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When the period of the PeierIs-Frohlich wave is sufficinectly closely commensurate with the lattice 
period, umklapp processes which can lead, in particular, to a "stopping" ( p i i g )  of the wave become 
important. We calculate the static correlation functions and find the real and imaginary parts of the 
permittivity in the strong and we& pinning regions. 

PACS numbers: 77.20. + y 

1. INTRODUCTION fects along the filaments become important. We shall 

Recently the effect of the anomalous Frtihlich conduc- find expressions for the conductivity a t  low optical fre- 

tivityC1l (StrBssler and ~ e l l e r ~ ]  have given a survey of quencies for various temperatures. Moreover, we 
shall give an analysis of the behavior of the correlation recent papers) in quasi-one-dimensional conductors 
functions under pinning conditions; the results  of this 

which experience a Peierls  transition has been widely 
analysis were discussed briefly earlier.16] 

discussed. It has been recognized recently that this 
effect is responsible for the existence of a steep maxi- 
mum in the optical absorption spectra in the KCP and 
TTF- TCNQ compounds. c3'41 Lee, Rice, and Ander- 
sonCS1 give in the framework of the self-consistent field 
theory a clear microscopic derivation of the permittivi- 
ty of an initially homogeneous electron-phonon system 
was in a Peierls dielectric state, and also considered 
qualitatively the effect of periodic and random inhomo- 
geneities. They showed in agreement withc1' that the 
permittivity of a Peierls  dielectric is the same a s  that 
of a free charged gas with a large effective mass m*: 

which is caused by the existence of an optically active 
Goldstone mode. The violation of the translational in- 
variance leads to the appearance of a gap in the spec- 
trum of the oscillations (pinning) and guarantees a finite 
value of ~(0). This fact stimulates an increased interest 
in a study of the effects of periodicity in one-dimension- 
a1 systems which have been studied with an eye on static 
effects f irst  of al l  by the present authors.c6' The prob- 
lem of the evaluation of the conductivity o r  of active op- 
tical losses in a Peierls  dielectric has been studied in 
a whole ser ies  of papers (see, e. g., [ Ig1) both in a one- 
dimensional model and also, taking periodicity effects 
into account. However, the results obtained a r e  based 
upon uncontrollable qualitative assumptions o r  describe 
a particular and not necessarily the main contribution 
to the conductivityCg1 which makes i t  impossible to com- 
pare them with experimental data. The authorsc101 sys- 
tematically considered the problem of the properties of 
a homogeneous system for the homogeneous case in the 
temperature range TO>> T > T,, where To-go(2pF) (g  
is the electron-phonon interaction constant, w(2pF) the 
unrenormalized phonon frequency), and T, the tempera- 
ture  of the transition which is caused by the weak inter- 
action between the filaments. 

In the present paper we study the optical properties 
of the system under conditions when the periodicity ef- 

2. CORRELATION FUNCTIONS 

1. We study the behavior of the correlation function 
K(x) of the relative longitudinal displacements d(x)/do 
= cp of a system of non-interacting filaments, where do 
is the equilibrium displacement in a Peierls  dielectric. 
The electron-phonon interaction has in the general case 
the form 

where Q = 2n/a is the size of a cell in the reciprocal lat- 
tice. We note that the interaction parameter g(p,p1) is 
independent of the magnitude nQ of the vector in the 
reciprocal lattice which participates in the umklapp pro- 
cess. 

2. In the f i rs t  instance we consider the simplest 
case when the diameter 2pF of the electron Fermi sur- 
face is close to Q/2, i. e., when the number of elec- 
trons per elementary cell is close to unity. In the Ham- 
iltonian the direct processes, n = 0, and the umklapp 
processes with n = * 1 a r e  then equally important. To 
describe the system in t e rms  of long-wavelength defor- 
mations of the lattice i t  is convenient to introduce the 
field JI(x) defining i t  through i ts  Fourier component JI, 
a s  

It is clear that JI-, = JI:, i. e., the field JI(x) is real. The 
f ree  phonon Hamiltonian 

can be expressed analytically in terms of $(x) by virtue 
of the condition 
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We can transform the interaction Hamiltonian (1) into 

We have thus obtained a Hermitian Hamiltonian relative 
to the real field $(x). This means that the Lagrangian 
(or, in the classical limit, the f ree  energy functional) 
of the field $(x) must be an even function of the gradient 
a$/ax. For a weak electron-phonon interaction the de- 
pendence of the Lagrangian on the gradients is given by 
the electron polarizability n (q)  which is a maximum for 
4 = 2P,: 

If I Q / ~  - 2pF1 <<{:, we get, expanding ll(Q/2+q) 
close to the maximum with q = 2pF - ~ / 2 ,  

(the term linear in q vanishes on summation), where 

u, is the electron Fermi velocity, 

T , , - e P  exp ( -nu, /gZ)  , a=i. 

