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A study is made of the spectrum and angular distribution of the radiation emitted by a system of two 
identical two-level centers, one of which is in an excited state B characterized by an integral spin L and 
the other is in the ground state A with zero spin. The energies and widths of the collective excited states 
are calculated for an arbitrary distance between the centers of A and B .  The energy and angular 
dependences of the cross section for the resonant scattering of photons by two identical A centers are 
found. The spin structure of the resonant electromagnetic interaction between excited and unexcited nuclei 
(atoms) is considered in the case of EL and ML transitions. The influence of a metal mirror on the 
lifetime and spectrum of multipole radiation of an excited atom is estimated in a similar manner. 

PACS numbers: 32.70.52, 32.80. -t 

5 1. INTRODUCTION 

Coherent effects in the emission of radiation from a 
system of excited molecules surrounded by unexcited 
molecules of the same kind were f i rs t  considered in the 
well-known paper of ~icke."]  He assumed that the pho- 
ton wavelength is considerably greater than the distance 
between the molecules h >>R). The opposite limiiing 
ca5e of x <<R was then considered by Podgoretskii and 
~ o i z e n ' ~ ]  within the framework of the classical theory of 
oscillators coupled by the radiation field. As shown 
in[3-81 , in the case of two identical centers (atoms o r  
nuclei), one of which i s  in the ground state of zero spin 
and the other in an excited state of spin 1, the Dicke 
problem has an exact analytic solution for arbitrary val- 
ues of the parameter RIA. The spectrum of the radia- 
tion emitted by such a system a s  well as the energy and 
angular dependences of the cross  section for the reso- 
nant scattering of photons by two zero-spin  center^'^''^ 
a r e  described completely by the energies and widths of 
symmetric and antisymmetric two-particle states cor- 
responding to the excitation of one of the centers. This 
applies also to the spectrum of the radiation emitted 
from two identical excited atoms considered in[91. Ex- 
plicit expressions for the frequency shifts and spectral 
line widths follow directly from the resonant interaction 
theory ( ~ e e [ ~ * ~ * ~ ] ) .  The same results a r e  obtained from 
the purely classical theory of multiple scattering of 
electromagnetic waves by two identical isotropic oscil- 

In the papers cited above and in other treatments of 
the various aspects of the Dicke problem (see, for ex- 
ample,[i0"'31) it i s  understood that electromagnetic radi- 
ation is of dipole nature. Our aim is to study the spec- 
t ra l  and angular characteristics of the emitted radiation 
and resonant scattering of photons in the case when the 
interaction between excited and unexcited centers is due 
to electric o r  magnetic transitions of arbitrary multi- 
pole order. We shall generalize directly the results ob- 
tained for E l  transitions in[5e61. The analogy between a 
system of two identical centers and a radiator located 

close to a flat surface of a perfect makes 
i t  possible to use the relationships obtained for the for- 
mer  case in estimating the influence of a metal mirror  
on the nature of multipole radiation and on the lifetime 
of excited atoms. Effects of this kind have been investi- 
gated experimentally by the monomolecular film meth- 
odsCi5. 161 

52. COLLECTIVE EXCITED STATES 

We shall consider a two-level center (for example, a 
nucleus) whose excited state has an energy EB and a 
spin L Z= 1 and whose ground state has an energy EA and 
zero spin. Depending on the relative parity of the B and 
A states, the B -A + y decay results  in electric o r  mag- 
netic radiation of multipole order and frequency 
wo= (E,  ti. We shall assume that two such centers, 
one of which is in an excited state and the other in the 
ground state, a r e  rigidly fixed at points Ri and R2. In 
the absence of electromagnetic interaction between these 
centers we have 2(2L + 1) degenerate states IA(1)) I B,(2)) 
and I B,(l)) lA(2)). Here, m = 0, k 1, k 2. . . k L a r e  the 
projections of the spin of the excited state onto the vec- 
tor  R =  RI - Rz. The photon exchange transfers the ex- 
citation from one center to the other and the degeneracy 
is lifted. We can easily see  that the axial symmetry 
and conservation of the spatial parity impart the follow- 
ing structure to the matrix elements of the resonant 
interaction between the centers A and B: 

In Eq. (I), y, denotes the radiative width of an isolated 
B center, which is independent of the quantum number 
m (0 S I m I S L); the quantities a r e  complex func- 
tions of the dimensionless parameter 

