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We study the superconducting properties of a quasi-one-dimensional model which is a system of 
periodically spaced parallel metal filaments whose superconducting phases are linked directly through non- 
stationary Josephson junctions. We assume that the filaments are not too thin: e > d > a ,  where d is the 
filament diameter, a the lattice constant of the metal, and 4 the coherence length of the bulk metal. We 
study the behavior of the correlation functions, elucidate some features of ODLRO and discuss the 
specific features of a phase transition in such a quasi-one-dimensional system. We study the Meissner 
effect in such a system and show that it cannot be described by a trivial generalization of the Meissner 
equations to the anisotropic case. The dependence of the critical temperature T, on the transverse 
resonance integral J,  (which characterizes the tunneling rate of the electrons from filament to filament) 
which was found earlier by Larkin and Efetov when T, is approached from above (i.e., from the region 
where the phases in the different filaments are unwrrelated, and the phase system behaves as a one- 
dimensional one) is in the present paper cotinned by approaching T ,  from below (i.e., from the region 
where the system is essentially quasi-onedimensional). 

PACS numbers: 74.30.Cj, 74.70.R~ 

1. INTRODUCTION 

At present different quasi-one-dimensional substances 
such as  the TCNQ salts,c11 compounds with a mixed 
valence, such a s  KCP, quasi-one-dimensional mag- 
netics, ['] compounds of the A-1 5 type, synthetic 
quasi-one-dimensional objects-secondary crystals and 
so onCS1 are  studied intensively experimentally. It i s  
convenient to characterize the degree of anisotropy of 
the physical properties of such substances by the mag- 
nitude of the small dimensionless parameter 

where J, and J,, are  transverse and longitudinal reso- 
nance integrals which characterize the rate of tunneling 
of electrons at right angles to and along the filaments, 
and m,,, m, and a,,, a, are,  respectively, the longitudinal 
and transverse effective masses and lattice constants. 

The usual theory of strongly anisotropic substances 
i s  based upon the same hypotheses a s  the theory of 
standard semiconductors: the self-consistent field 
method, the Bloch theorem, the description in terms 
of single-particle excitations, neglecting collective ef - 
fects, and the assumption that fluctuations play a minor 
role at all temperatures except a narrow region near 
the phase transition temperature. 

From the above-mentioned experiments the conclu- 
sion follows that for sufficiently small y these approxi- 
mations a re  too rough. Attempts to "approach from the 
other side" and to construct a theory of strongly aniso- 
tropic substances, completely ignoring linking between 
the filaments (y = 0) turned out to be untenable. First- 
ly, this i s  a consequence of the fact that many approxi- 
mation methods which yield good results in the three- 
dimensional case lead to incorrect results in the one- 
dimensional case. Secondly, even when the one-dimen- 

sional model can be solved exactly it has not always a 
meaning to compare the results obtained with experi- 
mental results for actual quasi-one-dimensional ob- 
jects for which y, although small, is not exactly equal 
to zero. Taking only one potential link (the Coulomb 
interaction between electrons in different filaments) 
does not get rid of the most specific features of one- 
dimensional solutions: although the branch of the col- 
lective excitation is separated by a gap, the gap is 
anisotropic and vanishes in the direction at right angles 
to the filaments,C61 and the single-particle excitations 
a r e  therefore, as before, absent (the single-particle 
Green function has no poles), the momentum distribu- 
tion function of the particles does not have the Fermi 
step-function form, and the admittances have the 
same frequency and temperature features as in the one- 
dimensional case, i. e., the temperature for the transi- 
tion to any new state Tk i s  equal to zero. 

Taking a weak (y << 1) kinetic coupling into account 
(i. e., taking into account the possibility of tunneling o r  
hopping of electrons from filament to filament) radically 
changes these results. The phase transition tempera- 
ture becomes finite, albeit small for small y. The depen- 
dence of Tk on J, i s  different for different models, c*iO1 

but in agreement with Landau's theorem about the im- 
possibility of phase transitions, if the interaction i s  not 
a long-range one, Tk- 0 a s  J,- 0. We note that all 
these results a re  obtained using some kind of self-con- 
sistency with respect to the transverse coupling; the 
degree of accuracy of this method has not been estab- 
lished. 

When J,# 0 (y+ 0) there occur single-particle excita- 
tions in the spectrum of the quasi-one-dimensional sys- 
tem, but for small y the fraction of individual de- 
grees of freedom will be very small as  compared with 
the collective ones. We have chosen a model described 
inc8] because in it the single-particle branches of the 
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spectrum are practically not excited for T< T, (since 
for 2J, << k c  they are separated by a gap A - k ~ :  >> kT,) 
and it is sufficient to consider only the collective de- 
grees of freedom. So far for this model only an ex- 
pression for T, had been obtained, but we study the col- 
lective spectrum, we find the correlation functions, we 
investigate the ODLRO features and the Meissner effect, 
and we make some observations about the nature of the 
phase transition. 

