
ductivity is, apparently, produced only by solitons and 
moving walls.t01 
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Electron-phonon interaction in one-dimensional systems in 
the adiabatic approximation 
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A onedimensional Fermi gas interacting with lattice vibrations is considered in the adiabatic 
approximation. It is shown that the system should be a superconductor at small electron-phonon coupling 
constants g ', in accord with the results of Frohlich. [I1 The critical velocity at which the superconducting 
state is stable with respect to scattering by impurities is found. The extreme case of large values of g is 
investigated, and it is shown that in this case the problem reduces to the analysis of a system of almost 
nonitexacting polarons. It is also shown that for the lattice Fermi gas the ground state conesponds to the 
Peierls state with a deformed lattice, and that the system is a dielectric. 

PACS numbers: 74.20. - z 

As is well known, the one-dimensional system of elec- 
trons interacting with a lattice, considered by FrBhlich 
in 1954,c11 was the first example of a model for which 
the dependence of the energy on the constant of the elec- 
tron-phonon interaction bore a non-analytic character. 
It was later made clear, however, that the nature of the 
ground state of the electron-phonon system is complete- 
ly different in the three-dimensional and one-dimen- 
sional cases. According to Ref. 1, in the one-dimen- 
sional case the system is in the so-called Peierls state, 
the characteristic feature of which is the presence of 
strongly excited lattice vibrations with wave number q 
= 2k,, in whose periodic field the electrons move. Here 
the system of electrons and lattice displacements can 
move with the velocity v .  On the basis of arguments 
similar to Landau's well-known argument, FrCIhlich 
identified these states at v # 0 with the superconducting 
states. On the other hand, Allender, Bray, and Bar- 
deen,"' state that a t  p =  1 this system is a typical dielec- 

t r ic  ( p  = n / ~ ,  where n is the number of electrons and 
N is the number of centers in the lattice). 

The purpose of the present work is the study of the 
phase states of a one-dimensional electron-phonon sys- 
tem a s  a function of p in the adiabatic limit (we note 
that both the early work of ~ r C i h l i c h ~ ' ~  and the work of 
Ref. 2 were carried out in just this approximation). We 
shall show that the analysis of FrCihlich is valid only a t  
g2 <<p << 1. At these values of the parameters of the 
system, we investigate the stability of the superconduct- 
ing states relative to scattering by impurities and calcu- 
late the critical velocity v,,. It will be shown that in 
the presence of a strong electron-phonon interaction, 
g2 >> ( p  << 1), polaron states appear in the system. So 
fa r  a s  the lattice Fermi gas is concerned, in this case 
the electron-phonon interaction forms a Peierls state 
with a distorted lattice and, as will be shown, the sys- 
tem is a dielectric. 
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Thus, we consider a system characterized by the 
Hamiltonian 

where ~ , , = U , + ~ - U , ,  u, is the displacement of the n-th 
center from the equilibrium position, p, is the momen- 
tum corresponding to this displacement, M is the nu- 
clear mass, and n is the elastic constant. At small 
displacements u,, we have 0, = Po+ j3'5,. 

Introducing the phonon creation and annihilation oper- 
ators, we can write the Hamiltonian (1) in the form 

In going from (1) to (2), we assume that the lattice 
constant a = l  and A = l .  

We note that f i  commutes with 9, where ? is the 
quasimomentum operator and is of the form: 

Therefore the eigenstates of a r e  characterized by 
definite values of the quasimomentum. 