We shall show later that the functions U(::(X) a re  identi- 
cal for the EL and ML transitions. 
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Allowance for Eq. (1) shows that quasistationary 
states of the system AB corresponding to the excitation 
of one of the centers should be symmetric o r  antisym- 
metric relative to the transposition B = A [ ~ ] :  

Here, jAB = {pAB, jAB} is the four-vector density of the 
current of transitions between stationary states B  and 
A  which a r e  separated by an energy gap EB - EA= lick,,. 
Going over to the Fourier components 

Their energies a r e  

E,!~*'=E.,+E,*A~, Re u:,' (x), (4) we can rewrite Eq. (10) in the form of the integral 

and the radiative widths a r e  

In the relationships (4) and (5) the upper sign refers  to 
the symmetric collective states I J I ~ ' )  and the lower- 
to the antisymmetric states I #:'). 

In the problem of interest to us, we have j i i ( ~ )  = jA%((x). 

It follows from the relativistic invariance and conser- 
vation of the current that when the ground-state spin is 
zero and the spin of the excited state is L, the compo- 
nents of the four-vector transition current for relative 
parity qaB = (- have the following structure (seec"', 
§ 25. 5 andci8', 8 143): 

Deviations of the radiative widths from the value y, 
a r e  due to the coherent emission of radiation from the 
two centers. This mechanism clearly has no influence 
on the partial widths representing the nonradiative de- 
cay channels. Therefore, the changes in the total and 
radiative widths a r e  equal and amount to 

According to Eq. (6), the average lifetimes of the col- 
lective excited states a r e  given by 

If vAB = (- I),+', then 

where T O =  is the average lifetime of an isolated 
excited center. Clearly, a spectral line of frequency 
o,, and width ytot splits into components of frequencies 

w::,' = oo*A~,,,=o,*y, Re u;:; (x) (8 
In Eqs. (13) and (14), ~ p A ( x / n )  and Y;:)(X/~) a r e  the 
normalized transverse spherical vectors (x = I x I ); 
yLm(*/x) is the spherical function; Q?; and Q;:' are ,  
respectively, the electric and magnetic multipole mo- 
ments of the transition governing the probability of 
emission of a real  photon (in the case under discussion, 
the value of QLm is independent of m); f $'(k; - x2) and 
f ;""(k; - n2) a r e  the form factors which allow for the 
virtual aspect of the photon and satisfy the condition 
f,(O)= 1. 

and widths y ~ ' , ( t o t )  = ytot * Ay,,,. Since the degeneracy 
in respect of the sign of the spin projection still re-  
mains, the number of new spectral lines is 2(L + 1). 
We shall now assume that the emission of a photon is 
the only decay channel of the state B, i. e., that ytot = y,. 

The task is now to determine the explicit form of the 
functions ~141(x)  representing the coherent properties 
of a system of two identical centers. In the special case 
of dipole transitions (L = I), the relevant expressions 
a r e  obtained inc6':" We shall use the point center approximation and as -  

sume accordingly that f t '(k$ - n2) = f irn'(k; - n2) = 1 also 
for values of z= k! - n2, not equal to zero.2' We shall 
calculate the integrals (12) employing the expansion of 
l Y ? ; ( X / R )  1 and I ~;:'(x/x) 1 in terms of the Legendre 
polynomials: 

53. RESONANT INTERACTION IN EL AND ML 
TRANSITIONS 

We shall calculate the complex functions U;;/(X) using 
the well-known expression for the effective energy of a 
retarded electromagnetic interaction between two cur- 
rents concentrated in the vicinities of points R1 and % 
(seec'", § 32. 2): 

where c?:,,, a r e  the Clebsch-Gordan coefficients and 
0 is the angle between x and the quantization axis of the 
moment R = R, - R2. We know that 
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j P ,  (COS 0 )  ei* om sin 0  d0=2ii (1)"' J . , % ( ~ R ) .  
2xR (16) 

0 

excited states a r e  doubled and the widths of the anti- 
symmetric states vanish ( I~U$;(O) = - ;). Simple cal- 
culations give 

where x =  Ix I ,  R =  IRI, and 

Using Eq. (16), we can easily show that if R #O and the 
indices n and p a r e  integers (p 2 n), we have The frequency shifts in the x << 1 case a re  proportional 

to x-'~~'"; if the explicit form of the coefficients c~",L, 
is taken into account, we find that 

It is understood here that after integration we can drop 
terms which oscillate for infinite values of the argu- 
ment; in a physical situation terms of this kind vanish in 
averaging over any (no matter how small) scatter of the 
distances R.  

