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We study the effect of the electron-phonon interaction @', quadratic in the phonon operators, on the 
shape of the optical absorption and fluorescence bands of an impurity center. We do not assume that W is 
small. By solving an integral equation we obtain analytical expressions for the phonon functions which are 
responsible for the occurrence of phonon wings (PW) in the optical spectrum. We evaluate numerically on 
a computer the above-mentioned phonon functions. We analyze the breaking of the mirror syve try  of 
the absorption and fluorescence spectra, caused by the interaction W ,  and also the effect of W on the 
integral intensity of the non-phonon line (NPL). We establish a simple analytical connection between the 
temperature broadening of the NPL and the above-mentioned lack of mirror symmetry of the phonon 
functions. 

PACS numbers: 63.20.K~ 78.50. - w 

INTRODUCTION which give little information were studied. It is true 

The intensity distribution, and also a number of im- that Kubo and ~ o y a z a w a ~ ' ~  took the effect of the linear 

portant details of the optical band that corresponds to and the quadratic interactions on the absorption band 

an allowed electron transition, can very often be ex- 
shape rigorously into account, but their formulae a r e  
very complicated and do not give a practical solution of plained in the Condon approximation. In that approxi- 
the problem. 

mation the electron-phonon interaction is the difference 
A of the adiabatic potentials of the excited and the unex- Recently,  evenso on^'^] and, independently, the pres- 
cited crystals. Expanding ff in t e rms  of the deviations ent have proposed a different way to take the 
of the molecules from their equilibrium positions we effect of 6' on the band shape into account, In their ap- 
get the interaction t which is linear in the deviations proach i t  is necessary for the evaluation of the band 
and the interaction W which is quadratic in them. shape to find a function which is a solution of an integral 

So far  the role of the linear interaction has been stud- 
equation, By solving this equation in various particular 

ied in great detail.['-'] Appreciably l e s s  attention has cases i t  was possible to get a number of new results 

been paid to the effect of the quadratic inieraction on referring to NPL and the phonon wing (PW).['~-'~~ HOW- 
ever, a number of problems remained unanswered a s  

the optical band shape. It is known that W may be re- 
we were not able to find an effective solution of the 

sponsible for the temperature broadening and the shift above-mentioned integral equation in the general case. 
of the non-phonon lines ( N P L ) ~ ~ ' ~ ~ '  and that it can also We find such a solution in the present paper. Using it 
break down the mirror  symmetry of the absorption and we obtain in Secs. 4 and 5 a few new physical results. 
fluorescence bands. "I The quadratic interaction there- 
fore produces effects which a r e  very often encountered 
experimentally. However, these effects may also be 1. INTERACTION FUNCTION 
produced by other causes. It is therefore sometimes 

The vibrational Hamiltonian H'(R) of a crystal with an 
impossible to indicate exactly the cause of an observed unexcited ( g  = 0) and with an excited ( g  = e )  impurity can 
effect without a quantitative comparison of theory and be written a s  follows: 
exmriment. Unfortunatelv. it is difficult to compare -, 
quantitatively the formulae ofc9-11' with experiments a s  Hg(R+ag) ='12 (*+ (R+ag) Ug (R+a" ) . 
perturbation theory was used incg'lO1 to consider the 
quadratic interaction and the cri teria for the applicabili- The coordinates R, of the molecule a re  connected with 
ty of the formulae given was not indicated, while inc1'] the normal dimensionless coordinates R: of the crystal 
such characteristics of the bands a s  the second moment through the transformation1' 

827 Sov. Phys. JETP 45(4), Apr. 1977 00385646/78/4504-0827$02.40 O 1978 American Institute of Physics 827 



The dimensionless coefficients uK(q,x) and the frequen- 
cies vx' of the normal vibrations can be found from the 
se t  of equations 

We can investigate the case of a low impurity con- 
centration by assuming that there is a single impurity 
molecule a t  the zero  site. The function #(w)  which at 
g = 0 describes the shape of the absorption band and at 
g = e that of the fluorescence band can be written in the 
form 

