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We consider theoretically nonlinear-resonance broadening due to a collision-induced change of velocity, 
with allowance for phase memory, inelastic processes, degeneracy of the levels, and wllisional 
disorientation. The structure of the nonlinear resonance and the effect exerted on it by the indicated 
factors are explained. An analysis is presented of the shape and width S ( p )  of the resonance in a wide 
interval of pressures p.  S(p) is characterized by a rapid deviation from linearity at small p and by a 
much slower attainment of the asymptotic form at large p.  Disorienting collisions influence strongly the 
structure of the resonance and change qualitatively the interpretation of its parameters. Numerical 
calculations are made of the shape of the resonance and of 6(p), and permit a quantitative comparison 
with experiment. This comparison was made for the data on the nonlinear resonance on the 001-100, P 
(20) transition in CO,. It is shown as a result that in this case the nonlinear S@) dependence is due 
mainly to quantum (diffraction) effects in elastic scattering. It appears that this conclusion is general for 
all systems in which the change of the velocity influences the structure of the nonlinear resonance. 

PACS numbers: 33.70.Jg 

I. INTRODUCTION tude of the parameters determined from the experiments 

~ x p e r i m e n t s ~ ' - ~ ]  have revealed a nonlinear pressure had any meaning. 

dependence of the width and shift of the power resonance In the present article we develop the nonlinear-reso- 
in lasers equipped with cells containing an absorbing nance theory in which account is taken of a l l  the essen- 
gas. This nonlinearity cannot be explained as being due tial factors (Secs. 2-5) and which can be quantitatively 
to hyperfine splitting, field effects, or  violation of the compared with experiment (Sec. 6). 
impact approximation (the pressure in the experiments 
of CI-s I was hundredths or tenths of a Torr). Therefore, 2. GENERAL RELATIONS 

apart from its practical applications in the development 
It is convenient to s tar t  the analysis with a simple of lasers with high emission frequency stability, this 

model of nondegenerate states, within the framework of phenomenon is of great general importance in physics. 
The point is that phenomena of this kind, a s  shown ince1, 

which i t  is easy to reveal effects due t o  changes of the 
velocity, and then introduce degeneracy of the combin- 

can be due to small changes in the velocities of the emit- 
ing levels (Sec. 5). Accordingly, we start  in Secs. 2-4 

ting (absorbing) particles in scattering through small 
from the following system of e q ~ a t i o n s ' ~ * ~ ~  for the ele- 

angles, particularly diffraction angles1': 
ments of the density matrix ;(r, v, t): 

(Po is the effective interaction radius). It has subse- 
quently been found that related effects should take place 
also for other resonances in two- and three-level sys- 
ternsCB1 a s  well a s  in photon echo. "l 

If the nonlinear dependence of the width and shift of 
the resonances on the pressure is indeed due under the 
conditions ofC1-51 to diffraction scattering, then this un- 
covers an interesting possibility of studying quantum ef- 
fects that a re  completely lost sight of in such phenomena 
a s  viscosity and diffusion. 

The existing theories of nonlinear resonances do not 
make i t  possible, however, to connect the pressure de- 
pendence of their width with scattering through small 
angles: no attention is paid in a number of studies to the 
phase-memory effect, CB'10-121 while in other studies only 
limiting cases of low and high pressures a re  consid- 
ered, "'13] and nowhere is account taken of the degen- 
eracy of the levels and of collision-induced disorienta- 
tion. In view of the incomplete development of the the- 
ory, the interpretation of the experiments could not 
claim to be unambiguous, and only the order of magni- 

,s 21- -- vjipjr (r, v, t) f j A,, (v, v,)pji (r,v,, t)dvi. (2.2) 

Here r and v denote the coordinate and velocity of the 
molecule; A,,(v, v,) a r e  the kernels of the collision in- 
tegrals s,,, from which the spontaneous relaxation has 
been separated (the constants r,,), and only the elastic 
parts of the arrival terms have been retained; qj(v) is 
the number-of acts of excitation of the state (j, v) per 
unit time; V(r, t) describes the interaction of the mole- 
cule with the external field. 