It readily follows from Eqs. (13) and (14) that the in- 
tegrands in Eq. (12) corresponding to the EL and ML 
transitions differ by a term proportional to x2'L-"(~2 
- k i ) .  It follows from Eq. (17) that the contribution of 
this term to the integral i s  zero.a' Thus, the final re-  
sult is independent of the relative parity of the states A 
and B. Equations (1 5) and (17) give 

Then, I A W ~ , ~ / Y ~  I >> 1. This result can also be obtained 
from the explicit form of the operator of the electro- 
static (magnetostatic) interaction between two electric 
(magnetic) 2L -pole moments: 

If x >> 1, it is simpler not to use the relationships (20) 
but introduce before integration the representation of the 
spherical vectors in terms of the Wigner d functions 
(seecig1, 1 16): 

The functions u~:;(x) can be specified4) by means of the 
coefficients pLL*": where ~ i f i : ~ , ~ ( x )  is a Hankel function of the f i rs t  kind. 

The radiative width (the probability of radiation of 2L 
multipole order), which occurs in the structure formu- 
las of 5 2, is 

2L+l ( - L ) . B ~ - l  dZn u;:; ( x )  = - - 
4 .2-0 =($=I. 

If x >> 1, the integral in Eq. (12) is dominated by the 
small angles, where 

In particular, if L = 1, then d,:!,, ( 0 )  - (sin 0) l c ' " ' = ' ) ' .  

Hence, we obtain the following asymptotic expressions: 

2L+1 e" cF', u:"' ( 2 )  = - -- , o ( Z ) = L ~ L + ~ L ( L + * ) - ,  
4 x  4 

ulL' 2L+1 ( L f  l m l ) !  
) (26) 

e'" 
,m1(>2) ( x )  = - - (+) !".I-I 

2 (L- l rn l ) !L(L+l )  ( 2 ~ ) ~ " ~  ' 

These formulas a re  completely equivalent to the expres- 
sions in Eq. (9). 

According to Eqs. (6), (8), and (181, the changes in 
the widths of the spectral lines and the shifts of their 
frequencies a r e  oscillating functions of the parameter 
x=koR:  

$4. PRINCIPAL EFFECTS 

A. Angular distribution of the radiation. The ex- 
pression (20) for the change in the widths can be ob- 
tained by direct calculation of the probability of decay 
of the collective states (3). In the case under discussion, 
the helical amplitudes of the decay a r e  

We shall now consider the limiting cases of short and 
long distances between the two centers. We can readily 
see that if R <<x (x <<I), the widths of the symmetric where 
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1 2Lfl k,R cos 0 k,R cos 0 
* ( 0 )  = - ( T i _ )  Ih(exy (il ) *exp (-il)]. 

Here, O is the angle between the vector R and the photon 
momentum k; the factor G~(- l)L+i is + 1 for the ML 
transitions and - 1 for the EL transitions. We can 
easily see that 

yy1=2n I ~ t : ( c o s  0 )  d cos 0, 
- I  

where 

It follows that the angular distributions of the electric 
and magnetic ZL-pole radiation a re  the same. The 
emission of a photon with a linear polarization vector 
parallel to the (k, R) plane corresponds to the combina- 
tion 

2-' (A::' (0,  r p )  + ~ l ' ; b  (0,  r p )  ) , (29) 

and the emission of a photon polarized at right-angles 
to the (k, R) plane corresponds to the combination 

Since the amplitudes in Eq. (27) can be factorized, the 
interference between the radiation emitted from the two 
centers gives r ise  to the angular dependence 
cos(ko R cos8) but does not affect the polarization. 

B. Resonant scattering. Knowing the energies, 
widths, and amplitudes of the decay of intermediate col- 
lective states, we can derive an explicit expression for 
the amplitude of resonant scattering of a photon by two 
zero-spin centers. Let O 0  and 8 be the angles between 
the vector R and the photon momentum before and after 
scattering, respectively; let g be the azimuthal angle 
between the planes passing through R and the directions 
of the momenta of the incident and scattered photons; 
we shall use r and r' fo r  the helicity of a photon before 
and after scattering ( r  and r' have the values k 1). Then, 

kJ? cos k,R cos 0 d,':' (0,) d!? (0 )  eimq 
+ sin (T) sin (7) -w-i71-~ 12 . (30) 

ma-L L,", L.m 

The total resonant scattering cross section can easily 
be found by theoptical theorem. In the case of unpolar- 
ized photons, we have 

koR cos 0 + sinz (I) 7::; .(d2' (00) ) 

,=-, (W\;;,-W)'+(T\;~)'/~ 
} (31) 

We have allowed here for the fact that 

If L = 1, Eq. (31) yields directly the results  of[51 for the 
resonant dipole scattering. 

