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An analysis is made of the kinetics of a single-pass mirror-free y-ray laser. The conditions governing the 
operation of this laser are obtained. The possibility of Dicke superradiance in the y-ray range is 
estimated. The analysis is carried out for single-mode emission from a system of two-level nuclei. 

PACS numbers: 42.55.Bi 

The difficulty of constructing a resonator for electro- 1. FIELD DYNAMICS 
magnetic waves in the y-ray range makes it necessary We shall consider a needle-like crystal in which ini- 
to consider a needle-shaped active element forming a tially all the nuclei a r e  in an excited state. The states 

y-ray beam as a of of these nuclei are at first completely uncorrelated. 
tion of spontaneous radiation emitted by nuclei. The 

The Hamiltonian of the system comprising atoms and 
present paper is concerned with the kinetics of such a 

the field is 
mirror-free single-pass y-ray laser, following the re -  
sults reported A common feature of these pa- ("11 ("=I (101 

%=%,+%,+%,+%,,,, +XI,, +n,,, , 
pers is an analysis of the kinetics on the basis of semi- (1) 

classical equations to which, because of the homogeneity where xf is the Hamiltonian of the field, xn is the Ham- 
of the field equations, one has to add certain inhomoge- iltonian of the nuclear subsystem of the crystal, %, is 
neous boundary o r  initial conditions. Thus, strictly the Hamiltonian of the electron subsystem of the crystal, 
speaking, these papers a r e  concerned with the kinetics and %kt' a r e  the Hamiltonians of the interactions of 
of the amplification of a signal of some specific shape, various subsystems with one another. 
whereas the greatest interest l ies in the kinetics of am- - 
plification of the spontaneous radiation emitted by nuclei The equation of motion of the general density matrix 
in an initially excited medium. is 

A very attractive idea is the Dicke superradiance in 
which the collective interaction of nuclei via a common 
electromagnetic field reduces strongly the deexcitation 
time of a system of excited nuclei. The promising na- 
ture of this superradiance in the specific case of a y-ray 
laser  was discussed some time ago and t h e n i r ~ ' ~ ' ~ ]  
and again inc8'. In our opinion, the fullest analysis is 
made inc3*41 but even there the problem is treated only 
approximately because the theory of the effect has not 
yet been developed sufficiently. The furthest progress 
in the theory of superradiance (superfluorescence) was 
made inc9-i21. The theory of single-mode superradiance 
is given the changes resulting from multimoding 
a r e  considered in'"', and the theory is compared with 
the experimental results inci2'; this comparison shows 
that a suitable selection of the constants occurring in 
the relevant equations produces a satisfactory agree- 
ment with the experimental data if the semiclassical ap- 
proximation for the quantum equations in the single- 
mode theory is used. A comparison of the semiclassical 
approximation to the quantum equations with the corre- 
sponding semiclassical (nonquantum) equations will be 
made below. 

We shall study qualitative changes in the nature of the 
emitted pulses which occur when the parameters of the 
radiating system a r e  varied. In particular, we shall 
give an analytic solution of the single-mode theory of 
superradiance for the characteristic parameters in our 
problem, which sheds new light on the process; for ex- 
ample, we shall determine the exact boundary separat- 
ing oscillatory superradiance from the single-pulse 
emission. 

where the second term describes the interaction of this 
system with a thermal reservoir. We shall be inter- 
ested in the density matrix of the "nucleus + field" sub- 
system, which is related to the density matrix %(n, f,e,t) 
by the following equation: 

and has the equation of motion 

The equation of motion for the density matrix p in the 
interaction representation is 

where 

(nl) p=C-'pV, %,,,=U-I%,,, U ,  U=exp (-i(%,+Zr) tlh), 

I', is the term describing the interaction of the electron 
subsystem with the field, and r2 is the term describing 
the interaction with the nuclei. 

The interaction Hamiltonian %,,, can be expressed in 
terms of time-independent Schrijdinger operators: &,,,=-x {g,(t)akiRr-+H.c.}, (3) 

k 
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where k = (k, A), 

gk( t )  = ( Z x h l ~ o ~ ) " ( -  I j+ (k )e (" l+ )  exp { i ( o k - o o ) t ) ,  (4) 

j'(k) is the Fourier component of the positive-frequency 
part of the current density operator, 

0-, a,, and un a r e  the Pauli spin operators. 

The collective nuclear operators satisfy the commuta- 
tion relations 

where 

H,,k = a,"' exp (ikrOi). 