The relations between the scattering amplitudes fjj(u, 
u,), the departure frequencies v,,, the arrival frequen- 
cies Sjz, and the kernels a re  best written, in contrast 
toC13*141, in the form 
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where W,,(v - u) is the velocity distribution of the per- 
turbing particles, which a r e  assumed to be structure- 
less; p and u a r e  the reduced mass and the relative ve- 
locity of the colliding particles, m is the mass  of the 
perturbing particle, and N,, is the density of the per- 
turbing particles. 

For vjj and v, pertaining to  a single transition m -n, 
the following relations, which a r e  easily derived from 
(2.3)-(2.6) ofC15', a re  valid: 

The quantity vjj - Cjj is, obviously, a measure of the in- 
elasticity of the collisions. With respect to  s,, the 
analogous characteristic is the quantity Re(vmn - Cm), 
which i s  subject, besides the inelastic processes, also 
to the influence of the loss of phase stability in colli- 
sions: a measure of the violation of phase memory i s  
the difference Em, + En, - 2Re5,. The equality t,, +Em 
= 2Ret,, is reached only a t  f,,(u, u,) = f,,(u, u,), i. e. , in 
the case of identical scattering in the states m and n. 

According to (2.5) and (2.6) we have Cjj>O. In many 
cases, for example in the model of power-law poten- 
tials, we also have Re';,, > 0. A "negative arrival, " 
Ret, <0, is also possible, however, if for example the 
interaction potentials in the states m and n a r e  of op- 
posite sign and the Born approximation is valid. 

In problems of nonlinear spectroscopy, the electro- 
magnetic field constitutes as a rule a se t  of plane waves 
and produces directly a disequilibrium in the distribu- 
tion only with respect to the projection of the velocity 
on the wave vector. Generally speaking, collisions 
transfer the disequilibrium also to  the distribution with 
respect to  the orthogonal projections v,. However, a s  
shown by analysis, this effect is negligible when selec- 
tive scattering is considered and one can deal with "one- 
dimensional kernels" 

by assuming W(v,J to be a Maxwellian function. 

In the selective-scattering case of interest to us, the 
eikonal method is applicable, and the scattering ampli- 
tudes a re  (see, e. g., C16s171) sharp functions of u -u, or, 
taking into account the momentum conservation law, of 
v -v,. The differential cross  sections a r e  therefore 
well approximated by the expressions 

where q is the characteristic width of the function H ( 5 )  
when measured in the scale of v (at u =E). 

A detailed analysisc181 has shown that the approxima- 
tion (2.9) is valid for a large number of model poten- 
tials. It has turned out that in the case of (2.9) one- 
dimensional kernels depend on I v - v, I ,  and their widths 

differ from q only by a numerical coefficient 0.7-1.5. 
A particularly graphic connection between the differen- 
tial cross  section and the kernel is observed in the case 
of light perturbing particles, when the following relation 
holds true"" 

where 

We emphasize that the dependence of Ajr(v - v,) on 
l v - v, I ,  of the type (2. lo), leads to a break in the de- 
rivative of the kernel a t  the point v =v,. This property, 
which is closely connected with the singularity of the 
kernels A jl (v, v,), lgl is common to one-dimensional 
kernels. An approximation that takes this circumstance 
into account and is confirmed by numerical calculations 
inc1s1, can be the expression2' 

The calculations inCB1 have made i t  possible to  connect 
the width Av of the kernel with the parameters of the po- 
tential; for a Lennard-Jones potential, for example, we 
have 

if the masses of the colliding molecules a r e  equal (p, is 
the Weisskopf radius). The coefficients for p<< m and 
p=m a r e  equal to 1.13 and 1.88, respectively. 