In the adiabatic approximation, i. e., at w, = 0 o r  M - 03, we can find the exact eigenvalues and eigenfunc- 
tions of the system. In fact, to find the energy of the 
ground state, it is necessary to minimize the total en- 
ergy with respect to the displacements u,. It is easy 
to see that 

where the average should be calculated in terms of the 
eigenfunction of the ground state. Substituting (4) in (I), 
we obtain a Hamiltonian of the type of the Hartree Ham- 
iltonian, which can be solved exactly if we assume that 
the numbers 5, form the following sequence: 

p = 2/p is a rational number. There a r e  p self-consis- 
tent solutions of the quantities 5, of the type (5), which 
can be obtained by cyclic permutation of the numbers 
ti ,  t2,  . . . ,5,, . The wave functions of the system a r e  
linear combinations of p functions with the 5,, deter- 
mined from (5): 

and possess the correct symmetry relative to the trans- 
lation group, while the eigenvalue P, of the quasimo- 
mentum in the states (6) a r e  equal to 

In particular, for p = 2 (i. e., p = 1) the solution of the 
type (5) means that the distances between the centers 
alternate and two choices of (5) correspond to the two 
possible configurations of the lattice with 5,, = (- 1)"u 
and (- 1 ) " " ~  (u  is a parameter determined by mini- 
mization of the total energyc3'). A gap appears a t  k = k, 
in the spectrum of the energy of the electron states 
(k,= lrp/2), and the magnitude of the gap, for example, 
at p =  1, is equal to 41~'lzi. 

Weanow calculate the mean value of the current oper- 
ator I in the states (6). The operator I^ has the form 

In the calculation of I, = ( a, f a , )  we have in mind the 
fact that in the adiabatic approximation each of the #, 
entering into (6) is represented in the form JI, = u , ~ , ,  
where u, and X, a r e  the electron and vibrational wave 
functions, respectively; X, describes the vibrations of , 

the nuclei near the new equilibrium position correspond- 
ing to  the se ts  (5). Here (JI,fJI, ) =  0 by virtue of the 
fact that all the statesabelow the gap a r e  filled and 
(u,I^u,)= 0, while (JI,IJI,, )= 0 a t  k # k t ,  since we have 
for the overlap integral ot the oscillator functions cor- 
responding to lattices with non-identical displacements 
( X k  Xk,)-O a s  N- .o (for example, in the case p =  1 we 
have (XI x2) = exp[- N(M u ) " ~ u ~ / ~ ]  ). As a result, I ,  = 0 
for all n and the system is a dielectric. 

As is not difficult to see, a similar consideration is 
valid a t  all rational values of p and, it would seem, one 
should expect that the one-dimensional electron-phonon 
system is always a dielectric in the adiabatic approxi- 
mation. However, one can cite the following qualitative 
arguments that indicate the inapplicability of the con- 
siderations given above a t  p << 1. We f i rs t  consider the 
case p =  1. The energy of the ground state a s  a function 
of 5, has the form shown in Fig. 1. (Although 5, takes 
on discrete values, E is shown a s  a continuous curve 
in the figure for the sake of clarity). The minimum E 
corresponds to the values and 5,. A similar situa- 
tion occurs for  the other p. The corresponding plots of 
E (tl, . . . , 5,, ) will have a more complicated form, but. 
there will always exist a barr ier  for transition of the 
lattice from one configuration to the other. However, 
we note that we have neglected, up to now, the kinetic 
energy of the nuclei. Account of the vibrations of the 
atoms about the new equilibrium positions can alter  
the picture drawn above. In fact, if Ew (the vibrational 
quantum) becomes much greater than the height of the 
barr ier ,  the different configurations of the lattice will 
be indistinguishable and the lattice itself can be repre- 
sented a s  a continuous distribution of nuclei (a string). 
Since the barr ier  height and the corresponding deforma- 
tion energy is proportional to &,exp(- l/g2) (E ,  is the 
Fermi energy), the inequality Rw >> &,exp(- will 
be satisfied at k,<< 1 (and, consequently, p << 1). A 
rigorous criterion for  the transition to the continuous 
distribution require the finding of values of 5, that min- 
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I 
FIG. 1. Dependence of E on 5, at p = 1. 

imize the total energy for p << 1, and this is very diffi- 
cult to obtain. 