We found that when I Q/2 - 2PFI< (2 the susceptibility of 
the system will be maximal at q = ~ / 2  which is not the 
same a s  2pF. 

In the temperature range where the interaction be- 
tween the filaments can be neglected the correlation 
function is 

For a real field the correlation radius R,(T) increases 
exponentially when the temperature is lowered (see, 
e* g. ,L11'121). The case considered in this subsection has 
up to now not been realized in known quasi-one-dimen- 
sional structures. 

3. We consider the case of higher-order commensu- 
rability, when 2pF is equal o r  close to Qn/m, where 
n, rn are  integers and m > 2. For instance, in KPC crys- 
tals the diameter of the electron Fermi surface 2p, 
= Q/6 and in TTF- TCNQ crystals, the value of 2p is  
close to ~ / 4 .  Introducing the umklapp processes leads 
to a change in the Lagrangian of the phase of the lattice 
displacements which was introduced earlier.[lo1 Intro- 
ducing the wavevectors reckoned from the point Q/m 
we get 

A= Tm is the gap in the spectrum of the Peierls dielec- 
tric, g, is the coupling constant for momenta corre- 
sponding to the umklapp process. 

In the classical region A>>T >>UA/V we can neglectCIO1 
the dependence of x on the static time 7. In that case 
the problem of evaluating the correlation function K(x) 
= ( e ~ p ( i [ ~ ( x ) -  X(0)]}) is solved by the Feynman method. 
Following the papers by Vaks et al.["l and Scalapino 
et alonZ1 we find 

K ( x )  -cos Q,x exp (- Is 1 /Re)  ; 

RC-l=Re (Ei-E,) ,  Q,=Qlm+Im(E,-E,) ,  (3) 

where E o  and El are  the ground state and the first  ex- 
cited state of the "Harniltonian" 

where Tp= ~ ( b ,  /2)lI2 is the characteristic pinning tem- 
perature. 

As a result of studying (4) for the case rn = 4 we ob- 
tain the following results about the behavior of the cor- 
relation functions when the temperature is lowered (see 
alsocB3 ). 

1. Large incommensurability, v 1x1 >> T,. 

a)  T>>vInl>>Tp: 

2. Small incommensurability, u Ixi << Tp . 

In the latter case we have with exponential accuracy a 
typical pinning at the "rational" point Q/m. 

The results obtained above a re  fully applicable if the 
pinning temperature lies in the classical region T, 
>>uA/v, i. e., i f  the condition TpZT >>UA/U can be sat- 
isfied. When the temperature is lowered further we go 
in that case over into the region uTP/v K T  <<UA/V 

where the time-dependence of the phase x becomes im- 
portant: 

The inequality uT, /u << T shows that the inhomogeneous 
term in (2) appreciably affects only the component xo 
which does not oscillate with time while one can accom- 
plish the functional integration over the component j7 by 
considering only the quadratic part of the Lagrangian 
(2). As a result of the averaging over the non-quad- 
ratic part of (2) and, hence, of the Hamiltonian (4) be- 
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comes distorted. These distortions can be estimated 
a s  the uncertainty 6x0= ((ji2) )'I2 appearing in the coor- 
dinate eigenfunctions of the operator (3). A simple 
analysis shows that the effect of ji on x0 can be neglected, 
if T >> (uT,/v)ln(u~/vT) which, apart from a logarith- 
mic factor is exactly the same a s  the limitation intro- 
duced above. Using the result of an earlier paper[lol 
we get in the region mentioned 

where c = 1 and ~ ~ ( x )  is given by Eqs. (4) to (6). 

When 5, < < I  x l <<u/T the correlation function (7) has 
the scaling form (cf .['O1): 

K  ( x )  =( 1s 1 cos Q.x, (8) 

and when x >>Re gives an exponential decrease: 

K ( x )  = (Tu/uA)'"'" exp (- 1 x  1 l R , ) c o s  Q,x. 