According to Eqs. (30) and (31) if the vectors k and R 
a r e  parallel (go= 0 o r  O o  = r), the contribution to the 
resonant scattering is made only by the collective levels 
with the spin projections of + 1 o r  - 1. This is due to 
the fact that the helicity of a photon assumes the values 
& 1. In view of the degeneracy of the  levels in respect 
of the sign of m, we then only have two resonances 
whose frequencies a r e  w:), and o;;),, and widths a r e  
y:), and y::),. On the other hand, if 80=n/2, the t e rms  
corresponding to the antisymmetric states I &') disap- 
pear from Eqs. (30) and (31); then, the resonance ener- 
gies of the photons polarized parallel and perpendicular 
to R a r e  different. In fact, it follows from the proper- 
t ies of the d functions that if 8 = r/2, one of the ampli- 
tudes (29) o r  (29') vanishes. In the case of EL transi- 
tions, the resonant scattering of the photons polarized 
parallel to R is governed by the levels I$:') with odd 
values of the sum L + m and the scattering of the photons 
with the polarization vectors e l R  is governed by the 
levels I &+') with even values of the sum L + m. If the 
resonant scattering is associated with ML transitions, 
the reverse is true: the odd values of L + m correspond 
to the polarization vector perpendicular to R and the 
even values to the parallel vector. 

C .  Emission from two excited centers. The results  
in § 3 can also be used to determine the emission spec- 
trum of two identical excited centers B located at points 
R1 and R,. The levels I I):') corresponding to the exci- 
tation of one of the centers a r e  then intermediate. The 
actual relationships for the spectrum can be obtained 
within the framework of a theory of cascade decay of two 
excited atoms, which is developed int9] and which allows 
for the interference of the two-photon amplitudes asso- 
ciated with the initial equidistant nature of the system. 
It is assumed inL9] that the excited states a re  nondegen- 
erate and the radiation is of dipole nature. However, 
the general structure of the spectrum is not affected by 
these assumptions. If both centers a r e  in identical 
states B of spin L, the spectral distribution of the in- 
tensity after integration over the angles of emergence 
of the photons is 

where 

The function R~, , , (u)  describes a contribution of the 
(32) 
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symmetric intermediate state I I):') and the function 
R;;',(W) corresponds to the antisymmetric state I qk)). 

It follows from Eq. (32) and the asymptotic formulas 
(26) that if the distance between the centers i s  large 
(x = ko R >> 11, the emission spectrum reduces-as ex- 
pected-to a single Lorentz line of frequency w,, and 
width y,, i, e., the two centers radiate independently. 
In the opposite limiting case of x <<I, the spectrum con- 
s is ts  of two nonoverlapping lines of the same intensity, 
one of which is of frequency w, - Aw,,, and width 4yL, 
and the other of frequency wo + Aw,,, and width 2yL. In 
this case we can ignore the contribution of the decay of 
the system via the state I &') and the interference- 
caused distortion of the spectrum.5' 

If the spin projections of the excited centers a r e  not 
equal (mi cm,), the emission spectrum is governed by 
four intermediate levels: I q:,)) and 1 I):'.). 

§5. SPIN STRUCTURE OF THE RESONANT 
INTERACTION 

For arbitrary spins of the excited and ground states 
the matrix elements of the operator representing the 
2L-pole interaction of two atoms o r  nuclei can be ex- 
pressed in terms of the functions U:;~(X) introduced 
earlier. In the representation in which the quantization 
axis of the spin is parallel to the vector R (m= mi - m; 
=mi - m2), we have 

where y, is the probability of the 2L-pole transition 
B -A + y per unit time. In particular, if  the excited- 
state spin vanishes and the spin of the ground state is L 
(s, = 0, sA = L), the frequency shifts and changes in the 
widths of the collective and excited states [of the type 
given by Eq. (3) and expressed in units of y,] a r e  2L + 1 
times smaller than in the case S, = L, SA = 0 discussed 
above. 