2. THE MODEL 

Efetov and ~arkin[*]  considered in 1974 the following 
model of a quasi-one-dimensional system: metallic 
filaments of diameter d are placed in a dielectric ma- 
trix. Under conditions where n (%>> 1) atoms are  fitted 
into the transverse cross section of each filament, 
there are n subzones in each of them and an individual 
filament is stable against Peierls splitting. C80121 The 
period of the two-dimensional square lattice, formed 
by the filaments in the cross section perpendicular to 
them, is a,. It has been shownCB1 that when (c - T)/T: 
>> n'21S one can write the partition function of such a 
system in the form 

where 

Here rp is the phase of the order parameter, z is a 
coordinate reckoned along the filament, i, j, g charac- 
terize the number of the filament, B=l/kT, 4 is the 
derivative with respect to the imaginary time r,  N, is 
the linear density of superconducting electrons, near TO, 

TO, is the formally evaluated (e. g., by the mean field 
method) transition temperature for a single filament, 
neglecting fluctuations and dimensional effects. The 
remaining notation has the same meaning as  inc8]. 
Moreover, it is  convenient for us to introduce a quan- 
tity EL: 

The heuristic considerations which lead to (2.2) are 
rather obvious: if one assumes that each filament is 
described by the usual Ginzburg-Landau (G-L) func- 
tional and if there is an electrostatic interaction be- 
tween the filament, the strength of which is character- 
ized by the quantity X(z - z'), the dynamics of the sys- 
tem are  described by the Lagrangian 

9[?,,(t) I =  j d z j  d z , ~  ~ ~ , ~ ( z - z , ) @ ~ ( Z ) @ ~ ( z , )  
1 1  

8 

h2, alp 
+ j ~ ~ { a ~ ~ l $ i ' + h l l k l ' + - ~  2m 21 dz 

In contrast to (2.2) @ is here the derivative with re- 
spect to the normal time. The quantity xi,(z -2') 

is the microscopic analog of the specific electrostatic 
induction coefficient Ci,(z - 2'). 1nC8] it was assumed 
that if 9,- l/a,, q,<< l/a,, one can ~ u t "  

Using standard methods we find that the partition 
function of the system described by the Lagrangian 
(2.3) has the form 

If we now assume that the dependence of the modulus of 
J ,  is a steep one and that we can integrate over Dl $ 1  by 
~aplace ' s  method, we are  led to Eq. (2.1). 

3. CHOICE OF THE ZEROTH APPROXIMATION 

The results for the correlation functions were ob- 
tained inc8], neglecting the term 

which may be valid only above T,. It is physically clear 
that the coupling between filaments must lead to some 
breakdown of the one -dimensional specific features of 
the problem (see the Introduction), but the problem of 
what this breakdown is or  how strongly it affects the 
physical properties of the system has practically not 
been studied up to the present. ' Earlier s t ~ d i e s ~ ~ ' ~ ~  of 
this problem neglect the possibility that electrons may 
tunnel from filament to filament. We show below that 
the interaction between phase fluctuations at different 
filaments due to this tunneling radically affects the 
physical properties of the system and imposes on it a 
behavior which can be called with complete justification 
quasi -one -dimensional. The basic idea of the following 
calculations is to take into account this new form of the 
coupling which arises below the temperature 

of the superconducting phase transition. (We bear in 
mind that  cu << 1. ) 

It is clear that one can perform calculations with the 
functional (2.2) only in the framework of perturbation 
theory, i. e., through splitting F into Fo and Fl (F=F, 
+ F,) and the subsequent expansion of all calculated 
quantities in a power series in F,. One must then aim 
a t  having taken into account the coupling between the 
filaments already to some extent-in Fo. This can be 
achieved by expanding cos(rp, - rp,+d in a power-series 
of its argument and retaining in Fo the term (rpi - rp1+J2, 
putting all other terms in F,. However, a consistent - 
consideration of the operator structure of cos(rp, - rpl+d 
forces us to bring it first into normal form and only 
afterwards separate from it terms quadratic in the crea- 
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tion and annihilation operators. We explain this in some From this i t  is clear that in the term in the expansion 
detail. of cos(cp, - cp,+,) which i s  quadratic in b, and b: the im- 

portant factor e q ( -  So) has been split off. Choosing In the Hamiltonian formalism (2.1) takes the form 
and such as to diagonalize the quadratic liarnil- 

tonian which one obtains when expanding up to second- 
Z = S p { e x p ( - P l ) ) ,  

order terms in the operators, we get 

where l is the Hamiltonian in the second quantization H ,  = ~ o ~ [ h ~ + b ~ + ~ l , l ,  (3.3) 
representation which is obtained from the Lagrangian q 

(2.3) when I $ 1  = const: o q = m Q q ,  Q q 2 = [ q l Z f  2 6 ' ( 2 - ~ 0 s  qr-cos q , , )  ] ; 
6'=6,1 e x p i - S ,  (g)), (3.4) 

Here L is the density of ~ ( p ) ,  

It is clear that the quantity exp(- s,,) enters into 6 and 
p ( ( g ? = j d z Z L .  appreciably changes the original "classical" anisotropy 

I 

of the problem: if we linearize the classical Hamiltonian 
Introducing a characteristic longitudinal length via the (3.11, We see  that the sound velocity along and a t  right 
formula fiz NS/4m5,, = KT: (t,, differs by a factor f rom the angles to the filaments differs by a factor 6,,, while in 
usual GL coherence length, t,, = 1.4 E,,) and using the the quantum problem it i s  decreased by the phase fluc- 
fact that X,= K, we have: tuations and equals 6 < 6,,. 