The function hC(t) vanishes when there is no electron- 
phonon interaction and is completely determined by it. 
We shall therefore call it the interaction function. The 
electron-phonon interaction operator is the difference 
of the vibrational Hamiltonians which, writing aO= 0, 
ae=a ,  we can put in the following form: 

where ? = a  U % and @= ~ R ( E ~ -  f l ) ~  a r e  the linear and 
quadratic interactions which we mentioned in the Intro- 
duction. The interaction function was evaluated 
The result of these calculations was 

Here w=u'-g, P=OIU', v ' = O I ~ ~ ,  andSK(x ,y I t ) i s  
the solution of the integral equation 

In Eqs. (1) to (3) and everywhere else, unless we make 
a specific statement, one should take the upper sign for 
g = 0 and the lower one for g = e. Equation (3) is a ma- 
t r ix  equation a s  DK is a matrix with the following ele- 
ments: 

The averaging, and also the time-dependence of the 
operators R, a re  determined by the Hamiltonian H'(R). 

The aim of the present paper is to obtain equations 
and to use them to calculate the shape of the absorption 
and fluorescence bands without associating oneself with 
an assumption about the smallness of the displacements 
a of the equilibrium positions and the change W of the 
force matrix. One can only perform numerical calcula- 
tions if one gives the model of the impurity center and 

a model for  the interaction. It is expedient f i rs t  to  ccm- 
sider the simplest model for the interaction 

It corresponds to the case when one takes into consider- 
ation for  the excitation of the impurity only a single 
force constant which couples the impurity to some mole- 
cule in the crystal and also takes into account the change 
in their relative positions. The problem of the effect of 
the model for the interaction on the band shape is of in- 
dependent interest but l ies outside the framework of the 
present paper. 

When using the model (5) it is expedient to introduce 
into the discussion together with (4) the causal Green 
functions 

The interaction function he(t) can then be written in the 
following form (g' #g): 

where 

while the functions Q',, and PC a r e  solutions of the 
integral equations which differ only in the f ree  terms: 

In order to  express the interaction function hr ( t )  in 
t e rms  of the known functions Di,, D:,, and Dt, i t  is 
thus necessary to  solve the integrals Eqs. (8) and (9). 
If we use an iteration method to  solve them, i. e., use 
perturbation theory to evaluate the interaction function, 
we get an approximately correct  intensity of the peaks 
in the phonon structure, but completely incorrect posi- 
tions for  them-they will be arranged at the vibrational 
frequencies of the initial electron state, while i t  is well 
known that they should be arranged a t  the frequencies of 
the final state. The problem of the break-down of mir- 
r o r  symmetry of the spectra in the framework of per- 
turbation theory in terms of W can therefore not be dis- 
cussed. An iteration procedure for solving Eqs. (8) and 
(9) leads us also to other incorrect conclusions, e. g., 
to the conclusion that the temperature broadening of the 
NPL is different in the absorption and the fluorescence 
spectra. If we take into account what we have said, it 
is clear that we must solve Eqs. (8) and (9) without us- 
ing perturbation theory with respect to W. Such a solu- 
tion is realized in the following sections. 
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2. SOLUTION OF EQS. (8) AND (9) 

We transform Eqs. (8) and (9) into other ones. To do 
this we shall look for their solution in the form 

" dv ~ ~ ( ~ 1 1 )  = J - - [ P + * ( ~ ,  t )  (e-'"+erv(a-fb) + p - q V ,  t )  (e'v"-e""-l) 
2x1 ) I .  