We now proceed to consider a Fermi gas which inter- 
acts with the vibrations of a string. We shall consider 
the string vibration semiclassically here, i. e., we 
shall describe the displacements of points of the string 
by means of the function q(x, t )  (here 5,- 8 q/8x). In 
addition, in view of the fact that p << 1, the energy of an 
electron ~ ( k )  with momentum k is equal to k2/2m, 
where m = 1/2 1 Po I. It is also convenient to transform 
from the second-quantization representation to the co- 
ordinate representation. This transition is accom- 
plished by introduction of a wave function having the 
form 

where a:, is the creation operator for an electron with 
spin o at  the point x. We represent @(xl, . . . , x,; t )  in 
the form 

where the u,(x, t) a re  orthonormalized. With account 
of this, the Lagrangian of the considered system L is 
written down in the form 

The corresponding equations of motion for ui(x, t )  and 
d x ,  t) a re  

. dui  1 aZu, 
1- -= - - - -  acp 28' - ui, 

d t  2m dx' 8s 

c = (x/M)'/~ is the sound velocity. In view of the linear- 
ity of the f i rs t  of Eqs. (lo), , q(x, t )  can be written in the 
form 

where qi(x,  t )  satisfies the equation 

We note the following property of the solutions of the 
set  (10). If qi(x, t )= cpi(x), then the functions ui(x, t) 
satisfy the system of equations 

where A2=  pt2/x . It is easy to see  that the Galilean 
transformation x l =  x+vt  leads to the replacement of k2 
in (11) by xt2= A2(1 - V ~ / C ~ ) - ~ ,  i. e., if the system moves 
with the velocity v ,  a renormalization of the quantity kZ 
takes place. 

There is a basis for assuming that the se t  (11) can be 
solved exactly. This follows from the fact that this 
system is completely integrable and we apply the method 
of the inverse scattering problem for i ts  solution. How- 
ever, we limit ourselves to the investigations of limiting 
small and large values of the electron-phonon interaction 
constant g2 (g2 = 2 k2m). 

The stationary states of electrons in the field of forces 
due to interaction with the lattice vibrations a r e  deter- 
mined from the se t  of equations 

where $((x)= ui(x, t )  e x d i ~ ,  t}. We f i rs t  consider the 
limit of small g2. 1) Let kF>>g2. The solution of (12) 
in this case can be obtained in self-consistent fashion. 
We represent Eq. (12) in the form 

Following ~ r ~ h l i c h , ' "  we shall assume V(x) to be a 
periodic potential with period 2kF. We represent V(x) 
in the form 

where a, and a, a re  coefficients subject to determina- 
tion. Since the term a, in the expansion (14) leads only 
to a shift of all the energy levels by a constant amount, 
we can set it equal to zero. We note that all a ,  with 
n 3 2 were neglected in Ref. 1. 

We shall seek a solution of (13) by means of perturba- 
tion theory. (At V(x) = 0, the functions qi a r e  plane 
waves, the states with I k I< k, a r e  being occupied and 
those with Ik I >k, free. ) In the application of perturba- 
tion theory i t  must be taken into account that the states 
with k S k, and k 2 - k, a re  almost degenerate relative 
to states with kt = k - 2 k, and k t  - k + 2 k,, respectively. 
Lifting of the degeneracy leads to the functions 

B p { i  + sin - e x  i ( k - )  x }  1, (15a) 2 

where tanp=al /2 k,(k - k,). The energies correspond- 
ing t o  @' and g:" a re  
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E,, ,(k) ='h[e(k)+e(k-2k~)  I 
3 ([E (k) -E (k-2kF) I2+al2)"', (16) 

where the minus sign before the radical corresponds to 
(1 5a) and the plus sign to (1 5b). We note that (1 5) and 
(16) correspond to k > 0. The corresponding expressions 
for k < 0 have a similar form. As follows from (16), the 
quantity a, is equal to the gap in the spectrum of the sin- 
gle particle excitations. 