3. ANALYSIS OF THE SOLUTIONS OF THE KINETIC 
EQUATIONS 

When using the method of successive approximations 
in terms of the amplitude of the electromagnetic field, 
a s  is customarily done in nonlinear spectroscopy, i t  is 
most convenient to  express the solution of (2.1) in terms 
of Green's functions that satisfy the following equations 
(the stationary problem, w and k a r e  the frequency.and 
wave vector of the field) 

where S2 = w - om,. In the case of a one-dimensional dif- 
ference kernel we obtain 

A , , ( r ) e x p [ - ~ k ( u - u ' )  T ]  
F, (LS-u') = - 

r,,+v,,-A,, ( T )  
d.] 9 -- (3.2) 
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- 
A,, (T) = J A,{ (u -u ' )  exp[ik (u -u ' )  rldu. 

- s 

The quantity with the simplest physical meaning i s  

and determines the profile of the spectral line (in the 
absence of nonlinear effects) for molecules with differ- 
ent velocity v and having an equilibrium distribution , 
with respect to v'. The term (r, + v,, - Z,)T in the 
argument of the exponential of the correlation function 
@(7) of the molecular oscillators represents, a s  usual, 
the damping of the function a s  a result of inelastic pro- 
cesses and phase modulation. The integral term in 
(3.4) describes the influence of the frequency modulation 
a s  a result of the change in the velocity by collision. 
We write down this term in the form 

(the brackets denote averaging over Av with weight 
A,(Av)/~,) and compare (3.7) with the analogous term 
due to the phase modulation, C201 which takes the follow- 
ing form in the case of a Poisson distribution of the mo- 
ments of the collisions and when the discontinuities of 
the phases in the different collisions a r e  independent: 

The foregoing conditions a r e  satisfied also in the case 
of a change in velocity, s o  long a s  A,,(v, vl) depends on 
v - v,. Therefore, setting the phase shift z) in corre- 
spondence with the quantity krAv, which is due to the 
change of the velocity and to the Doppler effect, we ob- 
tain (3.7) from (3.8). 

We proceed to the problem of power resonance in a 
gas laser operating a t  a single frequency. Using the 
standard methodCs1 and expressions (3.2) and (3.3) for 
the Green's functions, and taking into account the f i rs t  
corrections for the saturation and for the large Doppler 
broadening, we obtain 

1 % ~  51" 
I , ( Q ) = - e x p  -- 

kii [ ( k c ) ,  I 

Here P(S1) is the work performed by the field, E is the 
amplitude of the field in the antinode, and dm, is the ma- 
tr ix element of the dipole moment. 

tained inLLSJ. In that paper, a s  well a s  inu1, it is shown 
that the frequency dependence of Z2(S1) at low and high 
pressures takes the form of Lorentz curves with respec- 
tive widths r, + v, and r,, + v, - Z,. It will be shown 
later on, however, that knowledge of these limiting 
cases is not sufficient for an unambiguous interpretation 
of the experimental data, and all  the more for a deter- 
mination of such parameters as the width of the elastic- 
scattering characteristic curve. 

According to (3.9), the nonequilibrium part in the dis- 
tribution in velocity consists of two components that a r e  
centered about v =* S1/k and a r e  due to  interaction be- 
tween molecules and waves traveling in opposite direc- 
tions. Each of these components breaks up into two 
terms. The first, henceforth called the Bennet term, 
corresponds to unity in the square brackets of expres- 
sion (3.9), and duplicates in form the line contour (3.6). 
This term is due to the interaction with the field during 
the time (rj j  +vjj)" between the instant of excitation of 
the molecule to the level j and i ts  elastic scattering. 
The second term in the square brackets of (3.9) is due 
to the change of the molecule velocity during the remain- 
ing time of i t s  stay a t  the level j, and gives r i se  to an 
additional structure in the velocity distribution, called 
collision structure inc8]. The Bennet dip is always nar- 
rower than the collision dip, and the difference between 
the two decreases with the increasing pressure of the 
perturbing gas. In accordance with a general t h e ~ r e m , ' ~ '  
the ratio of the areas  of the indicated dips is equal to  
the number of elastic collisions n, occurring during the 
molecule lifetime ( r j j  + vjj -%,)-I on the level j: 

The structure of the S1-dependent part  of the term 
in the expression for the work P(S1) of the field is simi- 
lar. Moreover, it can be easily verified that the plot 
of this part  against the frequency can be made to  dup- 
licate the contour of one of the terms in the nonequilib- 
r im increment to  pjj(v), if we a r e  interested in the v- 
dependence of the latter, by replacing k with k/2. 