The equation of motion for the density matrix (2) with 
the interaction Hamiltonian described by Eqs. (3) and 
(4) yields the following system of equations for the de- 
termination of the number of photons q =  (a&,) in a 
mode k: 

gkv. ( t )  ( n : . t a k ~ ,  k,.-t*)+gk(t) (Rkt+Rr-) . 

d 1 i 

I 
-- (R,+Rt-) +- (Rk'Rt-)=- 2 r - g k 8  ( t )  (ar iRk.-)  
dt T? 

k '  

where 

lab&) = lB for the Bragg modes and lab&) = 10B in other 
cases, L(k) is the length of the investigated crystal in 
the direction of the mode k, I / T ~  is the width of a Mass- 
bauer line, 1/Tf = 1/~,  + l/T,, 1 /~ ,  is the rate of in- 
ternal conversion, l /Tl is the radiative width of a level, 
and (R:) is the equilibrium value of the difference be- 
tween the populations. 

The relaxation times a r e  introduced above on the as- 
sumption that the interaction between the nuclear and 
electron subsystems reduces to internal conversion pro- 
cesses and can be allowed for phenomenologically by 
the relaxation time 7,. The interaction of the electron 

subsystem with the field can be reduced to various pro- 
cesses of the absorption and scattering of y rays by 
electrons, 1/1, = nz, a,, where a, a r e  the photoabsorp- 
tion, Compton scattering, and other cross sections. 
The interaction of the nuclear subsystem with the ther- 
mal reservoir  is allowed for, a s  usual, by introducing 
relaxation t imes T I  and T2. Since we a r e  quantizing the 
field in a volume equal to the volume of the sample, we 
must allow for the interaction of the "nucleus + field in- 
side the crystal" with the thermal reservoir consisting 
of f ree  noninteracting quanta. This requires the substi- 
tution c/lab - c/l, + c/L(k). 

We can easily see that the system (6) is not closed 
and, therefore, the exact solution of the quantum prob- 
lem in which allowance is made for the interaction of all 
the modes is hardly possible. 

2. EQUATIONS FOR SINGLE-MODE AND BRAGG 
SUPER RADIANCE 

We shall now return to the commutation relationships 
(5) and compare the diagonal elements of the operator 
RE,,,,. with the nondiagonal elements (k+kt). The aver- 
age value of the operator R,,,-,. in the state in which the 
system is at  a moment t is 

where i t  labels the nuclei excited at a moment t, and i" 
labels the unexcited nuclei. Thus, if we allow for the 
complete spatial homogeneity of our initial conditions 
and equations, we can say that the above average disap- 
pears for k -kt  #K (K is the reciprocal lattice vector). 

We shall consider the situation in which an avalanche 
develops along the axis of a needle-like crystal. The 
condition for needle-like shape is LX/~ ' -  1, where L is 
the length of the sample and d is its  transverse size. 
In this case the radiation is emitted in the first  diffrac- 
tion mode so  that only two waves exist in the crystal and 
these travel in opposite directions along the crystal 
axis. The commutation relationships (5) considered 
subject to the above discussion become 

where R ,  = R , , .  

The physical meaning of the commutation relations 
(7) l ies in the assumption of a negligibly weak interac- 
tion between the non-Bragg modes. The application of 
the relationships (7) modifies in the following way the 
system of equations (6): 
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where 

The system (8) is derived using the fact that the symme- 
t ry  of the problem leads to the equality 

and also that % - wo= 0. 

We shall now consider superradiance under the Bragg 
diffraction conditions. For  y rays of energies of a few 
tens o r  hundreds of kiloelectron-volts we can usually ex- 
pect the two-wave diffraction. The Bragg pairs whose 
reflection planes a r e  parallel to the axis of the crystal 
a r e  in the most favorable position. We shall now con- 
sider this case. The equivalence of the two directions 
parallel and antiparallel to the axis is obtained for two 
pairs of waves traveling opposite to one another and in- 
teracting only via the inversion depletion. 

We shall now consider what simplifications result from 
allowance for the symmetry of the problem. Firs t  of 
all, it is clear that Rf = Rt,, where k2 = kt + K. Thus, 
bearing in mind the foregoing discussion, we can re-  
write the commutation relationships (5) in the form 

where a and p can have the values 1 o r  2. Secondly, it 
follows from the symmetry of the problem that a;al 
= ajaz so  that a ,=  a, ei". For  the Borrmann modes, we 
have cy Bn. Allowance for all these factors gives a sys- 
tem of equations for the Bragg modes, which i s  identical 
with the system (8), with the exception of the second 
equation, provided we make the substitutions 

We shall consider the initial stage of the deexcitation 
process when the number of nuclei which have decayed 
is stilI small. Retaining t e rms  which a r e  linear in r e -  
spect of n, we find from the system (11) that 

which gives the following condition for the existence of 
an unstable solution: 

In those cases when Tz <<7, the condition (13) becomes 

where a. = x ~ N / ~ ~ ~ T ~ v  is the amplitude gain. 