Allowance for Eqs. (18) and (33) shows that the elec- 
tromagnetic interaction between excited and unexcited 
and unexcited centers has the general structure 

A 

where PA, is the exchange operator that transposes the 
states A and ~ " I - a n d  y is the radiative width of an iso- 
lated center; for transitions of mixed multipole order, 
we have 

A 

and f (x) is the matrix in the spin space of the centers 
A and B containing polynomials of order N c 2 (sA + sB)  
in the variable l/x. Since the eigenvalues of PA, a r e  
k 1, the collective quasistationary states a r e  always 
symmetric o r  antisymmetric under the transposition 
A = B. They correspond to a definite ~lalu_e of_the pro- 
jection of the total spin of the system s= sA + s, onto the 
vector R, but if sA #O, S, 20, they a r e  generally not the 

eigenstates of the operator i2. The exception to this 
rule is the case s, = S, = 1/2 (see below). 

We shall now write the explicit form of j ( x )  for pure 
dipole transitions (y yi). If S, = 1 and s~ = 0, we 
have 

1 (2) =F (x) f D (x) (Sh) ', (35) 

where n = R/R, 

I f s ,=Oands ,= l ,  then 

In particular, in the long-wavelength limit the widths of 
the spectral lines which follow from Eq. (35') a r e  y::: 

4 - - z =Y::;=P, and Yl,o=Yi,i=5Yi. 

We can show that if s, = sg = 1/2, then 

Table I gives the eigenvalues of the matrix (37) cor- 
responding to certain values of the total spin S and its  
projection M, and also the frequencies and widths of 
spectral lines corresponding to x = ko R << 1. It should 
be noted that when R << l/ko= X, an antisymmetric level 
with the quantum numbers S =  1 and M =  0 is long-lived 
(Y:;:,, << Y i) 

If the centers a r e  at res t  and the frequencies v char- 
acterizing their motion satisfy the conditions wo >> v >> y, 
v << c/R, the expression (34) should be regarded a s  an 
operator not only in the spin space but also in the coor- 
dinate space of the two  center^.'^' Clearly, because of 
the presence of an exponential function with an imaginary 
argument in Eq. (34), all the collective effects should 
vanish if the photon wavelength is much less  than the 
linear dimensions of the regions of spatial localization 
of the radiators. In particular, a considerable change 
in the lifetime of an excited nucleus in a crystal in the 
presence of unexcited nuclei of the same type occurs 
only on condition x Za,,,, where a,,, is the amplitude of 
the vibrations. The suppression factor is the same a s  
in the Miissbauer effect. An analogous situation occurs 
also in the case of diatomic molecules with isomeric 
nuclei whose properties a r e  discussed inCG1. 
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56. INFLUENCE OF A METAL MIRROR ON THE 
Ll FETlME AND EMISSION SPECTRUM OF EXCITED 
ATOMS 

~ o r a w i t z [ ' ~ '  pointed out the analogy between coherent 
emission of radiation from a system of two identical di- 
pole centers and the emission of radiation from an atom 
located near the flat surface of a perfect conductor. 
Using the method of images and basing his treatment di- 
rectly on the results given in[5*61, Morawitz investigated 
the interesting effect of a change in the lifetime of an 
excited atom under the influence of a metal mirror.  
(The frequency shifts of the radiation emitted by a two- 
level system obtained by ~ o r a w i t z " ~ '  a r e  valid only in 
the limiting case of large distances from the mirror- 
see  below.) This question (again in the dipole approxi- 
mation framework) has later been considered by many 
a ~ t h o r s . [ ~ ~ ' ~ ~ ~  

We shall discuss the general case of electric and mag- 
netic transitions of arbitrary multipole order. We shall 
use the boundary conditions on the surface of an ideal 
conductor[231: 

Here, n is the vector of the normal to the surface. It 
follows from the Maxwell equations and the expressions 
in Eq. (38) that an electromagnetic field created by a 
conductor in vacuum can be regarded a s  the field of a 
system of virtual radiators which is obtained from the 
original system by specular reflection in the boundary 
plane of the conductor and subsequent reversal  of the 
sign of all components of the four-vector current density 
Consequently, the Fourier components of the current 
and charge densities in the original system and of i ts  
"image" a re  related by the following expressions (a 
tilde above a symbol refers to the image): 

Then, 

jlefl=j-2n(nj), krefl=k-2n (kn). (39') 

Subject to Eq. (39), we find that the 2L-pole moments 
of a radiator and its image in a coordinate system with 
the z axis parallel to the normal vector n a r e  either 
equal o r  they differ only in respect of the sign: 

It follows from the correspondence principle that in the 
case of quantum radiators the relationships in Eq. (39) 
link the transition currents and the relationships in Eq. 
(40) link the multipole moments of the transition. An 
excited atom a t  a point R, located at a distance D from 
a metal mirror  and i ts  "image" located at the point & 
= - 2Dn + R, emit photons coherently. Hence, the effec- 
tive density of the current representing the probability 
of photon emission is 