According to (3.9) and (3. lo), selective elastic scat- 
tering of molecules influences the shapes of the nonlin- 
ear  resonances for two reasons: the frequency modula- 
tion of the oscillations induced by an external field (this 
i s  reflected also in @T), and the change in the distribu- 
tion of the molecules in velocity (the factors in the 
square brackets). The roles of the indicated causes, 
which find their expression in the off-diagonal and di- 
agonal collision integrals and a r e  represented by inde- 
pendent factors in (3.9) and (3. lo), manifests itself 
clearly if Z2(S1) is rewritten in a form equivalent to 
(3.10): 

Relations (3.10) differ only in notation from those ob- 
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FIG. 1. Qualitative plot of the half-width 6 of the Bennett dip 
against the density N, of the perturbing particles. 1-;,,a 

> 0 ,  a = O ;  2-;;, > 0 ,  a g o ;  3-;;, < 0 ,  a=O; 4-;;, < 0 ,  
(Y * 0 ;  5-6= rmn+ vk, -?A, ; 6 - =  rnm+ v a n  -;:, + 2ffnkAv; 
7 - 6 = r n m + v ~ ,  -;A -$aInIkOu; 8, 9-6=rnm+vk, .  

i. e., in the form of a convolution of the Green's func- 
tion Fj with the functions B1(S1) and B2(kv) of the type 
(3.6), which represents the influence of the frequency 
modulation. 

A detailed analysis of the properties of the functions 
Fi(v -vl) is carried out inC8'. We consider now the sin- 
gularities of Bl(SZ). If the time (I?,, + urn,)-' is larger 
than the width l/kAv of the function A,(T) then, a s  can 
be easily shown, the integral of A,(T) in (3.4) can be 
discarded and 

In the opposite limiting case of high pressures, small 
values of T a r e  important, and we can use the expansion 

where Av is the width of the kernel and the numerical 
factors ff and P depend on its form. If we retain in 
(3.15) only the principal term, thenc"""' 

To determine the region in which (3.16) is valid, we 
must take into account higher terms of the expansion in 
(3.15). If A,,(v - vl) decreases as Iv - vll - m not faster 
than (v - v,)", then ff #O and the criterion for the ap- 
plicability of (3.16) takes the form 

On the other hand, if A,,(v - v,) tends to zero as I v - v1 1 - m more rapidly than (v - vl)", then ff = 0 and in place 
of (3.17) we obtain 

Thus, the realization of the limiting cases (3.14) and 
(3.16) is regulated by different parameters that differ 
particularly strongly if th is positive and is close to  
vh. Therefore the region where the width of the dip 
becomes a nonlinear function of the pressure or  of t;, 
cannot conform to the condition r,, + v k -  kAv, as is 
assumed inc2'. 

By analogy with nj, the quantity n can be interpreted 

a s  the effective number of collisions that lead to devia- 
tion of the frequency of the molecular oscillator and oc- 
cur within the dipole-moment relaxation time (I?,, + v h  

-1 - urn,)-'. The role of n is clearly seen from the expres- 
sions for the f i rs t  corrections to the width of the func- 
tion B,(S~), which correspond to the expansion (3.15): 

If ff # 0, then the term with P must be discarded, and the 
increment to  6 i s  proportional to the total frequency de- 
viation nkAv Which is produced after n collisions. On 
the other hand, if ff = 0 and P # 0, then 6 contains a fre- 
quency deviation & k ~ v  which is proportional to 6 (the 
diffusion law). 