However, in the case of generation of coherent y rays 
of interest to  us, we have a different situation in which 
T << T,, so that the condition (13) becomes 

The meaning of this last condition is easily understood. 
In Eq. (14) the coefficient a,, is the resonance gain but 
under our conditions this resonance gain is attained in 
a time comparable with the excited-state lifetime but 
the deexcitation process occurs, subject to Eq. (15), in 
a time much shorter than the isomer lifetime. 

The gain calculated allowing for the time dependence 
of the process is 

because Aw 5: 1 / ~ ,  the inequality (15) becomes 

The second equation then has the form 

where 

3. SEMICLASSICAL APPROXIMATION 

A semiclassical approximation can give a satisfactory 
agreement with the experimental data in the optical 
range. Let the field variables be the c numbers, so  that 
the system (8) becomes (we shall drop the angular 
brackets and write averages a s  if they were the quanti- 
t ies themselves): 

dl  1 dR, 1 - + -I=FR,, - + -(R,+lV) =-2F. 
d t  T, d t  T,' 

This condition means that the time taken by a photon to 
travel the amplification length should be much shorter 
than the dephasing time. Of the three relaxation times 
which we a r e  introducing, the shortest one is T and its 
values a r e  very different from the other relaxation 
t imes so that ignoring them, we find from the system 
(11) a new system of equations 

The nature of the solution of the system (17) depends 
on the ratio of the characteristic times of the problem 
7 and T. We shall introduce a parameter /3 which gov- 
erns  the square of the ratio of the characteristic times 
p= T ~ / T ~ .  Here, 7 is the lifetime of a photon in the me- 
dium under discussion. The meaning of the time T is 
easily understood when we go to the limit T-  03. In this 
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case the system (17) describes the exchange of energy 
between the medium and the field in an infinitely long 
rod. The process is periodic and the period is of the 
order of T. The appearance of the first  peak is given 
by 

and the maximum radiation intensity is 

Thus, T is the characteristic time of the exchange of 
energy between the medium and the field. 

In the y-ray range we have p <  1. In this case we can 
easily obtain an analytic solution of the system (17). We 
shall divide it into three stages. In the first  stage the 
signal grows exponentially. The solution of the system 
(17) is of the form 

- t  
n ( t )  = - 2' e-I " [ch (1'1+4@ -) - I ]  , 

I f 4 8  21 

2(1+3$)  
C', ( t )  = - 

L+4? (20) 

where U,(t) = N - R,(t). The system (20) readily yields 
an approximate expression for the time of appearance 
of the first  radiation peak: 

When the quantity Ul(t) reaches values of the order of 
N/10, we have the stage of very fast emptying of the 
upper levels. Retaining in the system (17) with small  
values of /3 the t e rms  linear in p, we find that 

$.I! V Z - H  ROC ( t )  -.j's ( t )  
R * ( t ) =  .\ 

4 .IrC(c) - R g S ( t )  
' 

\C ( t ) -N  S ( f )  

P (!-t i )  P ( t - t f l )  . S ( t ) =  51,- C(t)=cl1- 
2 T 2 s  ' 

where R,, is the difference between the populations a t  the 
time tl corresponding to the matching of the solutions. 

Since the strong absorption @< 1) prevents even the 
first  radiation peak from reaching the value of N, the 
other peaks a r e  much smaller than N o r  they may not 
appear at all. Thus, for the range of values of the pa- 
rameter p considered here, the third stage is charac- 
terized by the fact that the function R,(t) then remains 
negative. Depending on the value of P ,  there a r e  two 
types of solution for this stage. 

1. In the f i rs t  case we can have oscillatory super- 
radiance (@ > 1/4): 

n ( t ) ,  UZ ( t )  -,e-'/'. 
v q T  

( A , , ~ + B , , ~  cos - t + ~ , , ~  sin --- 
2 s  ) (23) 

where the values of the coefficients A, B, and C a r e  
found from the matching conditions. 

