, 
we shall neglect the small phonon frequency shift due to 
the quantity A(k). By virtue of the smallness of the 
damping coefficient r ( k )  in comparison with the frequen- 
cy a,, it is sufficient to know its  value a t  w = 51, (on the 
mass shell). We set  r,= r(q, 51,). 

The generalized kinetic equation is the equation for 
the function D'(t,  q, w).  In the spatially homogeneous 
case, it is of the form 

The following pole approximation should be used, at the 
accuracy assumed by us, for the functions Df(k) which 
enter explicitly in the right-hand side: 

Substituting (19) in (18), we find for the rate of gener- 
ation of the phonons a general expression that can be 
represented in the form of a sum of two terms (describ- 
ing the induced and the spontaneous transitions, respec- 
tively): 

where 

2 r ( k ) = i [ n + ( k ) - n - ( k )  1,  G ( k )  =-' zrI+ ( k ) .  (21) 

The polarization operator rI(k), in lowest approxima- 
tion, is the sum of the electron and phonon terms. To 
calculate the first, we use the zeroth approximation for 
the electron Green's functions. Finally, we obtain the 
electron contribution to the phonon damping2' 

where F, is the distribution function for electrons with 
quasimomentum Ep, a,, = e E,, /ma2 is the amplitude of 

the oscillations of the electrons in an alternating field 
of amplitude E,, and J,(z) is a Bessel function of order 
I . If F, is the Boltzmann function, then 

where 

The phonon contribution to the damping r,Dh was mea- 
sured experimentally in Refs. 12, 13 and was computed 
in Ref. 9. 

The rate of spontaneous generation of phonons-the 
second term on the right side of (20)-is 

When F,  << 1 is the Boltzmann function, this expression 
goes over into 

(25) 
In the stationary case of interest to us, the time deriva- 
tive on the right side of (20) is equal to zero, and at w 
> 0 we get 

As is clear from Eq. (25), the generalized distribu- 
tion function N(k) can be a rather sharp function of fre- 
quency w. In particular, its frequency width AW can 
turn out to be small in comparison with the quantity r,. 
Properly speaking, it is this which brings about the 
necessity of a description in terms of the generalized 
function N(k) rather than the ordinary distribution func- 
tion N,. If the frequency width is large in comparison 
with I?, , then we can introduce the ordinary distribution 
functioncg' 

In other words, at Aw >> I?,, the expression for N, is 
obtained if we set  w = 51, in N(k). At equilibrium, when 
the external electromagnetic field is absent and the dis- 
tribution function of the electrons and the acoustic pho- 
nons a r e  respectively the Fermi and Planck functions, 
we likewise obtain for N, , a s  we should, the Planck 
function, equal to exp(- En, /T) at T <<Eno. 

We a r e  interested in those cases in which the function 
N(k), a s  a consequence of the significant intensity of the 
radiation, is much larger than i ts  equilibrium value and, 
in particular, does not contain an exponential small fac- 
tor, i. e., the case in which the electron generation 
germ Ge  is sufficiently large. We shall not'take into 
consideration the phonon term G ~ ~ ,  which describes the 
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reverse process of sticking of the acoustic phonons with 
formation of an optical phonon since there a r e  usually 
a number of other channels which more effectively en- 
sure  the destruction of these acoustic phonons. (In 
those comparatively ra re  cases in which this is not so, 
the distribution function N(k) will be determined not by 
the rate of decay of the optical phonons but by the rate 
of destruction of the acoustic phonons via these other 
channels. ) 

So far a s  the damping coefficient I? is concerned, we 
shall f irst  discuss the case in which the electron con- 
centration no o r  the electron-phonon coupling constant 
is so small that the phonon contribution predominates 
in the damping. We can assume I?ih to be a constant 
weakly dependent on q, since the vector q is much 
smaller than the reciprocal of the lattice constant. We 
present the quantitative results which follow from the 
general formula (25) in the different limiting cases. 

Let An,  = Wo - 152 > 0. The argument of the exponential 
in the 1-th term of the sum turns out to be smaller than 
o r  of the order of unity if EAW~ /T 2 1, and in this case 
the values of q lie in the range q: /qT5q 5q  ,, where 

We now consider AW, < 0. At ti I AW, I /T L 1 the previ- 
ous interval (26) of allowed values of q is obtained. At 
R I A n z  1 /T >> 1, the condition under which the exponent is 
less  than o r  of the order of unity gives an interval of 
width Aq-q,near q=q , .  Thus, if RIWo-!dI>>T, the 
phonon distribution function has no longwave tail and it 
fo rms  a system of narrow peaks near q = q , . 

In order to estimate the order of the quantity N(k), 
we must estimate the argument of the Bessel function. 
As before, we shall be interested in such q at which the 
argument of the exponential in (25) is less  than o r  of the 
order of unity. As an example, we consider the f i rs t  
resonance, when ti 1 W0 - W I /T << 1 and the fundamental 
contribution to the sum (25) is made by the terms with 
1 = 1. If S cS,, the argument of the Bessel function is 
much less  than unity and we can use the experience 
~ ~ ( z ) = z / 2 .  If we assume for the subsequent estimates 
no = 1016 ern-=, I?:h= 5x 101° sec-l, and (Y - 0. 1, then we 
obtain from (25) at w =  Wo and q = lo5 cm" that ~ ( k ) =  1 
at S = 7 x lo5 w/cm2. 