Relations (3.14) and (3.19) provide an approximate 
idea of the possible behavior of the half-width with 
changing pressure (Fig. 1). Depending on whether ff = O  
o r  a # 0, i. e. , on the character of the "wings" of the 
kernel, the asymptotic plot of 6 at large pressures has 
an intercept on the ordinate axis at  I?, o r  I?, +a ffnkAv. 
We note that curves of this type a r e  obtained also for 
the half-width of the total dip, if the phase-memory ef- 
fects a r e  neglected. "I At t h > O ,  the qualitative pres- 
sure  dependence of the width of the total dip has also the 
form of the curves of Fig. 1. On the other hand, if F;, 
<0, the curves for the width 12(S1) a r e  somewhat al- 
tered. c211 

If tk > 0, then the exponentials with higher exponents 
7 need not necessarily be expanded in a series, and 
Bl(S1) can be represented in the form 

(3.20) - 
B, (9) = Re exp{-2 ( rmi+~, , -om,- iP)  ~ - a ~ , . k A v z ~ - ~ / ; i 3 ~ , ~  

0 

x ( h . 4 ~ ) ~ t ~ ) d t ;  ( k A u / ~ ~ , , ' ) " : < l ,  a+ 0; ( k A u / o , / ) ' / , < < l ,  a=O. 

Relation (3.20) is meaningful a t  sufficiently large pres- 
sures, and the limit of the region of i t s  applicability 
shifts towards pressures  that a r e  small in comparison 
with (3.17) and (3.18); the shift is larger the larger n. 
In the case ff # 0, the integral (3.20) is expressed in 
terms of the tabulated functionsc22': 

A plot of the width of the function (3.21) is curve 7 of 
Fig. 2a (cf. Fig. 1). In the case a =0, the integral 
(3.20) was calculated numerically. The corresponding 
width is represented by curve 5 of Fig. 2a (cf. Fig. 1). 
If n is large enough, then the maximum of the curves 
turns out to be in the region of applicability of relation 
(3.20), s o  that this relation covers practically the en- 
t i re  pressure interval of interest from the point of view 
of the nonlinear dependence of 6 on vh,  with the excep- 
tion of the region of very lowest pressures (3.14). We 
note that retention of only the cubic term. in (3.20) is 
equivalent to  writing down the collision integral in the 
Fokker-Planck form. "I 
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FIG. 2. Dependence of the quantities = (bo,l - rmn - vmn 
+F,,)/JnkAv on ?= (r,,+ v,,-v,,,)/JnkAv for the function 
B(bl). a) 1-n=O.25, 2 1 2 = 1 ;  3 - n = 3 ; 4 7 = 9 ;  5-approx- 
imation (3.20),  a = 0, p= 1; 6-asymptotic form (3.19), a = 0, 
p = 1; 7-approximation (3.20), a J n =  0 . 5 ,  p =  0; 8-bo- r,, 
- 'v,, = &nk&. Points-approximation (4.1).  The x scale for 
curve 7 i s  magnified 2.5 times. b) 1-n = 0.25; 2 1 2  = 1; 
3-12 = 3; 4 1 2  = 9; 5-approximation of type (3.20) for d ~ , ( b l ) /  
dbl, a = 0, p = 1; 6-asymptotic form of type (3.19),  bl = I?, , 
+ ~ ~ , - D , ~ + ~ ( k & ) ~ / ( ~ ~ + v , , -  ;,A, a = O , P  =l. Points- 
approximation (4.1). 

At low pressures corresponding to (3.14), the width 
of the Green's function Fj(v - v'), amounting according 
toc8' to (1 +nj)l'zk~jv, greatly exceeds I',, + v,,, so that 
the Bemet and the collision dips a re  readily distinguish- 
able. On the other hand, if (1 +nj)l 'zk~jv - r, + v:, 
- 7 ,  , then the two dips have approximately equal 
widths, and it is necessary to consider the entire ex- 
pression (3.10) for I,@) a s  a unit, i. e., the separation 
of ~ ~ ( 5 1 )  is not justified. The latter can be readily seen 
from the asymptotic expression, at  high pressures, for 
the width of the function I,@) 

where Ajv is the width of the kernel Ajj(v - v,), the form 
of which coincides with the form of A,,(v - vl)(a =O). 
Thus, frequency modulation and "population" effects 
make approximately identical contributions to 6(nj 2 n). 
In view of the complexity of the expression for I,@), we 
shall analyze it subsequently by numerical methods in 
Sec. 4. 