JAB ( k )  =jra(k) + j , , ( k )  e2'D(kn) (41) 

We shall now consider a radiative transition between 
an excited state of an atom whose spin (total angular 
momentum) is L and the zero-spin ground state. Let 
m be the projection of the spin onto the normal vector 
n. Then, 

where X =  0 refers  to the ML transitions and X =  1 to the 
EL transitions, and the currents j i 2 m ~ )  and j;?,(k) a r e  
defined with the aid of Eqs. (13) and (14). We can see  
that the situation is formally the same a s  in the case of 
decay of the collective states of Eq. (3) when the distance 
between atoms A and B is 20. Allowing for Eq. (42), 
we find that the probability of emission of a photon a t  an 
angle 0 with respect to the vector n is given by an ex- 
pression analogous to Eq. (28): 

+ ( d - ( t L ( e )  )'I [ I f  V A B ( - ~ ) * + '  c0s(2kaD cos 0 )  1. (43) 

Here, T~~ = (- l)L'i+' is the relative parity of the ground 
and excited states of the atom, and the angle has the 
values in the range 0 s 0 a/2 (cos0 3 0). 

Integrating Eq. (43) up to half the solid angle in ques- 
tion, we find 

where the function ~ ! i l ( x )  is described by Eq. (18) 
[compare with Eq. (5)]. It is important to note that the 
width yl:A and, consequently, the lifetime of an excited 
atom is a function of the projection of the spin onto the 
vector normal to the conductor (mirror) surface. Thus, 
the conductor (mirror) splits the excited level into com- 
ponents with different lifetimes. The change in the life- 
times is 

For arbitrary values of sB and s, the probability of 
emission of a photon along a given direction, corre- 
sponding to the EL and ML transitions, becomes 

Hence, 

In particular, if the excited-state spin is zero, we have 

We must s t r e s s  that Eqs. (43)-(47) retain their meaning 
also in the case when the lower state A is also excited 
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provided y,,, and y, a r e  nowunderstood to be the par- 
tial probabilities of decay in the Bm- A + y channel. 

In the limiting case of very short distances from the 
mirror,  we find that 

If then s, = L and SA = 0, we find that y,,,= yL[l + q,, 
X (- l)""], i. e. ,  the probability of a radiative transition 
for the same components of the excited level is doubled 
but for other components it is negligible [myL(ko D)~] .  
For  example, in the case of an E l  transition[i41 

In the case of magnetic dipole transition, we have the 
converse situation: 

It should be noted that, in accordance with Eq. (48), 
the change in the width of the level for the spins s, = 0 
and sA = L is 

Thus, near the surface of an ideal conductor the life- 
time of a zero-spin level increases if the decay involves 
a transition of the electric type [qAB = (- 1lL] and it de- 
creases if the decay is due to a transition of the magnet- 
ic type [qAB = (- I)~+']. 

It should be stressed that our analysis applies to a 
mirror  which reflects totally the incident electromag- 
netic radiation and a l ters  i t s  phase by 180". This cor- 
responds to the limiting case of very high values of the 
permittivity &(kO). For most conductors the condition 

I &(ko)l  >> 1 is satisfied well up to infrared frequencies 
and for silver it is satisfied also in the optical range. 
However, in view of the finite conductivity of a metal, 
we may expect a nonradiative B-A transition accom- 
panied by the transfer of the excitation energy to the 
conducting medium.c243 This process becomes predomi- 
nant at sufficiently short distances from a mirror  and 
it reduces the excited-state lifetime.6' Therefore, even 
in the case of I c (ko) l >> 1 and I Im& (ko) I << 1, the above 
relationships do not apply to widths corresponding to 
very small values of D. 

We shall now estimate the shift of the energies and 
frequencies of the radiation. For these quantities the 
corrections to the results obtained for an ideal mirror  
in the I &(kO) I >> 1 case a r e  small  irrespective of the dis- 
tance D. The level shift is described by a self-energy 
diagram in which the vertex functions have the structure 
of Eq. (41), The contribution to this diagram is made 
by real and virtual intermediate states A.  Therefore, 
the results for a system of two identical centers (see 
§ § 2-4) cannot be applied directly. The radiative shift 
of a level independent of D is clearly identical with the 
conventional Lamb shift. Allowance for the influence 
of the conducting surface is represented by the product 

of the currents jAB (q) and LB (q) for an atom and i ts  
"image." The application of a standard procedure al- 
lows us  to represent the part of the complex radiative 
shift Q','= A E ( ~ ) - ~ A ~ ( ~ ) / ~  of interest to us in the form 
of the integral 

Here, kkBA'= (E',) - E(~) ) /&C;  the summation i s  carried 
out over all  discrete levels A and integration over the 
states with a continuous energy spectrum. According 
to Eq. (49), the change in the width A ~ ' , '  is affected 
only by the levels lying below B characterized by kyA '  
> 0. 