When the temperature is lowered further, T <<uT,/v, 
or  when pinning from the very beginning is quantal (T, 
< < u ~ / v )  the spatial and temporal correlations of the 
phase x a r e  given by the quantal propagator D, from 
Sec. 3 (see Eq. (16) below). Using it, we get from 
standard calculations (cf.['O1; 1x 1 >>to) 

Q x  = (z)"'~ [$ K.  (:)I - 1 )  cos - , 
LuA rn 

where KO is a Macdonald function and w, the "pinning 
frequencyJ': 

When Ix l <<u/o, we have again the scaling Eq. (8) and 
when Ix I>> u/w, 

Equations (9) and (10) show that in the quantal region 
there appears a new correlation radius-the "pinning 
radius": 

When I x I > >  Rp Eq. (10) gives "long-range ordern-the 
average value of the cosine of the phase (displacement): 

Of course, the statement about long-range order is an 
approximate one. It is the consequence of the fact that 
we used the harmonic approximation when calculating 
D,. Taking the anharmonic terms in (2) into account 
leads to sound oscillations in the system of the pinned 
charge-density wave and to moving walls and solitons 
described by the appropriate sine-Gordon equation. 
These effects destroy the long-range order a t  any suf- 
ficiently low temperature (~f . [~* '~]) .  

3. FRQHLICH CONDUCTIVITY UNDER WEAK 
PINNING CONDITIONS 

In our earlier papertlo] we showed rigorously that 
the optical properties of the one-dimensional system 
considered contain for T << Tm a Fruhlich contribution 
to the permittivity E'O' and we calculated the anomalous 
optical conductivity accompanying it. In the present 
paper we shall study these quantities taking the periodic- 
ity of the system into consideration. 

We first  consider the weak pinning region T >> T, 
when we can use perturbation theory to take into account 
the inhomogeneous term in (2). The anomalous part of 
the permittivity can be in terms of the 
analytical continuation of the Green function DX(x, 7) of 
the phase operators x considered a s  a Bose field: 

4 
e'.' ( q ,  61) = - - eZu'DZR(q, a ) .  

n  (13) 

The f i rs t  terms in the expansion in powers of b, can 
easily be determined by writing (D(?Z) = D(x, 7)) 

Expanding in b, and using the formula (&,= 0) 

t o  evaluating the resulting averages we get an expres- 
sion of the form 

~ , ( z )  = D,,(.i:) + rn2JJ d y d f  [ D , , ( f - y )  - D , , ( z - f )  l D x O ( y ) K . , ( Z - y )  

(14) 
or, in Fourier components, 

where according to (2) 

To second order in b, the function K, is equal to 

We obtain the analytical continuation of the function 
K,(q, w,), a s  before,['01 for  m = 1. As a result we get 
the following expression for  the conductivity for q = 0 
and w<<T: 

i6eau uT " To,' +- 
rnAP(7) (z) 0 2 [ o z + ( 2 n 7 T ) 2 ] 2  ' 

where we have evaluated the contribution uo(w) be- 
fore,[lo1 y = um2/v. 
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According to (9) and the results of Ref. 10 we get for 
o,,(w) in some limiting cases: 

1) when w << Tu/v 

2) when UT/V << w << T 

4. FROHLICH CONDUCTIVITY UNDER STRONG 
PINNJNG CONDITIONS 

In the low-temperature region T << T, the important 
values of the phase x lie in the vicinity of the minima of 
the pinning potential energy in (2). The probabilities 
for a transition between different minima a r e  exponen- 
tially small and a re  not important for real  frequencies. 
Hence, we can expand the potential energy in power of 
X .  The second-order terms then determine the gap in 
the phase oscillation spectrum and, hence, the final 
value of the anomalous permittivity 

where we(q)= uZq2+ 4 , 

The fourth- and higher-order anharmonic terms 
guarantee the damping of the phase oscillations and de- 
termine the anomalous optical absorption. The magni- 
tude of the damping r(w) is given by an expression which 
is similar to that from our earlier papertlo' 

dq, dq, dq3 n ( a 1 o , ) n ( a 2 o l ) n ( a 3 o r )  , 
. z J (2n,2 

01-11  
8 a 1 a 2 a 3 0 1 w 2 0 ~  

~6(q1+qa+qs)6(o-alol-a2w-a&) ; ( la)  
mi-o(q , )  = ( U ~ ~ I Z + W ~ ~ ) ~ ~ ,  n ( o )  =[epr-11-I.  