2. In the second case we have single-pulse super- 
radiance (/3 s 1/41; 

U 2  ( t )  =UO exp I 
where U2(t)=N+ R,(t), and Uo is the value of U2(t) at the 
matching moment t2. 

Thus, in the oscillatory superradiance case the solu- 
tion is a linear combination of exponentially damped 
sinusoids and cosinusoids varying with a period of 

It follows from Eqs. (20) and (22)- (24) that n(t) has i ts  
maximum value during the second stage. This value is 
attained at a moment 

and it is equal to 

Since we a r e  considering the problem in terms of the 
semiclassical approximation, we can consider rigorous- 
ly photons inside the active volume and photons which 
have been emitted. In the case of nonabsorbing crystals 
(L <<I,) the number of the latter photons is given by 

Thus, the intensity of the emitted radiation is 

Consequently, the oscillations of the radiation intensity 
follow exactly the oscillations of the photon density in- 
side the "resonator." Using Eq. (27), we find that the 
maximum radiation intensity is 

where 

The use  of strongly absorbing crystals (L >> I,) is 
not recommended because a crystal is damaged before 
the radiation reaches i ts  maximum intensity. In a crys- 
ta l  of critical length (L= 1,) the maximum radiation in- 
tensity is obviously 4 times a s  high a s  in a nonabsorbing 
crystal of the same length. Since in the latter case half 
the emitted photons a r e  absorbed in the crystal, we 
have even in this case the problem of removal of high- 
energy photo-electrons and filling of the resultant va- 
cancies with low-energy electrons. Consequently, the 
most effective extraction of the stored energy is 
achieved by the use of crystals with L < I,. All this is 
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valid only a s  long a s  both these lengths a r e  less  than 
the coherence length I,= cT, i. e., in systems with P<  1. 
If I,< L <lab, the maximum radiation intensity is less  
than the Dicke intensity (30) and it is given by Eq. (19). 

It follows from Eqs. (30) and (26) that a reduction in 
the parameter /3 reduces the maximum radiation inten- 
sity and increases the delay time of the f i rs t  pulse. It 
is intuitively clear that the faster the ra te  of extraction 
of the stored energy, the better the directionality of the 
radiation output from a real  system. Consequently, the 
problem of optimization of the parameters of the resul- 
tant pulses reduces to the problem of increasing the 
parameter 

If we assume that X -3x10-' cm, N / V -  loz3 cm-', and 
1, - 0.1 cm, we obtain 

It should be notedEi3' that far  from the frequencies close 
to the absorption edge in the K shell we have 1, 
= (KW)~.~;  thus, P r i ses  strongly with increasing y-ray 
energy; /3 a (Ew)~. 

4. CONCLUSIONS 

Interaction of separate radiators with one another in 
the deexcitation process is due to two effects: firstly, 
it is due to the stimulated radiation described by the 
term nR, and, secondly, i t  is due to the induced polar- 
ization of the moment of the nuclear transition. The 
second effect is described by the cross  terms of the 
operator I: 

I . ,  = oY1o!l exp{~k(roz-rLmj)].  

When these interactions a r e  weak, the system (8) de- 
scribes the spontaneous decay of N  noninteracting nu- 
clei, which occurs at the rate 

where A ~ ~ = x ~ / A  (A is the transverse cross  sectional 
a rea  of the crystal). The coefficient 2 appears because 
the radiation is emitted from both ends. Thus, Eq. (33) 
describes spontaneous decay into a diffraction mode. 

In considering the deexcitation process we a r e  assum- 
ing that all the characteristic t imes of this process a re  
considerably shorter than T2. This means throughout 
the deexcitation process that the nuclear system "re- 
members" the phase of the emitted photons, so  that the 
system reaches a state of collective spontaneous emis- 
sion at a moment to. The time to is the longest charac- 
terist ic time. Consequently, the critical density of the 
excited nuclei in superradiance effects is found from the 
condition to S T2. Using Eqs. (26) and (32), we obtain 

Substituting the same values of the parameters as in Eq. 
(32) we find that n,/rTi< lo2'. Such densities of excited 
nuclei have not yet been created experimentally. 

In those cases when T2 <<to, the r ise  of the number of 
photons during the initial stage is again given by Eq. 
(20) but n(t) does not r i se  to NB/4 but only to 

n,,,-B exp (T, /T, )  =$NF"'*. 