We shall now obtain the explicit expressions for the 
level and frequency shifts of the radiation emitted by a 
quantum system located at a fixed distance D from an 
ideal mi r ro r  and we shall use the two-level model with 
a degenerate upper level. If the spin of the excited 
state B is L and the spin of the ground state A is zero, 
it follows from Eqs. (49) and (42) that 

A E , ! , ~ ) = F ~ ~ ~ ~ ( - I ) ~ ~ + ~ ~  iim ( ~ I X ) ~ ~ + '  Im u:_L: ( y )  e - - . ~  
r++o Y-x  d y .  (50) 

where x = 2 ( ~ ' , )  - E(~))D/Ec> 0. The power factor in 
the integral of Eq. (50) is related to the energy depen- 
dence yL (q) = [see Eq. (19)] and the factor 
emeY automatically removes the nonphysical terms which 
oscillate at infinite values of the argument. The energy 
shift of the ground state can be found by replacing x with 
- x  in Eq. (50) and summing over the projections of the 
spin p of the level B, which is now intermediate. Ap- 
plying the representation (18) to the functions u;:; (x), 
we find that integration gives 

where 

Hence, it follows that the frequency shifts a r e  given by 

+EqAB ( - , ) " , ' [ R e  u::; (x) - f : : :  ( x ) ] .  
m . i m  

In this model the widths of the spectral lines a r e  given 
by Eq. (44). 

It follows from the asymptotic properties of the func- 
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tions of Six and Cix that in the limiting case of x = 2koD 
>> 1, the difference is given by 

Re u;:; (x) -j,'!: (x) -x-(~'+" 

and, therefore, 

AQ,,,=AEV'/T~ = hq,.(-l)m+lyL Re u;:; (x) . (54) 

An analysis shows that if x << 1, we can ignore the con- 
tribution of the functions f : i ! ( x ) .  Allowing for  this fact 
we find that a t  short distances from the mi r ro r  

where the quantity AwL,, is found from Eq. (22). In the 
case of EL transitions, we have ~ A B  = (- l)L and the fre- 
quency shifts a r e  positive; conversely, for ML transi- 
tions, we have AnL,,< 0. 

If L = 1 and ~ A B  = - 1 (electric dipole radiation), the 
relationships (51)- (53) give 

where 

3ay, cosx sin X )  +2 
A E : " = - ~ ( ~ - ~  

1 {$ (sin. Ci x-cos x Si 2) - - (cos x Ci x+sin x Si x) 
x2 

- {[sinx ~i X-cos x ~i X I  - - - --(cos x Ci x+sin x 
( 2 3  1) 1 2  

For values obeying D << l/ko we have 

i. e., the frequency shifts a r e  proportional to I /D~.  
This i s  in agreement with the general conclusions 
reached by  arto on.'^^] On the other hand, for x 5 1, the 
expressions (56) and (57) differ considerably from the 
corresponding formulas of ~ ~ a r w a l ' ~ ~ ]  which have the 
following form in our notation: 

This is due to the fact that Agarwal uses an unrealistic 
model with a nondegenerate upper level. In his model 
the energy shift of the ground state depends on the direc- 
tion of the dipole moment of the transition, which is as- 
sumed to be always strictly defined. A critique of these 
results can be found in Barton's paper.[221 

It should be noted that ~ o r a w i t z ~ ' ~ '  gives the shifts of 
the frequencies of the dipole radiation in the form 
(- l ) " ~ e ~ : k \  (x)yl, which corresponds to our asymptotic 
expression (54). This result follows from the classical 
theory of an oscillator interacting with i t s  mirror  image 
and it remains valid also in the case of a quantum oscil- 
lator whose levels a r e  equidistant. However, on going 
over to a two-level system, the approach developed by 
~ o r a w i t z " ~ ~  becomes incorrect. The limited validity 
of the analogy between an oscillator and a two-level sys- 
temy is considered in a different connection by Gribkov- 
skii and ~ t e ~ a n o v . ' ~ ~ ~  