In addition, applying the second order (in V(x)) per- 
turbation theory, we obtain the following expression for 

eik rn p k' 
= d l '  (x) + *{'f, ( an cos + am-l sin-) 

"-2 
2 

exp (-2ik;nz) 
X 

e (k) -e (k-2kFn) 

+2 (a. cos '12 B+a.,, sin I/, $) exp (2ikFnz) 

n-L 
E (k) -e (k+2k,n) 

It is easy to find the coefficients a ,  from the self-con- 
sistency conditions with the use of (17) and (14): 

a,=IGe, exp (-nkd2g2), a,=-a,'/8eF, 

As is seen from (la), la2/al I =  2 exp(- nkF/2g2) << 1, and 
the approximation used in Ref. 1 corresponds to neglect 
of the exponentially small terms. However, we note 
that allowance for these t e rms  gives, in accord with 
(la), a value for  the gap that is twice a s  large as that 
obtained in Ref. 1. 

We now proceed to the study of the current states of 
the system at  kF>>g2. Since the total momentum of the 
system is conserved a t  kF<< 1 (the quasimomentum op- 
erator (3) is the momentum operator a t  k, << I), a cur- 
rent appears when the system moves with velocity v .  
~ r 6 h l i c h ~ "  drew the conclusion that such current states 
a re  superconducting. The argument for this in Ref. 1 
is based on the fact that the existence of a gap in the 
spectrum of single-particle excitations excludes the 
possibility of elastic scattering if v is sufficiently small. 
Along with this, the critical v,, itself was not given in 
Ref. 1. 

We shall assess  the possibility of identifying the states 
mentioned above with superconducting states by investi- 
gating their stability relative to scattering by impurities. 
In the presence of impurities, the system (11) takes the 
form 

where f ( x )  is the impurity potential (it is asturned that 
the impurities a r e  randomly distributed and V(x) <<12). 
The set (19) is written down in a system of coordinates 
moving relative to the impurities with velocity v .  

We shall seek the solution of (19) by pe~turbation the- 
ory, limiting ourselves to f i rs t  order in V(x). Let 

u,(x, t) = u:' (x, t)  + x,(x, t), where uia is the solution of 
(19) a t  v ( x ) =  0. Then X, is found from the linearized 
se t  of equations: 

-411"XkC I u::' lZ+v (x-vt) u:O'. 
k' 

We seek the functions X, in the form 

where 

As is seen from (17), with accuracy up to exponentially 
small  terms, $,(x) and g,(x) a r e  equal respectively to 
$L1' (15a)andg:'(x) (15b). ( E l ( k ) a n d ~ 2 ( k ) a r e  defined 
in accord with (16). ) 

Since the total wave function of the system is a deter- 
minant constructed of the functions u,(x, t )  with Ik k,, 
i t  follows that the functions X, a r e  completely defined by 
the coefficients b,,(t). For the determination of these 
coefficients, we have the se t  of equations 

We shall seek the solution of (22) in the form 

The coefficients c,(t) satisfy the equations 

ac, i-+(E,(k)-E,(w))c, 
at  

We f i rs t  consider the homogeneous se t  of equations cor- 
responding to (24). Its solution is naturally sought in 
the form 

Since scattering of electrons with momenta I k 1 = k is 
the most significant from the viewpoint of stability of 
the current states (the transferred momentum here is 
approximately equal to zero o r  2kF), we shall consider 
the solution of (24) in the form (25) for  k and q satisfy- 
ing the conditions 

{ I  41, I k-kF ) } < k a  exp(-nks/2g9). (26) 

The solution of the homogeneous system corresponding 
to (24) can be obtained by a method similar to the meth- 
od of solution of the se t  of equations of the time-depen- 
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dent Hartree- Fock approximation (see, for example, will be disrupted. In order to obtain the corresponditlg 
Ref. 4). Solving this system, we obtain the following criteria, we calculate the width 4 8, of the polaron band. 
expression for E(q): 