We note that at  t: # 0 the function Iz(SZ) is not sym- 
metrical, and the shift of its maximum is a nonlinear 
function of the pressure. The question of the shift of 
the nonlinear resonances is considered incz1]. 

4. NUMERICAL CALCULATIONS WITH THE MODEL 
KERNEL (2.11) 

The functions B,(SZ) and I,@) and their half-widths 6, 
were calculated with a computer for the exponential ker- 
nel (2.11) under the assumptions Av = Ajv, v:, = C:, = 0, 
and n =nj  (total phase memory). Since the first  deriva- 
tive of the nonlinear resonance is frequently measured, 
we determined also the positions of the maxiam a,, for 

d ~ , / d a  and dI,/dSZ. If the resonance has a Lorentz 
shape, then SZ,, = 6,/6.  For convenience in the com- 
parison we therefore calculated the quantity 6, = a~,,, 
which does not coincide with 6, because the resonance 
has a non-Lorentz shape. 

Figures 2a and 2b show the values of 6,. , - r, - v,, 
+t, for B,(S2), the units along the axes being chosen in 
accordance with the diffusion approximation (3.15). 
Conforming to this approximation a re  the plots 5, which 
a r e  well approximated by the expression 

(the points near the curves 5). The remaining plots cor- 
respond to different values of n. At n > 3  their differ- 
ence from the plots 5 is not very large. 

Figures 3a and 3b show the values of 6,. , for the total 
resonance I,@) (solid curves). The units on the ab- 
scissa axis were chosen different from those of Fig. 2 
in such a way that the positions of the maxima of the 
curves a r e  practically independent of n: 

Thus, in qualitative agreement with the conclusions of 
Sec. 3, the nonlinear part of 6,, , is governed by the 
parameter x = (r, + v, - t,)/(l +n)l 'zk~v over the 
greater part  of the pressure interval of interest to us. 
The dashed curves in Fig. 3 correspond to the width of 
the Bemet dip, and from a comparison of these curves 
with the solid curves we can assess  the relative role of 
the collision term in I,@). The maximum value of 6,. , 
- r,, - v, + 5,, is 1.5-2 times larger for I,@) than for 
B1(S2), and its value at  n 2 3  is 

A characteristic feature of the plots in Figs. 2 and 3 
is that the maximum at x<x,, is reached rapidly and 
that the plots fall off relatively slowly in the region x 
> x,,: the ratio of the value x = xl12, where (6 - r, 
- v,, + G,) = 9(6 - I'm - + tm)rnar, to xm, is xl/z/xrn, 
=5-7. In view of this slow decrease, failure to take 
into account the decrease of the velocity in the colli- 
sions may influence the results of the measurement of 
the broadening cross section, o r  (v, -F,)/N,,: If, for 
example, the measurements a r e  carried out in the in- - .  

terval (x,,, xlIz), then the e r ro r  in (v, - t,)/N,,, is 6 
to 8%. In addition, the value of I?,,, measured by lin- 
ear  extrapolation to zero pressure, will be incorrect: 
this method yields a quantity that differs from r,, by 
approximately GkAv. 

It follows from (2.7) that nj>> n. This inequality be- 
comes stronger if account is taken of the disoriented 
collisions (see Sec. 5). With increasing n;, the width 
of the Green's function (3.2) increases and the weight 
of the collision term in Iz(S2) becomes larger. There- 
fore, a t  n, > n  the values of 6 a r e  larger than for n j  =n. 
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The results of numerical calculations of 6,, in this case Proposing to advance a s  far a s  possible in this direction 
a re  given ince1'. also in our case, when the changes of the velocities in 

the collisions a r e  significant, we write down the equa- 
5. DEGENERATE STATES AND DISORIENTING tions for the matrix density in the xq representation: 
COLLISIONS 

O m p m m ( x q )  =qrn+S,,(xq) +i C ( - 1 )  J-+Jm[3(1+2x') ] 
In the analysis of degenerate systems, the elements X ' I ~ ~  ,6 ,:' Jnx 1 

of the density matrix, which depend on the projections X [pm.(n'qf) V - ; ( - I )  l+x'+a-( - l )x+qv ,pm. '  (XI-q ' )  ] C ( I x ' x l a q r q )  ; 
M of the total angular momenta J,,, and J, of the levels 
m and n, will be written in the form pj,(JjMj J, M,,v). 