(11) 
Substituting (10) and (l l) ,  respectively, into (8) and (9) 
we see that the last ones become identities, if the func- 
tions Q#(v, t), P:(v, t), and Qc satisfy the following 
equations (QE= - a): 

- dv e - " L  1 ,  
-evQh(fi')  I-- (--A-) P.~(\,. I )  ]= ~ ( w )  ( n ( w ) + l z t n ( u ) r m l ) .  

n o - v  m+v 

(13) 
The double sign in front of W in Eq. (13) refers  to the 
index g and in the other cases we must take the plus 
sign when calculating P f  and the minus sign when evalu- 
ating pf ; n(w)= [exp(w/k~) - 11" ; the function r E ( v )  is 
the imaginary part of the function D',,(v) a t  zero tem- 
perature, It is described by the following expression: 

Using Eqs. (7) and (12), we can express the function 
QCV(r l t )  directly in terms of QE(o, t)-the solution of 
Eq. (12): 

Substituting Eq. (15) into Eq. (6) which describes the 
interaction function and integrating over the time we get 

One might get the impression that changing from Eqs. 
(8) and (9) to the new Eqs. (12) and (13) did not make the 
problems any easier. However, this is not true. One 
can effectively solve Eqs. (12) and (13) both in the case 
when the number N of the modes interacting with the 
electron in the impurity is small, and also in the case 
where i t  is infinite. 

We consider f irst  the case where N is a small  number. 
To fix the ideas we consider only the case of absorption, 
dropping in the remainder of this section the index g = 0. 
We shall look for the solution of Eqs. (12) and (13) in the 
form 

where N of the frequencies w, a r e  solutions of the fol- 
lowing equation: 

" u 2 ( 0 y )  1 1  , - W E + L ( - - - ) = O .  \*, w-\,, o+v ,  

x - l  

We first  consider Eq. (13). Substituting (14) and (18) 
into (13) and using the fact that x6(x)=O we get instead 
of (13) 

This equation becomes an identity for any frequency o 
if the coefficients of all delta-functions vanish. This 
requirement produces the following set  of equations: 

1 
* - - ) e ' v z l n x ]  = n x + l + n s " ~ t  ( x - 1 . 2 , .  . . , N ) .  

(19) 
If the number of modes is small one can easily deter- 
mine the N functions p,(s, t)  from the algebraic set  of 
Eqs. (19). One can solve Eq. (12) in a similar way and 
thus determine the functions q(s, t). 

Knowing the functions p,(s, t) and q(s,t) and using 
Eqs. (17), (18), (ll), and (16), we can evaluate the in- 
teraction function. We compare the interaction function 
obtained from the formulae of the present paper with the 
interaction function obtained by Kubo and ~ o y a z a w a . ' ~ ~  
We consider the case of one mode a s  in that case the use 
of the equations fromc6' does not cause any difficulties. 
Substituting (17) and (18) into Eq. (16) we get 

W ' 
h (1) = - J d ~ [ p +  ( 7 )  fp- ( r )  + ( p + ( t )  -p- ( T ) )  e-'"'I +a (e-I-'-1) oq ( t ) .  

4i 

(20) 
If we now use Eq. (19) and the anlogous equation for 
q ( t )  to find the functions P,(T) and q(t), we get, substi- 
tuting them in (20), evaluating the integral over T and 
after some algebraic transformations 

829 Sov. Phys. JETP 45(4), Apr. 1977 I. S. Osad'ko 829 



where n =  [ e x p ( v / k ~ ) -  11". If we now put X =  it, A = a  
into the formulae ofc6] we get after some rather cum- 
bersom trigonometric transformations of the functions 
f,(it) and f ,(it) of the cited paper 

i. e., complete agreement.* 

3. SOLUTION OF EQS. (12) AND (13) AT ZERO 
TEMPERATURE 

If the number of modes is large, i t  has no sense to 
reduce the integral Eqs. (12) and (13) to afl algebraic 
set. It is in that case better to solve the integral Eqs. 
(12) and (13) directly. The kernels of these equations 
together with the regular part also contain a singular 
p a r t  and therefore these equations belong to the class 
of singular equations. One can regularize such equa- 
t i o n ~ , ~ ' ~ '  i. e., reduce them to Fredholm equations. It 
is most expedient to study the intensity distribution in 
the PW at zero temperature as then the PW structure 
is most clearly expressed. We therefore consider Eqs. 
(12) and (13) at that temperature. The two equations 
can then be written in the form: 