(3.1) We introduce the important dimensionless parameter 

I} 
of the problem a a s  follows: 

2  R'N -'h 2  1 ha 
where n, = h" 6 ~ / 6 6 , .  The difference in the coefficients a=- K = - = -  

n  ( m n  Kg, ,Ln 2nXT.'. (3.6) 

of (~cp/EJz)~ in (3.1) and (2.3) is explained by the fact 
that, in correspondence withci3', N, = 41 t,b 1 '. In this In what follows the quantities a, 6, 6,,, k c  = fi2~,/4m5,, 
normalization m and e a r e  the mass and charge of a a r e  the basic parameters of the problem; all quantities 
single electron, and z in (3.1) is already dimensionless. of interest to us can be expressed in t e rms  of them, 

e. g.: 
Quantization is accomplished through the usual rules: 

we take cp, and T,, to be operators such that [ R ~  cpP] = i 
1 n u  ' / a  

and we write them in the form = ( ) [ b q + + b - q l e x p ( q , j + , z z ) .  
VN 

(3.7) 

'I, '" q 

z q = l  (2) [b-.-bq+1. P .  = (5) b q + b q t 1  (3.2) 
Equation (3.4) is the equation for  6. This q-uantity en- 

Substituting (3.2) into (3.1) we see  that when we per- t e r ~  in the definition of S,(g) through x J2w,= na&: 

form the reduction to normal form there appear terms I n u  XU 
1 . I  

quadratic in the operators bq and b: in the expansion of SO(&!)= [ I  - cOs + - j d q z j  d q . J  d q , [ l - c o s q g l  . ( 2 n ) 3  -1 -" -n 
cos(cp, -pi+,) not only from (pi - cpi+J2 but also fr'om X[qz2+ 26% ( 2  - cos q,  - cos q , )  I-".  
any power of (cp, - cp,,,). In order to split off such 

(3.8) 

terms we reduce cos(cpi - pI+d to i t s  normal form, us- (Here and henceforth q, i s  measured in units q, in 
ing the Feynman identity aY1; with respect to q, we introduce a cut-off a t  5;' a s  the 

exp { A + B }  =exp { A )  exp (8) oxp (I / ,  [ BA I } .  
GL equation is inapplicable a t  smaller length scales. ) 
We shall show below that 6(0) = 6k{"'u12). Using (2.4) 

As a result we get and (3.6) we can see that a is small when the number of 

1 zones n is large; using an order of magnitude estimate 
c o s ( w - w t I )  = - - { e x P [ + C  I A . ( ~ .  gi b q + + ~ . . ( i ,  g) b q l ]  

2 for  6,, we see  that . 

+ e x ,  [ - i z  A q ( i . g ) b q t  ] e x p  [-Az A q a ( i ,  g ) b q ] }  . eters.  
'i I N  q We can somewhat improve the similarity of H, and 

Here N= N, Lt , ,  (N, is the number of filaments), % by choosing H,  in a self -consistent way (seecz1]). 
This leads to a replacement of the quantity 6 = 6(0) by 

A q  ( i ,  g )  = exp (rq,i,+iqzz) [ I  - exp (iq,g) I 6 ( ~ )  in all  Eqs. (3.3) to (3.5), (3.7), and (3.8): 
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and one must introduce in 8 the cancelling term 

z ~ d z [ e x p ( - ~ ~ ) - l l ~ ( g ) ,  
ig 

while the quantity ST(g) will have the form 

We shall use in what follows a Hamiltonian which has 
the form (3.3) where the quantity b(T) must be obtained 
from Eq. (3.9). 

4. TRANSITION TEMPERATURE 

We estimate the magnitude of ST(g) in order to solve 
Eq. (3.9). We replace, a s  in (3.8) the sum over q by 
an integral. In that case 

We introduce the temperature T, = 6(0)c, where 6(0) 
is 6(T) for T=O and takes the form (3.4). Furthermore. 
when evaluating the correlators we shall see that Tc 
(or rcuT,) is  the characteristic temperature scale of the 
problem. We note that the quantity 211('-u12)~c coin- 
cides with the transition temperature evaluated inc8] 
taking quantum fluctuations into account. 

The integral (4.1) can be estimated for different tem- 
perature regions, as  a result of which we get (here 
go= T/naTc) 

naT,O T  6 ( 0 )  
ST ( g )  = a ln ---- + =no, ( M T , O > T > X ~ T .  