Thus, the maximum attainable intensity of the radiation 
is 

If we make allowance for  the above processes of de- 
excitation of samples which a r e  initially completely ex- 
cited, we find that i t  is incorrect to assume that the dif- 
ference between the populations varies weakly through- 
out the deexcitation process o r  to assume that it decays 
a t  rate characterized by the time constant Ti, a s  is 
sometimes assumed. In fact, i t  follows from the sys- 
tem (20) that the decay of the population inversion is 
much faster even during the initial moments. 

One of the main assumptions in our discussion is a 
two-level model of initially completely excited nuclei. 
This model describes best the processes in a y-ray 
laser  based on long-lived isomers because the variants 
utilizing short-lived isomers a r e  predicted to operate 
in three- o r  four-level schemes. However, our discus- 
sion is applicable also to the models in which the life- 
times of the active levels a re  approximately equal, 
which seems to be the most promising situation. If ini- 
tially there a r e  h$ excited nuclei, the coefficient P de- 
creases by a factor N / N ! .  Allowance for the nuclear 
vibrations reduces to the multiplication of the param- 
e ter  fl by the probability of MBssbauer emission. We 
have considered also a single-mode y-ray laser and 
have thus lost information on the spatial changes in the 
photon flux density. Consequently, n(t) should be r e -  
garded a s  the photon density averaged over the whole 
volume of the sample. 

The a;uthor is grateful to R. V. Khokhlov and Yu. A. 
Il'inskii for valuable discussions and interest in this in- 
vestigation. 
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Semiclassical theory of cooperative radiation of a 
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The kinetics of a pulse of cooperative radiation is considered with account taken of the homogeneous and 
inhomogeneous broadening of the spectrum. It is shown that in the case of sufficiently large homogeneous 
broadening, the Dicke superradiance is transformed into superluminescence, which can be described by 
the balance equations. The existence of an optimal gain length corresponding to the maximum intensity of 
the cooperative radiation is proved. 

PACS numbers: 32.50. +d 

I. INTRODUCTION large homogeneous broadening of the spectrum, which 
leads to loss of the phase memory of the atomic sys- 

The cooperative character of the spontaneous emis- 
tem. Pulsed cooperative emission, during the course 

sion of a polyatomic system is due to exchange of real  of which the phase memory of the atomic system is pre- 
and virtual transverse photons between atoms. Dicke, ['I served, will be called superradiance. On the other 
followed by others, C2*33 have shown that for a system of hand, if the relaxation of the off-diagonal elements of 
N atoms in a small volume, with linear dimensions the density matrix of the atoms is effective enough, s o  
shorter than the wavelength, the radiation intensity i s  that the conditions for  the validity of the balance equa- 
proportional to N .  The proportionality of the intensity tions are satisfied, then the corresponding radiation re- 
to the square of the number of particles shows that gime will be called superluminescence. 
phase alignment of the atomic dipole takes place in the 
emission process, although the macroscopic moment 
may be equal to zero  in the initial state. 2. THE SEMICLASSICAL APPROXIMATION 

The present paper is devoted to an investigation of the 
cooperative spontaneous emission of extended polyatom- 
ic system with account taken of the homogeneous and in- 
homogeneous broadening of the luminescence spectrum. 
Examples of such systems a r e  pulsed gas l a se r s  with- 
out mirrors .  14-" Introduction of the broadenings is es -  
sential not only for  the determination of the details of 
the structure of a cooperative-emission pulse, but also 
to  find the conditions for the manifestation of the coop- 
erative effect. The quantum theory of superradiance of 
extensive systems without allowance for  the broadening 
of the spectrum was developed inc7'91. The use of a 
more elaborate model makes a semiclassical approxi- 
mation (a quantum description of the atomic system and 
a classical description of the electromagnetic field) 
more advantageous. In particular, it becomes possible 
to t race  the connection between the theory that describes 
the Dicke superradiance and the balance equations that 
a r e  used in the theory of pulsed lasers.  [''I The transi- 
tion to the lat ter  is realized in the case of sufficiently 

In the semiclassical approximation, a system of two- 
level atoms interacting with an electromagnetic field can 
be described by the system of equations for the single- 
atom density matrix Ilpajl and the equation for the in- 
tensity of the electric field E due to the polarization P 
of the mediumc"]: 

Here Vb,= V,*, is the matrix element of the interaction; 
in the dipole element we have V,,= - p E, where p is 
the dipole-moment matrix element corresponding to the 
transition from the excited state b to the ground state a. 
The density matrix is locally averaged over the positions 
of the atoms and is a function of the time, of the spatial 
coordinates, and of the natural frequency w of the 
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