We now consider the case Wo/W>> 1, where W is the 
microwave frequency. The value of the function ~ ( k )  
in this case depends essentially on the parameter 

Accordingly, we distinguish between two limiting cases. 

a )  The parameter y >> 1. It is most convenient to ana- 
lyze the results with the help of Eq. (25). In this case, 
only one term in the sum turns out to be important, with 
1 equal to the nearest (larger o r  smaller)  integer value 
of the ratio W O / W  if, in addition, the following inequality 
is satisfied: 

(it is assumed that the radiofrequency $4 << T/E). The 
maximum yield of radiated phonons is obtained at the in- 
tensities St,, (2). 

b) At y c< 1, many terms in the sum (25) a r e  important 
and, in order to study the expression (25), we first  
transform it. We represent the sum over 2 in (25) in 
the following form 

where W,= Wo+tiq2/2m and z = a,. q, and we make use of 
the Neumann expansion theorem for Bessel functions, 
which gives 

As a result, (28) takes the form 

In this integral, the region y < 1 is important and 
therefore a t  y << 1 we can set  ~ i n ( ~ ' / ~ y  )= y1'2y. Fur- 
thermore, making use of the integral representation of 
the Bessel function Jo, we obtain5' 

At high temperatures, when T >> ma,  /q2, we im- 
mediately obtain 

Since 

the quantity (30) represents the maximum possible rate 
of phonon generation via the mechanism considered by 
use (see (25)). 

We now consider the opposite case T << m W, /q2. If 
W, - Wlz I > > q ( ~ / m ) ' / ~ ,  then the expression (29) is ex- 
ponentially small. 

If the field intensity is so close to threshold that 
1 W, - W l z I I <<q ( T/m )'I2, then the main contribution to 
the integral is made by values of J ,  close to r/2, and we 
obtain 

At high microwave intensities, when W lz 1 /a, >> 1, the 
principal contribution to the integral is made by $ close 
to zero. Setting sin$ = J ,  and integrating, we obtain 
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It is important to note that a rather sharp directivity 
diagram of generated phonons ar ises  near the thresh- 
old. To be precise, sufficiently close to threshold, 
when 152, - lz l 52 l <<q(T/m)1/2, the range of angles 6 be- 
tween the wave vectors of the generated phonons and the 
direction of the electric field is 

Up to now, we have assumed that the electron damping 
of the optical phonons is small in comparison with the 
damping due to phonon anharmonicity. At sufficiently 
high concentrations no and values of the coupling con- 
stant a, the contribution of the electrons to the damping 
can in principle be more important. The expression 
(23) for the quantity re, which describes this contribu- 
tion, will not be investigated in detail here, since it is 
not clear to us a t  the present time whether it is possible 
to satisfy in the experiment the condition P t  rPh simul- 
taneously with the other cri teria formulated above for 
the applicability of our theory. 

We wish, however, to indicate that, under certain re- 
lations between the frequencies 52 and Do, the quantity 
re can be negative. The reason for this consists in the 
following. 

The number of induced transitions with absorption of 
an optical phonon and emission of 1 electromagnetic 
quanta is proportional to the difference in the probabili- 
ties of the corr'esponding direct and reverse transitions, 
i. e., to the difference F(cp) - F(E#+ Eno - Eln) (see (23)). 
For the equilibrium distribution function F(E*), this dif- 
ference is positive if LtO>152. If 52,<152, then the cor- 
responding term of the sum (23) turns out to be negative. 
This means that, because of the energy entering from 
the external field, the number of reverse transitions 
with emission of an optical phonon exceeds the number 
of direct transitions. If such negative terms make the 
dominant contribution to  the sum (23), then an unusual 
instability of the system of optical phonons develops in 
the presence of an intense external electromagnetic field. 

In conclusion, we discuss the question of the value of 
the electron temperature reached under our conditions. 
If scattering from acoustic phonons predominates, then 
we have at eEo>> 5 2 ( r n ~ ~ ) ' / ~  

where s is the sound velocity. If scattering from opti- 
cal phonons predominates, then a comparatively com- 
plicated integral equation is obtained for T. Its numeri- 
cal solution gives the value e x p ( - E a O / ~ ) -  0.2 in the 
case when the amplitude of the electric field is equal to 
the threshold value E o  (go), so  that a rather sharp 
threshold is obtained for generation of optical phonons. 

''we neglect the small dispersion of the optical phonons. 
''1f the carr ier  density is sufficiently large, so that the fre- 

quency turns out to be less than the plasma frequency, 

then the permittivity of the semiconductor is negative and 
the electromagnetic field falls off exponentially on going from 
the surface of the semiconductor to the interior. The at- 
tenuation length can, nevertheless turn out to be comparative- 
ly large and then the generation of optical phonons can be 
observed in the near-surface layer. 

3 ' ~ h e  Keldysh diagram technique for the study of nonequilib- 
rium phonons in solids was used by ~ e v i n s o n . ~ ~ '  His defini- 
tion of the function N ( k )  differs somewhat from ours. 

4 ' ~ u m s  of this type, which describe the probabilities of multi- 
photon transitons, were encountered in the papers of 

ipshtei;l. ["J,"] 
 he transition from summation over 1 to an integral of the 

form (29) means a transition from quantum theory to classi- 
cal theory. The corresponding result could obviously be 
obtained also from the kinetic equation directly. On the 
other hand, the transition from the sum to the integral can 
be made not only when the electrons have a Boltzmann dis- 
tribution, but also in the general case. [I4' This gives the 
following general formula for the rate of generation of pho- 
nons : 

where 

the p, axis is parallel to q. 
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