6  ( 0 )  

Here A is  a number; it turned out to be equal to (144n)", 
i.e., this temperature correction is small; B - 1; 

2v; in  " i -cos  q ,  
2 ' = - 1 d q l S d q 2  nz (2-cos q , - ~ o s q , ) ' ~  

Using Eq. (3.4) the result mentioned in the preceding 
section follows from these formulae: 6(0) = 6f[("u12'. 
If T* 0 it i s  more convenient to solve Eq. (3.9) not for 
6 ( ~ )  but for the quantity p ( ~ ) =  62(~)/62(0). For ncu~: 
> T> naT, 15(T)/~(0) this equation has the form 

(4.2) 
A similar equation appears in the plane-rotator mod- 

el, where it serves for the definition of the transition 
temperature. The fact i s  that the equation 

has a non-zero solution only when x< e-'; when x =  e" 
the solution y ( x )  vanishes jumpwise; the magnitude of 
the jump is e-'. Solving (4.2) we have for the critical 
temperature T,: 

Here M i s  a number of the order of unity, Ap the dis- 
continuity in p(T) at the point T,. The expression for 
T, is in the case of small cr parametrically the same a s  
the results ofCa1. The question of the numerical agree- 
ment of the values of T, must be studied carefully, since 
a large difference of the factors would point to not too 
successful a choice of one of the approximations. Al- 
though the transition in our calculations looks like a 
first-order transition, i t  is more likely that this i s  a 
consequence of the approximations made when construct- 
ing the model; it may also turn out that taking the fluc- 
tuations in the order parameter density into account is 
important for evaluating p(T) near T,. The parametric 
agreement of the results for T, and the presence of 
exact (without any numerical differences) limiting transi- 
tions a s  6,i - 0 in the one-dimensional results ofCB1, 
where the transition i s  explicitly sought a s  a second- 
order transition, convinces us that the transition in the 
model is more likely of second order and that no jump 
Ap (even a very small one!) should appear in more cor- 
rect calculations. 

5. NATURE OF THE SPECTRUM AND FEATURES 
OF ODLRO IN THE MODEL STUDIED 

If we examine the Hamiltonian (3.1) it becomes clear 
that states with the lowest energy are  those states with 
a constant phase from filament to filament and along a 
filament. The classical equation of motion which would 
stem from (3.1) if the rules of Hamiltonian mechanics 
are used in the case of a single filament has been well 
studied: it i s  a sine-Gordon type of equation (see, 
e. g., [I5]). It describes, in particular, wave phenomena 
in a Josephson contact. c'61 In contrast to the case stud- 
ied here, the spectrum of its small oscillations starts 
from a limiting frequency w,,. The appearance of an in- 
finite number of filaments "lowers" the frequency wo to 
zero. The spectrum of the small oscillation type ex- 
citations of the classical Hamiltonian (3.1) a r e  phase 
oscillations propagating in the system of filaments. The 
sound velocity is anisotropic: vJv,, = 6,,; if one extends 
the analogy with sound oscillations one can say that the 
"rigidity" of the system in the transverse direction i s  
less than that in the lognitudinal direction by a factor 
6:1. Taking quantum effects into account (the Hamil- 
tonian (3.3)) leads to the fact that the zero-point phase 
oscillations increase this anisotropy in the velocity and 
rigidity; now 

u,l11,~=6 ( T )  <6c1. 

The fact that 6(T) vanishes in the point T, means that in 
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the chosen approximation the system of filaments de- 
cays into independent filaments in the sense that the 
various correlation functions above T, have purely one- 
dimensional properties. At the point T, there i s  a tran- 
sition from a state with strongly correlated order pa- 
rameters (in terms of the GL equation) in different 
filaments and along a single filament to a state where 
there is no ordering. We shall show below that the 
quantity 6(T) is directly connected with a very general 
characteristic of superconductivity-the existence of 
ODLRO and that the vanishing of 6(T) is connected with 
its vanishing; this can serve a s  a justification (but not 
a proof) of the hypothesis about the purely one-dimen- 
sional nature of the correlation above T ,. 

The ODLRO concept was introduced in 1962 by  an^!'^] 
According to a theorem proved inciT1 the existence of a 
non-vanishing limit 

a s x i = x z ,  x',=xl, Ix,-$l-m leads i n a  systemof 
charged fermions to the appearance of superconductivity 
and the quantization of magnetic flux. The phase transi- 
tion in a system with ODLRO (e. g., in the BCS model) 
occurs in such a way that the quantity A(T) smoothly 
turns to zero in the transition point. [18] In the language 
of the GL theory condition (5.1) can be written in the 
form 