where 

- dv 
c j L ( " ) =  j -rqv)  

o - v  o f v  

We have explicitly split off the singular part  in (22) and 
included the regular part  in X '(w, t). I rf = P f  , we 
have - dv e- '> l  

x ~ ( w .  t ) =  l f  W J  --P*O(v, t ) ,  
.7 o + v  

if, however cpC= Qc(v, t), we have 

^ dv e-8'' 
x E ( ~ , t ) = a o * ~ j - - -  

n o+v 
Q'(v, t ) .  

We solve ~ q .  (22) in a similar way for g =  0 and g =  e 
and i t  is therefore sufficient to consider in detail only 
the case with g  = 0, everywhere dropping the index, ex- 
cept a t  the functions ?(w) and Ci0(w). 

The integral Eq. (22) can be reduced to a Riemann 
boundary value problem for the functions ++(w, t )  and 
@-(w, t)  which are, respectively, analytical in the upper 
and lower half-planes of the complex variable w. The 
required function q(w, t) is the jump in the function 
@(w, t)  which occurs when going across  the real  axis: 

The solution of the boundary value problem which van- 
ishes a t  infinity looks like: 
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" d v  1  @ , ( o ,  t )  = e-**("' 

X ~ O ( V ) ~ ( V ,  t)e*'*'[ ( I - w Q O ( v )  l a+(  W r O ( v )  )'I-'", (24) 

where 

' d v  A ( v )  
$ * ( a ) =  J--= -A w-v*tO $(a)fi~(o),  

A (Y) = arctg 
wrq ( v )  

1-WQO(v) ' 

If the function ~ ( v ,  t) were known, we would get the 
solution of Eq. (22) by substituting (24) into (23). In our 
case, however, after this substitution we get new, but 
already regular equations for  the functions P,(w, t)  and 
Q (w, t): 

After a few transformations and an evaluation of the in- 
tegrals we can write the kernel K(w, E) and the function 
Q (w) in the form 

where 

expressing them in terms of the function P(w)-the f r ee  
term of Eq. (26). One can find the explicit form of this 
function, if we substitute Eq. (24) into (23) with X =  1. 
Evaluating then the integral, we get 

Although this formula is simple, i t  is difficult to work 
with if there a r e  localized modes among the phonon 
modes. These modes correspond to discrete frequen- 
cies and in those points the functions t)*(@) a r e  singular. 
We can rid ourselves of this shortcoming. Using the 
identify 

we transform (30) to the form 

where 

The singularities caused by discrete frequencies a r e  
now only contained in the function re(w) and do not cause 
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trouble. For instance, we can use Eq. (31) to consider 
also the case of a single mode, studied in the preceding 
section. The results a re  the same. So fa r  we have con- 
sidered the case with g = 0, i. e., we have looked for the 
functions determining the absorption band shape. We 
can find the analogous functions for the fluorescence 
band from Eqs. (25) and (26), and also Eqs. (27), (28), 
and (31) by the following formal substitution: 

The functions p ( o )  a r e  the imaginary parts of the func- 
tions D',,(o) at zero temperature. They differ from 
zero only in the single-phonon region of frequencies L:, 
by which we understand the segment occupied by the 
phonon frequencies and also separate points correspond- 
ing to localized modes. As the integration in Eqs. (25) 
and (26) is over a bounded region these equations a re  
second-order Fredholm equations. We must draw at- 
tention to the fact that the functions r C ( o )  which have 
peaks a t  the frequencies of the final electron state occur 
in the kernel and the free terms of the regularizing Eqs. 
(25) and (26) and the PW structure therefore will also 
reflect the vibrational frequencies of the final electron 
state. This is a result of the regularization, i. e., of 
taking the most important part of the quadratic electron- 
phonon interaction rigorously into account. The prob- 
lem of the possibility of splitting the quadratic interac- 
tion into two parts was considered before.'"' 