According to  ~ o l s t e i n , ' ~ ~  we have 
e ( q )  =al sign q, 

where a1 is the gap in the spectrum of Fermi excitations 
Thus, in first order in the nonadiabaticity, the system 

of the system, defined as in (18). We shall seek a solu- of solitons can be described the Hamiltonian 
tion of the inhomogeneous set  of equations (24) in the 
form 

c*+,. * ( t )  =BL+*, b( t )  C-~*(~'I. 

where b: and b ,  are  the Pauli operators of the solitons. 
As is easy to see, the condition that I B,,, ,I (with k this case, the criterion for  the transformation of the 
and q satisfying (26)) does not increase linearly with 

soliton lattice into a soliton liquid takes the form 
time, and that therefore the system be stable relative 
to scattering by impurities, is of the form V ( 2 / p )  GZp,. (37) 

2k,Jv~cal. (29) Equating the exponents of (24) and (35) (g2R and S >> I), 
we can write this criterion in the form 

At u <vc,, where uc,=al /2 k,, the system is found in the 
superconducting state." p-l=nl B. I I"/4/4x. 

2. We now consider the other limiting case, k, <<g2. There is a basis for expecting that this system is 
We f i r s t  solve the problem of the interaction of a single superconducting in the liquid phases This is suggested 
electron with the field of lattice (string) vibrations. The 

by the fact that the correlation function (R)= (Gb,) set (12) in this case reduces to the following nonlinear falls cdf with distance according to a power law, and the 
equations integral 

i a=$ --- 
2m dz'  

4hLrp(z)  l$ (4 1'. 

The solution of (30), bounded a t  infinity, is of the form diverges.[61 This argument has, however, only a quali- 
tative character. In order to speak of this with assur- 

$ ( x )  = (gZ/2) ' "  ch-' ( 2 g 2 x ) .  (31) ance, we must investigate the effect of the impurities. 

The wave equation $ ( x )  describes an electron surround- 
ed by a cloud of phonons. We call such a quasiparticle 
a soliton (or polaron). As is seen from (31), the dimen- 
sions of the region of localization of the soliton is - 1/ 
g2. If there a re  n electrons with density p = n / ~ ,  then, 
since p - k ,  <<g2, the mean spacing between particles 
will be much greater than the dimension of the soliton, 
and we can speak of the system of almost non-interact- 
ing solitons. Here the solitons form a "crystal lattice," 
the constant of which is equal to 2/p and the wave func- 
tion of the m-th soliton is of the form 

The wave equation (32) differs from (31) because the 
soliton (32) represents two electrons with opposite spins, 
surrounded by a cloud of phonons (there a re  altogether 
n/2 solitons) i. e., (32) satisfies the equation 

In conclusion, we note the following circumstance. 
The electron-electron interaction is neglected in the 
Harniltonian (1). Yet i t  is known that this interaction is 
not small in real  highly conducting quasi-one-dimension- 
al systems, such a s  TTF-TCNQ crystals. Furthermore, 
i t  plays a dominant role in the formation of the electron 
structure of the ground state of these crystals-the 
ground state of such systems corresponds to a Wigner 
crystal with incomplete charge transfer from the donor 
molecules 0) to the acceptor molecules (A).~'] 

Excitations in such a Wigner crystal on the other 
hand, correspond to the creation of charged defects 
D'A-. However, since the concentration of these exci- 
tations is small (at any rate at low temperatures), the 
gas of these charged defects is similar in many re- 
spects to  a weakly interacting gas of spinless Fermi 
particles and can be described by a Hamiltonian of the 
type of (1). 

The collision energy of two solitons (32) can be esti- l ) ~ y  virtue of the fact that the effect of the impurities is taken 
mated from the overlap of the Wave functions of solitons into account here only in first-order perturbation theory, the 
localized at a distance R from one another (R >> l/g2): condition (29) is apparently necessary but not sufficient. 