In purely one- and two-dimensional systems (5.1) and 
(5.2) a r e  not satisfied In those papers it is 
shown that the breaking of ODLRO occurs basically 
due to phase fluctuations. In our model where I Z/J I is 
fixed conditions (5.1) and (5.2) look like 

where ji + z2 - m. One can easily calculate such a corre- 
lator if we use H, to average (seeczi1): 

i n n  

i e x p  i[cp(j,, z, r ) - q ( 0 , 0 , 0 )  1) = e r p  

X 
I-cos q,j, cos q,z ch [fio, (P12-t)  ] T w  1 '  

9, ~h(n , , , p / r )  -1- e x p  {- ~,s~wj dqz 

x n 
1-cos q,j,cos q,z cos 2nnkTt 1 dqx dqu (TlaTco)'n'+Qq' 

- 7  -.7 

(5.4) 

The last form of the correlator (with En) i s  given to 
facilitate a comparison with Eq. (40) ofc8]: i t  is clear 
that the results ofc8] a r e  obtained from (5.4) a s  6 = 0. 

The correlator (5.3) which interests us is obtained 
from (5.4) for T = 0; we can evaluate it is the appro- 
priate temperature ranges. When T< n c y ~ , ~ ' / ~ ( ~ )  we 
have 

( 6" e x p { u A )  (ljLl<n), 

~ 6 " e r P { - & + u ~ ]  ( + p ( ~ ) > ~ j , l > n ) .  
F ( j , ,  0 . 0 )  = 2nj,  

In the case naT;>> T>> r a ~ , p ' / ~ ( T )  we have 

2  T  + - - p - " ( T ) -  
n T,. 

(5.7) 
Here A to F a r e  numbers of order unity. In the range 
r a T Y T  < z <  2TYT and when naT:>> T>> r a ~ , p ' / ~ ( T )  the 
function F(0, z ,  0) changes little and is approximately 
equal to ( ~ / r a c ) ~ .  

If we attempt to evaluate the temperature corrections 
to Eqs. (5.5) and (5.6) we can see  that the temperature 
will in all calculations occur in a combination of the 
form (T/saT,) p " / 2 ( ~ ) ,  e. g., when 

the corrections will be of the form 

Analyzing the behavior of the longitudinal and trans- 
verse correlators in the case T<  ncu~,p ' /~(T)  we see  
that when the arguments tend to infinity they tend to 
one and the same quantity 6u, but in different ways: the 
transverse correlator reaches i t s  asymptotic value 
practically a t  once a t  neighboring filaments while the 
longitudinal correlator decreases like a power law up 
to values I =  6-'(T) (in dimensional units up to 5,, 6"(T)) 
and only afterwards the nature of the decrease changes 
to exp(l/z). Even though longitudinal distances less 
than 5,, a r e  not described by our model, the fact that the 
decreases of ~ ( 0 ,  j,, 0) and of F(O,O, z) for  small argu- 
ments have a different character reflects the anisotropy 
of the problem: since a Jtl1 can be relatively small, the 
dimensions of the region of strong correlations (i. e., 
the region where the correlator is appreciably larger 
than its limiting value) in the z-direction and in the 
x ,  y -directions can be different. The correlators (5.5) 
to (5.7) possess the property (5.2), i. e . ,  there is 
ODLRO in the system. It is clear that the vanishing of 
the parameter A(T) (see (5.1)) and of 6(T) a re  connected 
facts which we mentioned a t  the beginning of this sec- 
tion. One sees  easily the limiting transition to a purely 
one-dimensional case, which was analyzed inc8], in the 
longitudinal correlator when raT;>> T >> n a ~ , ~ ~ / ~ ( ~ ) :  
when 6 = 0 the region of the exponential decrease in 
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(5.7) stretches to infinity; when 6=0 the plateau which 
the correlators reach in all temperature ranges also 
becomes zero. When 6 = 0 (5.6) also has the form z '~ ,  
correct for the purely one-dimensional case, in the 
case T = 0 (as in the case 6 = 0, T<  naT, i s  equivalent 
to T=O). 

6. EXISTENCE OF THE MEISSNER EFFECT AND 
ANISOTROPY OF THE PENETRATION DEPTH 

In the GL scheme the existence of the Meissner effect 
follows from the linear connection between the current 
j and the vector potential A: 

eh 4eZ 
j(x) = -($o'V$O-$OV$O') - - l$013A, 

rna mc 

where $, i s  the solution of the GL equations. When 
fluctuations a re  taken into account this connection takes 
the form 

e'n. A2n. 
j= (x) =- - { A =  (x) - - 

mc 4mkT 

(6.1) 
The convolution 

i s  calculated, neglecting the 1 $ 1  term in the GL func- 
tional. In the Fourier representation (6.1) is clearly 
gauge invariant: 

where A, = (mc2/4nns e2)'I2 i s  the longitudinal penetra- 
tion depth. The generalization of (6.1) and (6.2) to the 
anisotropic case looks a s  follows: 

where 

Here ma is the effective mass for motion along the a- 
a d s ,  h,, = (ma c2/4n e2nS)'l2; clearly hLa/hL5 = (ma/ 
m5 )'I2. 