We now turn to the interaction function hc(t). We can 
write it in the form 

where f '(t) tends to zero when the time of the function 
increases, and f (0) is i ts  value at t = 0. Each term in 
(32) is important for  definite details of the optical band. 
Indeed, substituting (32) into (1) and integrating over 
the time we get 

where 

describes the NPL and the sum over rn the PW; 

1 " dvl dv, 
y m g ( w ) = - J  -... J Tfi ' (vI)  

m! n 
- - -= 

Equations (33) to (35) a re  valid at any temperature, but 
in the framework of the adiabatic approximation y = 0 at 
zero temperature.'151 As the PW shape is according to 
(35) completely determined by the Fourier component of 
the function f c(t), we shall call f #(v) the phonon func- 
tion. This function can be "recovered" from the PW. 
This procedure has been realized in several papers, 
e. g., inc171. We can write the phonon function a s  the 
sum of two terms: 

The first  term here determines the contribution to the 
PW of only the quadratic electron-;rhonon interaction, 
and the second one a joint contribu-ion from the linear 
and the quadratic interaction. Sol- ing Eqs. (25) and 
(26) by the iteration method and substituting these solu- 
tions into Eq. (16) we get after sorae non-trivial trans- 
formations the following expressions for the phonon 
functions: 

where 

" dv, 
v , @ ( v ) =  a2 J - n - ( v , * ~ ) ~ ( v , )  ( v ,*A)6(v -v1) ,  

Here, a s  in Eq. (34) the constant A is given by Eq. (29). 
The function 

is negative. This fact makes the analysis of the con- 
vergence of the series (36) and (37) easier. 

4. PHONON FUNCTIONS 

As the function p ( v )  is non-vanishing on the single- 
phonon interval Lf ', the phonon functions v:( v) and 
wf(v) a re  non-vanishing on the k-phonon interval L:'. 
We shall therefore call them the k-phonon functions. 
The single-phonon functions vf ( v) ,  multiplied by the 
Debye-Waller function, a re  equal to  the probabilities 
for a photo-transition with production of one phonon. 
The other phonon functions have no simple physical 
meaning. We elucidate the integrated properties of the 
k-phonon functions. We integrate them over the fre- 
quency and denote the corresponding integrated values 
by vf and w f . We get 

Summing all vf we find the following expression for the 
integrated value of the function vc(v): 

Therefore, notwithstanding the fact that the partial val- 
ues vt depend on the electron index g, their sum does 
not depend on it. This means that the contribution from 
the linear interaction to the Debye-Waller factor is the 
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FIG. 1. Integrated values of the phonon functions vi/v! and 
vX/vl. 

same for the absorption and for the fluorescence spec- 
trum. 

Let us discuss the problem of the convergence of the 
series (36) and (37). Undoubtedly, the series converge 
for small W .  If, however, W =  .e, the integral of the 
sum of series (36) is, according to (42), independent of 
W and equal to a finite value, while 

i. e., even in this limiting case each successive term 
in (37) is less than the preceding one. For practically 
accessible changes in the force matrix the convergence 
of the series (36) and (37) will be rather fast. Let us 
elucidate what is the region where W is defined and what 
are  the realistically accessiblevalues of thisparameter. 
As it describes the change in the force matrix in a pho- 
to-transition, the dimensionless parameter b = W / U ; ,  
where vD i s  the boundary frequency of the phonon spec- 
trum of the crystal, which is connected with it can 
change within the following range: - I b,,, I <  b < a. The 
left-hand limit of this range corresponds to the elastic 
constant being weakened to zero. It has been shownu8' 
that one can apply perturbation theory with respect to 
the parameter b, provided 1 b 16 0.025." Practically at- 
tainable, apparently, is l b 11 0 .2 .  If we take 

where x = v / vD,  we have - I b, 1 = - 0.25. Using (43) and 
Eqs. (38) to (41) we have evaluated the phonon func- 
tions." The results are  shown in Figs. 1 to 4 .  ~ c c o r d -  
ing to Fig. 1 the convergence of the sequence v: i s  
very fast. The calculations show that the ratio w 4 / w 2  
is somewhat smaller than v 4 / v , .  This means that we 

FIG. 2. Dependence on b of the NPL 
shift A and the Debye-Waller factor a. 