An investigation shows that always wI'(w) << d+ w: 
and, hence, we can, in agreement with (15), put 

At high temperatures, T >> w,, we have 
when w >> T 

when o , a o a T  

when o P Y T a o a o p  

op8 ' 

when o < o V a / T  

At low temperatures, T << w,, but high frequencies, 
0 >> W,, 

This kind of behavior continues right up to the threshold 
for  the decay of one phason into three when o= 3w,, 
where 

There is yet another singularity in the conductivity 
when w= w,, viz.: 

when o p < o < 3 o p  
' T O ~ ' ~ O  exy ( - o p / T )  

0-e2u (f) (21) 
(w+op)  (o '+op2)=  [ ( 0 - u p )  ( 0 + 3 0 p ) ] " s  ' 

when T c w < w l  
' T o op3 

0 - 2" (-;-) 3opY+o2 I" 
(21') 

Close to the singularity itself I w - w,l<< w, we have: 

when 1 o - o p l  
4 T'" 

a-ezu(f)  - - - -exp( -F) ;  W ~ I ~ - - W ~ I ~ ~  (22) 

when l o-op l K T  
T 

a-e2u ($)'$.- I w-mpi e x  ( -7) . (221) 

The difference I w - w,l under the logarithm sign is, 
of course, limited to the magnitude exp(- w,/T), so  that 
for w= w, 

Far  from the singularity we have 

when T < o < o p  

(23) 
when o a T  

The relations (19) to (23) which we have found give 
the well known maximum in the absorption in the fre- 
quency o- w,. At high temperatures the conductivity in 
the maximum is 

At low temperatures, T << w, there a re  two peaks in the 
absorption. In one of them when w= 30, 

while for o=  w, there is an exponentially small peak, 
given by Eq. (22"). 

The state corresponding to a "pinned Peierls-Frijh- 
lich wave" is thus a true dielectric. A finite static con- 
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ductivity is, apparently, produced only by solitons and 
moving walls.t01 

We express our gratitude to Yu. V. Kopaev for useful 
remarks. 
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Electron-phonon interaction in one-dimensional systems in 
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A onedimensional Fermi gas interacting with lattice vibrations is considered in the adiabatic 
approximation. It is shown that the system should be a superconductor at small electron-phonon coupling 
constants g ', in accord with the results of Frohlich. [I1 The critical velocity at which the superconducting 
state is stable with respect to scattering by impurities is found. The extreme case of large values of g is 
investigated, and it is shown that in this case the problem reduces to the analysis of a system of almost 
nonitexacting polarons. It is also shown that for the lattice Fermi gas the ground state conesponds to the 
Peierls state with a deformed lattice, and that the system is a dielectric. 

PACS numbers: 74.20. - z 

As is well known, the one-dimensional system of elec- 
trons interacting with a lattice, considered by FrBhlich 
in 1954,c11 was the first example of a model for which 
the dependence of the energy on the constant of the elec- 
tron-phonon interaction bore a non-analytic character. 
It was later made clear, however, that the nature of the 
ground state of the electron-phonon system is complete- 
ly different in the three-dimensional and one-dimen- 
sional cases. According to Ref. 1, in the one-dimen- 
sional case the system is in the so-called Peierls state, 
the characteristic feature of which is the presence of 
strongly excited lattice vibrations with wave number q 
= 2k,, in whose periodic field the electrons move. Here 
the system of electrons and lattice displacements can 
move with the velocity v .  On the basis of arguments 
similar to Landau's well-known argument, FrCIhlich 
identified these states at v # 0 with the superconducting 
states. On the other hand, Allender, Bray, and Bar- 
deen,"' state that a t  p =  1 this system is a typical dielec- 

t r ic  ( p  = n / ~ ,  where n is the number of electrons and 
N is the number of centers in the lattice). 

The purpose of the present work is the study of the 
phase states of a one-dimensional electron-phonon sys- 
tem a s  a function of p in the adiabatic limit (we note 
that both the early work of ~ r C i h l i c h ~ ' ~  and the work of 
Ref. 2 were carried out in just this approximation). We 
shall show that the analysis of FrCihlich is valid only a t  
g2 <<p << 1. At these values of the parameters of the 
system, we investigate the stability of the superconduct- 
ing states relative to scattering by impurities and calcu- 
late the critical velocity v,,. It will be shown that in 
the presence of a strong electron-phonon interaction, 
g2 >> ( p  << 1), polaron states appear in the system. So 
fa r  a s  the lattice Fermi gas is concerned, in this case 
the electron-phonon interaction forms a Peierls state 
with a distorted lattice and, as will be shown, the sys- 
tem is a dielectric. 
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