The change from (6.1) to (6.2) and from (6.3) to 
(6.4) and (6.5) can be accomplished by changing to 
Fourier transforms in x and noting that 

1 kT 8 
(qqql-.) = ------ 

2 2 qaZma-' nlhZ 

respectively, in the isotropic and anisotropic cases. 
All averages a r e  performed using the usual GL function- 
al in which one takes into account only terms which a r e  

quadratic in the deviations from the equilibrium value 
$,. In order to obtain the magnitude of the penetration 
depth in the case studied we must fact the analog of Eqs. 
(6.3) to (6.5). We use the find that the phase occurring 
in (2.2) i s  a gauge invariant phase['63 and we separate 
explicitly from it the vector potential, using the stan- 
dard substitution: 

av 8 9  2e - * - -  
a2 az  hc Az, 

the last integral we replace simply by g- A(j). The 
partition function i s  now an explicit function of A. For 
the current we have according toC221 

We note that the transverse current then has the purely 
Josephson form, a s  expected. Evaluating (6.6) in the 
approximation which is linear in A, we get for the cur- 
rent an expression such a s  (6.3) with ns= ~ ~ / a :  (the 
linear electron density changed to a volume density) 
and with an effective transverse mass m, = 4P/~,a:; 
m,, = m, the function Y'@ then has a more complicated 
form than (6.4): besides correlators of the form (6.4) 
one finds, e. g., 

and so on. All averages a r e  defined a s  

where % is the second-quantization Hamiltonian. In the 
present paper all these correlators a r e  evaluated in the 
zeroth approximation in H,,,. One can find details of 
analogous calculations, e. g. , inC211231. For instance, 
we have for the quantity 3 

where 

From this correlator we can obtain all Jia5 by differ- 
entiation with respect to the appropriate parameters and 
arguments. 

At large distances the argument of the sinh function 
in (6.7) decreases fast and we can thus obtain the Fou- 
r ier  transform for small q, and q, by expanding the 
sinh up to the first term. Taking the Fourier transform 
of (6.3) with respect to x, y, z we see that 

766 Sov. Phys. JETP 45(4), Apr. 1977 Yu. A. Firsov and G. Yu. Yashin 766 



In our approximation m, is renormalized due to phase 
fluctuations: 

The quantity GIi vanishes a t  the phase transition point 
which corresponds to the vanishing of rigidity in the 
transverse direction. The expressions f o r  the A,, have 
the form 

The anisotropy of the penetration depth in our case i s  

(6.9) 
We see that A;' and At '  vanish a t  different points: A;' 
a t  q, and A;;' a t  c. This difference is purely formal 
in character: looking a t  Eq. (S. 8) we see  that when m, 
becomes infinite the expression within braces vanishes 
for any q so that the Meissner effect disappears simul- 
taneously in both directions a s  T - T,. 

7. DISCUSSION OF THE RESULTS 

All calculations of this paper are ,  in fact, based upon 
the Hamiltonian (3.1). The reliability of the approxi- 
mations used in its derivation has so f a r  not been thor- 
oughly elucidated (see the earlier footnote). However, 
(3.1) contains very important features of a quasi-one- 
dimensional system with a complex order parameter s o  
that we can forget its origin (thereby disregarding the 
problem of the degree of adequacy of its starting model) 
and simply consider (3.1) a s  a convenient model Hamil- 
tonian which is amenable to a correct discussion pro- 
vided (T, - T)/T, is not too small. 

Larkin and ~ f e t o v ' ~ ]  studied only the case T > T, when 
the phases on different filaments a r e  no longer coherent. 
However, this turned out to be sufficient to find an ex- 
pression for  T, taking into account the destructive role 
of the phase fluctuations near T,. In our paper we suc- 
ceeded to construct a rather complete description of the 
model for T < T,. As f a r  a s  we know this was the f i rs t  
time this was done for  a quasi-one-dimensional model 
with a complex order parameter. 

1. We studied the spectrum of low-lying collective 
excitations-the "sonic" phase oscillations. The trans- 
verse rigidity in such a system tends to zero a s  T - T,. 
It is, strictly speaking, not known how this happens- 
discontinuously o r  smoothly. In the framework of the 
variant of the self-consistent field method used in the 
paper we found that the jump Ap was equal to e", i. e. , 
small (this corresponds to a first-order phase transi- 
tion which is close to a second-order one) but i t  is fully 
possible that a more exact calculation gives a smooth 
vanishing of p(T) a s  T - T, (second-order phase transi- 
tion). 

2. F i rs t  of all we found the actual form of the corre- 
lation functions in quasi-one-dimensional supercon- 
ductors for  T < T, and studied the law according to 
which they reach saturation. This limiting value corre- 
sponds to the establishment of isotropic ODLRQ. It 

shows a maximum permissible degree of phase coher- 
ence in such a system and must be determined, taking 
quantum phase fluctuations into account. The correla- 
tion lengths (over which ODLRO is established) along 
and a t  right angles to the filaments in such a system dif - 
f e r  by many orders: 

An interesting conclusion i s  that a s  T - T, both the 
long-range and the short-range order  vanish, i. e. ,  a s  
T - T, 

It i s  more likely that this conclusion is not merely a 
consequence of the inaccuracy of the self -consistent 
field method, but corresponds to the physics of the 
breaking of phase coherence in such a model (see be- 
low). 