The author it grateful to V. G. ~ a r ~ s h e v s k i i  and M. 
I. Podgoretskii for their interest and valuable comments. 

 e ere and later, i t  is assumed that the lifetime of the system 
is long compared with the transit time of a s@,al between the 
two centers: Yt,,R/c << 1. 

 he energy dependence of the form factors on the variable 
z =k% - x2 corresponds to the contact interaction which dis- 
appears if the spatial distributions of the currents do not 
overlap. Real atoms and nuclei do not have sharp boundaries 
and, consequently, our analysis is valid for values of R which 
are  considerably greater than the effective size of the centers. 

3'In particular, in the case of zero-spin B centers = 0, E(0) 
transition], the resonant interaction does not appear for any 
finite value of R.  

4 ' ~ t  is convenient to use Eq. (25) in the case of small values of 
L , when the angular dependence of the d functions is simple. 
In particular, if L = 2, we have 

S '~tr ic t ly  speaking, if R <<A, a narrow peak is superimposed 
on a line of frequency wo -AwL,, and width 4YL, inaccord- 
ance with Eq. (32), and the amplitude of this peak is twice 
the amplitude of the main peak. However, the narrow peak 
representing the decay of the antisymmetric state makes a 
negligible contribution to the integrated intensity (the order 
of magnitude of this contribution is Y ~ ~ / Y ~ - x ~  <<I). 

')We can show that in the koD -0 case the width of a level as- 
sociated with a nonradiative EL transition is proportional to 
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The recombination of an electron and a complex ion is investigated on the basis of two models. In the first 
it is assumed that the complex ion interacts strongly with the electron in a certain region near the ion, so 
that the landing of the electron in this region leads to recombination. In the second model, account is 
taken of a large number of autoionization states that lead to recombination. The two models lead to the 
same result at low electron energies. The cross section for the recombination of the electron and the 
complex ion is inversely proportional to the electron energy, and the dissociative-recombination coefficient 
is inversely proportional to the square root of the electron temperature. The experimental data are 
analyzed. 

PACS numbers: 34.80. -i 

The purpose of th i s  paper  is to establ ish the  depen- 
dence of the  coefficient of dissociat ive recombination d 
an electron and a complex ion on t h e  e lec t ron  tempera-  
tu re .  In the general case, the  coefficient of dissocia-  
tive recombination of an e lec t ron  and a molecular  ion is 
determined by  t h e  c h a r a c t e r  of t h e  interact ioqbetween 
the  t ransi t ion channels. An ana lys i s  of these  relat ions,  
with account taken of the experimental  data, is the  sub-  
ject of a number of reviews and monographs. A 

distinguishing fea ture  of recombination of an electron and 
a complex ion is t h e  s t rong  interact ion between them. 
There  are many channels f o r  the  t r a n s f e r  of the  electron 
energy to the  internal  d e g r e e s  of f reedom of the  produced 
complex, and it is th i s  fac t  which de te rmines  t h e  sought 
dependence. 

The mechanism of dissociat ive recombination of a n  
electron and a n  ion is connected with t h e  change of the  
electronic state of the ion when it col l ides  with the elec- 
tron,  which leads  to formation of a bound autoionization 
state of the electron and the  molecular  ion. This  auto- 

ionization state cor responds  to repulsion between f rag-  
ments  of the  produced molecule, and t h e  spreading of 
t h e s e  f ragments  l e a d s  to t h e  formation of stable states 
of t h e  neu t ra l  par t ic les .  The s ingular i ty  of the  complex 
ion is thus  connected with the  l a r g e  autoionization levels  
of the  ion and the  electron.  Motion of the  nuclei leads  
to a s m e a r i n g  and over lap  of t h e  autoionization levels, 
so that t h e  resonant  character of the  p r o c e s s  is lost i n  
dissociat ive recombination of the  electron and complex 
ion. 

We consider  the  dissociat ive recombination of an elec- 
t r o n  and a complex ion on  the  b a s i s  of two models. In 
the f i r s t  was  r e g a r d  the  incident e lectron as a classical 
particle that col l ides  with the  electrons of the  complex 
ion and excites them. A s  a resul t ,  the incident e lectron 
loses energy and goes  over into a n  autoionization bound 
state, which leads  subsequently to recombination. In 
accord  with the mechanism of the process ,  we introduce 
model assumptions,  according to which the recombination 
has a probability t; if the e lec t ron  lands i n  a region of 
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