- 
V ( R )  = $ , ( z )  $,, ( 2 )  d . ~ = 4 9 R e - ~ ~ ~ ,  -- 
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Two-frequency microwave resonance in the hyperfine 
structure of the ground state of alkali metals 
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The problem of two-particle resonance in a three-level system is considered. A stationary solution is 
obtained for the coherence of two levels coupled by alternating fields with the third; this solution is valid 
for arbitrary field intensities and frequencies. Two-frequency resonance was investigated experimentally in 
the hypertine structure of the ground state of potassium under spectrally selected optical pumping. 
Modulat~on of the pump light registered transversely to the magnetic field thrtiugh a circular analyzer was 
observed at a frequency equal to the difference between the two microwave fields that cause transitions 
between the level F = 1, m, = 1 and the levels F = 2, m, = 1, 2. 

PACS numbers: 32.80.B~ 

1. INTRODUCTION 

It i s  known that in magnetic-resonance techniques one 
uses two types of observable quantities, proportional to 
the imaginary and real components of the magnetic sus- 
ceptibility. The former  a r e  connected with the popula- 
tions of the magnetic sublevels and a r e  responsible for 
energy absorption. The latter a r e  connected with co- 
he rence~ ,  i. e., a re  described by the off-diagonal ele- 
ments of the density matrix. Examples of these quanti- 
ties are  the oscillating (transverse) components of the 
magnetization. The populations and the coherences be- 
have essentially differently a t  resonance. This is mani- 
fest by a different dependence of these quantities on the 
amplitude and the frequency of the alternating field and, 
frequently more importantly, in a difference in the dy- 
namics. The registration of the quantities connected 
with the coherence is more convenient because the cor- 
responding signals vary in time. Under stationary con- 
ditions they are  expressed in the general case by a se- 
r ies in harmonics of the alternating fields that initiate 
the resonance. This makes i t  possible to register the 
resonance without resorting to a scanning technique, the 
use of which makes the dynamics of the observation 
worse and difficult in the case of very narrow resonance. 
In contrast to the populations, the time of establishment 
of which i s  limited by the relaxation constant, the phases 
of the coherence oscillations react without delay to 
changes in the system energy. 

The advantages of observing the coherence can be re- 
alized in the region of relatively low frequencies-in the 
NMR techniquec" and in experiments on optical orienta- 
tion of atoms in weak and medium Among 
the applications are  the so called M,-self-generating 

magnetometers with optical orientation, in which use 
is made of Larmor polarized-light precession due to the 
coherence of the atomic magnetic sublevels. The ex- 
tension of this magnetic-resonance registration method 
to the region of higher frequencies encounters great 
technical difficulties. When optical means a r e  used to 
monitor the coherence, the limitations a r e  imposed 
primarily by the inertia of the photoreceivers. These 
limitations could be overcoihe in demonstration experi- 
ments, C4*51 in which microwave modulation of the light 
passing through potassium and rubidium vapor was ob- 
served under conditions of magnetic resonance in the 
hyperfine structure. 

In this article we demonstrate the possibility of con- 
verting the microwave oscillations of coherence into 
radio-frequency oscillations by producing two-frequency 
microwave resonance on adjacent sublevels of the mag- 
netic splitting of the hyperfine-structure states. The 
foregoing is illustrated in Fig. 1, which shows the en- 
ergy structure of the ground state of an alkali-metal 
atom with nuclear spin 3/2 in a magnetic field. Assume 
that there exists a process that leads to predominant 
population of, say, the upper hyperfine level of F =  1. 
(This is a natural result of thermal relaxation, but the 
obtained population difference i s  very small and in prac- 
tice one uses the forcing process of optimal pumping, 
see below). Superposition of two microwave fields of 
suitable polarization and frequency gives r ise  to transi- 
tions between one sublevel of the state F =  1 and two sub- 
levels of F = 2, a s  is shown, for example, by the arrows 
of Fig. 1. Under these conditions, coherence sets in 
between the upper pair of levels at a frequency equal to 
the difference frequency of the two microwave fields. 
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