3. We studied the Meissner effect in a weak magnetic 
field. It vanishes not a t  T =  T:, where there must occur 
a smeared-out peak in the heat capacity, but a t  T = T, 
where the coherence of the phases in different filaments 
vanishes. (It i s  possible that there appears a second 
peak corresponding to the fact that ODLRQ i s  broken a t  
T =  T,.) The Meissner effect is strongly anisotropic in 
such a system: 

It is clear that the penetration depth of the magnetic 
field into a sample made from such a quasi-one-dimen- 
sional substance will depend strongly on the angle be- 
tween the magnetic field H and the direction of the fila- 
ments. Let, for  example, the surface of the sample be 
ground parallel to the direction of the filaments and the 
magnetic field be directed such that the magnetic field 
lines a r e  parallel to the surface of the sample (they may 
then be a t  an angle to the filaments). If H is a t  right 
angles to the filaments (but parallel to the surface of the 
sample) the penetration depth i s  XI, = (47rns e2/mc2)'i12 
and has the normal value of 10'~ to 10'~ cm. This is 
connected with the fact that the superconducting currents 
screening this field must flow along the filaments, i. e . ,  
the conditions a r e  hardly different from those for  a bulk 
sample. If, however, H is parallel to the filaments, 
the screening current must flow from filament to fila- 
ment, i. e. ,  the conditions widely differ from those in 
the case of a bulk sample, and the penetration depth i s  

If the coefficient q were equal to m,,/m,, we could, not- 
withstanding the fact that the masses m,, and m, have 
different physical origins (m,  is caused by the Joseph- 
son nature of the coupling between the phases in neigh- 
boring filaments) and that the expressions for them a r e  
different: 

talk about a certain analogy with the normal anisotropic 
Meissner effect. The additional factor ex'(-  ST) in q ( ~ )  
(see (6.69)) i s  non-trivial; i t  reflects the degree of 
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phase coherence in different filaments and vanishes a t  
T= Tk c. Generally speaking, the paramagnetic 
term in j i s  determined by the contribution to the corre- 
lators .Xu, at long distances (the singularity of the form 

in (6.8) i s  connected with just this point) and j,,, might 
thus, in contrast to j,,,, be proportional to the factor 
exp(- s,(w)} which describes ODLRO in the system. 
However, it follows from the form of Eqs. (6.3), the 
condition of gauge invariance, and the current conserva- 
tion law div j = 0, i. e. , q - j = 0, that these factors must 
be the same in j,, and j,,, and must simultaneously 
vanish a s  T - Tk. 

4. All results described above were obtained for an 
infinite sample; for the solution of the problem of the 
penetration depth in an actual sample of finite dimen- 
sions the boundary conditions a re  very important. 

5. All results of the present paper were obtained, 
taking into account dynamic fluctuation effects (quanta1 
phase fluctuations), the intensity of which i s  charac- 
terized by the magnitude of the dimensionless param- 
eter a! (seec8]), e. g., 

Here A- 1; A=2 according to Ref. 8, and A= 8/e ac- 
cording to the estimates (4.3) of the present paper (car- 
ried out in the spirit of Ref. 14). We achieve a correct 
description of the quantum corrections by direcily in- 
cluding in (2.2) contributions of the form Ytij $( $, and 
by correctly splitting off the terms which are  quadratic 
in b, and b: (see Sec. 3). We remember, however, 
that spatial and temporal dispersion effects in YC, have 
not been completely taken into account so that the re- 
sults obtained refer rather to the model Hamiltonian 
(3.1) than to the original physical system (see earlier 
footnote). 

We were able to obtain all results given here thanks 
to a felicitous choice of the zeroth approximation in 
which the effect of the fluctuations on the form of the 
spectrum was already taken into account (the transverse 
rigidity and, hence, also the velocity of the collective 
oscillations tend to zero a s  T - T,). 

APPENDIX 

We can exactly split off from the Hamiltonian (3.1) 
the diagonal partc213: 

ha l-cos qg  
- - L2 ~ X P  {-S= (g) } (bq+b-,++bqb-,).  