FIG. 3. Exact single-phonon functions vf(v) (full-drawn 
lines), and approximate ones v;*' (dashed) and vrg (dotted) 
for a t D  = 1 and various values of b (g= 0, el. 

can practically everywhere put f ' ( v )  = v f  ( v )  + v f  ( v )  + w f ( v ) .  
The effect of the quadratic interaction on the Debye- 
Waller factor a= exp[- (v + w ) ]  is, according to Fig. 2, 
small. We must note that for negative b the interfer- 
ence between the linear and the quadratic interactions 
can even somewhat increase the Debye-Waller factor. 
In Fig. 3 we show by full-drawn lines the single-phonon 
functions, calculated using the exact Eq. (38). In all  
cases the mirror symmetry is considerably broken. 
We show in Fig. 4 the two-phonon functions calculated 
using Eqs. (39) and (40).  We draw attention to the fact 
that the two-phonon functions v : ( v )  are  negative in one 
of the spectra. Hence, the total phonon function may 
also be negative outside the one-phonon region. 

FIG. 4. Two-phonon functions d(v)  for a2vD = 1 (full-drawn 
lines) and wl(v) (dashed lines) for various b(g =0, e). 
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5. CONNECTION BETWEEN LACK OF MIRROR 
SYMMETRY OF THE PW AND THE TEMPERATURE 
BROADENING OF NPL 

If the lack of mirror  symmetry of the PW is caused 
by the change in the force matrix there must exist a 
connection between the lack of mirror  symmetry and 
the temperature broadening of the NPL a s  these two 
effects a re  produced by the same cause. The actual 
form of this connection depends, of course, on the mod- 
el of the interaction. In the framework of the model de- 
scribed by Eq. (5) this connection has a rather simple 
form. Indeed, according toL151 the half-width of the 
NPL is described by the expression 

i. e. , i t  contains the parameter W and the function al- 
ready encountered by us in Eq, (38) which describes the 
single-phonon function. Equations (44) and (38) estab- 
lish a quantitative relation between the lack of mirror  
symmetry of the PW and the temperature broadening of 
the NPL. Unfortunately, the connection between the 
functions uy(x) and u,B(x), obtained experimentally, and 
the temperature dependence y ( T )  is unclear a s  these 
quantities a re  expressed not in terms of one another, 
but in terms of r O ( v )  and W. However, if we use the 
fact that the form of the approximate single-phonon func- 
tions 

V,'~(Z) =a2voxrs' (5) 

vI . 'g(x)  =a'~~x'P' (x) (g'f g )  

is close to the exact one (see Fig. 3) and use the con- 
nection between the functions r C ( x )  and the single-pho- 
non functions which is, e. g., expressed by the approxi- 
mate Eq. (25), we can explicitly connect the lack of 
mirror  symmetry and the temperature broadening by 
means of the following formulae: 

where 

If we can select the only parameter c so  that we a r e  
able to describe the experimentally observed lack of 
mirror  symmetry of the PW and the temperature broad- 
ening of NPL, this will serve a s  a clear proof of the 

fact that both effects a r e  due to the same cause-the 
change W in the force matrix of the crystal when an 
impurity is excited. 

The author is grateful to i. I. Rashba for discussing 
the results  of this paper. 

"we use in this paper a system of units in which R = l .  
"1t is clear that taking anharmonicity into account may lead 

to a change in the form of Eq. (21). Therefore, (21) i s  
valid provided the anharmonic change in the frequency is 
appreciably smaller than v - W. 

3 ' ~ h e  parameter b in the present paper is smaller by a factor 
2 than the one used in''''. 

4 ' ~ h e  author expresses his gratitude to S. A. Zhdanov who 
performed the computer calculations. 
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