1 q (A. 1) 
The approximation given by us (see section 3) corre- 
sponds to neglecting %, and expanding the exponent in 
(A. 1); seec211 for a more detailed derivation of I, and 
8, and also for a discussion of the approximation. 

 he approximation Xq constant, which was made in 
enables us  to describe the electrostatic induction between 
filaments, including Coulomb screening, rather correctly. 
However, the quantity Cii(z) decreases weakly with increas- 
ing z even when we take into account the screened interaction 
between electrons at  other filamente, and this may lead to 
singularities (most likely logarithmic) in X",or small q,, 
q,. Moreover, i t  is not excluded that taking the Coulomb 
effects into account may lead to more radical consequences. 
We recall that the plasma spectrum of such a quasi-one-di- 
mensional model in  the normal state has an anisotropic gap 
which vanishes in the perpendicular direction. This means 
that in a quasi-one-dimensional superconductor (in the phase 
system) the collective branches of the spectrum may inter- 
sect. In principle this may lead to the formation of mixed 
modes which a r e  neglected in the model considered. If ~ / a  + 
# const (but finite a s  Iql - 0) the form of Eqs. (5.5) , (5.6) is 
qualitatively conserved. For the existence of ODLRO it is 
sufficient that 3; < q* as q -0, where a is an arbitrary 
number, less than unity. 
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We investigated the spectrum of the submillimeter photoconductivity of p-Ge at helium temperatures and 
the effects of a magnetic field up to 40 kOe on the spectrum. A large number of lines of transitions 
between the excited states of the acceptors was observed, some of the lines were identified, and the 
energies of a number of spectral levels B, Al, Ga, In, and TI in Ge were identified. The results are 
compared with calculations and with experimental data obtained from the spectra of the photoexcitation of 
the ground state of the impurities. Using one transition as an example, we discuss the splitting of the 
excited states of acceptors in the magnetic field and under uniaxial compression. 

PACS numbers: 72.40. + w, 71.70.Ej 

INTRODUCTION 

Besides the study of the energy spectrum of donors 
in semiconductors, ''I great interest attaches to an in- 
vestigation of shallow acceptors. This, however, is a 
more difficult task both theoretically and experimental- 
ly. The calculation of the acceptor spectrum in Ge by 
the effective-mass m e t h ~ d ' ~ - ~ ~  and the study of the ef- 
fect of a magnetic field and of uniaxial deformation of 
the sample on this spectrum within the framework of 
perturbation t h e ~ r ~ ' ~ - ' ~ ]  is quite complicated. It has 
been carried out for  a limited number of states and 
yields less  reliable results than in the case of donors 
(e. g. , c131s1). A group-theoretical analysis of the in- 
fluence exerted on the spectrum by a magnetic fieldc161 
and by uniaxial deformation (F) '"I yields new informa- 
tion and a number of exact results, but is not sufficient. 

energy spectrum of shallow acceptors in Ge, the effect 
exerted on this spectrum by a magnetic field, and in a 
number of cases the effect of uniaxial compression, by 
using a sensitive high-resolution submillimeter spec- 
trometer based on backward-wave tubes (BWT). We 
f i rs t  investigated several ser ies  of transitions between 
excited states of acceptors, but unfortunately, the 
short-wave limit of the employed spectrometer (X 
~ 2 5 0  bm) did not make it possible to study the spec- 
trum of the transitions from the ground state. In view 
of the limitations of the theory the most detailed in- 
vestigations of the Zeeman effect and of the effect of 
uniaxial compression were restricted to line splitting 
under small perturbations. The measurements were 
performed by determining the photoconductivity due 
to photothermal i o n i ~ a t i o n ~ ~ ~ ' ~ ~ ~  of the excited states of 
the impurity. 

The spectrum of acceptors of group I11 in Ge was ex- 
perimentally investigated with long-wave infrared grat- 
ing spectrometers with registration of the absorption of 
the radiation, C12*'8-221 including studies in the presence 
of a field H and a deformation F and photoconductiv- 
ity, c23*241 and also with Fourier -transformation spec- 
trometers with registrationof t h e p h o t o c o n d u ~ t i v i t ~ . ~ ~ ~ ~  
Transitions from the ground state were investigated, 
and some of them, to the nearest excited state, could 
be identified with those calculated. The resolution and 
sensitivity of the spectrometers used inC12*20-221 were 
adequate for a detailed investigation of the Zeeman and 
piezosplitting of only an insignificant number of the 
spectral lines and under sufficiently strong perturba- 
tions. At the same time, the theory is applicable most 
fully only in the region of small perturbations. 

The purpose of the present work was to study the 

EXPERIMENTAL CONDITIONS AND PROCEDURE 

The photoconductivity spectra of the acceptors in Ge 
were measured mainly in the same way a s  those of the 
donors."] However, the more complicated character 
of the acceptor center, and the fact that it has been 
less  thoroughly studied, led to a number of modifica- 
tions of the measurement procedure. The following 
factors become significant: the determination of the 
spectrum of the excited states at H=O and its re-  
sponse to uniaxial compression, the study of the Zee- 
man effect following compression of the sample, the 
determination of the relative intensities of the Zeeman 
and piezoelectric components when various polarizations 
of the radiation a re  used, and the measurement of the 
anisotropy of the Zeeman effect. 

769 Sov. Phys. JETP 45(4), Apr. 1977 0038-564617714504-0769$02.40 O 1978 American Institute of Physics 769 