(5.2) 
O p , , ( x q ) = S , , ( x q ) + i  c ( - i ) ' + x ' + J - + J "  [ 3 ( 1 + 2 x 1 )  ]'"Ti. 

Both the arrival terms and the departure terms of col- 
llnle . - 

lision integrals become off-diagonal in M, if account i s  x [ x q  { x' } - ( - i ) i + x  + A  

taken of the disorienting processes, It is known, how- Jm J .  Jm 
~ ~ " ( x ' ~ ' )  { J ,  Jm %' J n  ' I ]  C ( i ~ ' x l a ~ ' ~ ) ;  

ever, that in the relaxation-constant model, under iso- a d 
P,, = - + v v + r m m ,  9 = -+ v v + r , , ;  

(5.3) 
tropic perturbation, the collision integral becomes di- at d t 
agonalized in the representation of the irreducible ten- 
sor  operators (the wq representation). C231 The connec- where V, a r e  the circular components of the interaction 
tion between the M and xq representations is given by with the field. The equation for p, is obtained from 
the relations ' (5.2) by making the substitution m -- n. The collision 

integrals take the form 

F(JMI'M1)  - (-1) "-"C(l1'x l M - M r q ) F ( J l r ~ q ) I  S,I ( % P I -  - C v I I  ( X P I X I Q I ) P , I  ( V V )  +C J ~ v ~ A , I  ( W V I X I Q I V ~ ) P , I  ( X I Q L V ~ ) ,  
* 

(5.1) 
x "1 X,'I, 

(5.4) 
F ( J J ' ~ ~ ) =  (-l)J'-M'C(ll'xlM-M'~)F(lMI'M'~. J A , ,  ( x q ~ I x ~ q ~ v ~ ) d v = ~ j ~  ( x q I x l q l ) .  (5.5) 

MM' 

The "departure" frequencies vj, and the kernels a r e  
where C(. . . I . .  . ) a r e  the vector-addition coefficients. connected with the scattering amplitudes: 

Here, just a s  in Secs. 2 and 3, we consider only the Thus, on the basis of the isotropic-perturbation' 
elastic part of the arrival. The subscript "per" marks model, we can neglect some non-diagonality of the ker- 
the characteristics of the perturbing particles. nels and use the following form of the collision integrals 

for the description of small-angle scattering: 

The isotropic-perturbation models correspond to ne- 
glect of the velocity v and of the function W(v - u). The ( x q )  = - - V , ~ P , I  ( x q .  v ) + J  A J I ~ ( V - V ~ ) P J ~  ( x q ,  v 1 ) d v l .  (5.8) 
diagonality of S,, in the sense ofce3' means that the dif- 
ference vj, -Ej'v,, is diagonal in w and in 9 and is inde~en-  The solution of Eqs. (5.2) and (5.3) with a collision 
dent of q. On the basis of (5.6) and (5.7) it can be integral (5.8) leads to the following expression for the 
shown that under the indicated conditions v,, and C j ,  a r e  function I,@) in (3.10) 
separately diagonalized, while v,, depends neither on q 
nor on w . The kernels Aj, a r e  not diagonal in n and q 

- 
A,ix(.) 

even in the isotropic-perturbation model, but a l l  of "(') a ,=,,, c ,. & "ej [ ' ' L+v,,-A..(r)  
their moments a r e  diagonal: x - O , ,  z 

I 
X { I  @ ( r )  l ' + @ Z ( r ) e ' i p ( 2 ~ R r ) } d r ,  (5.9) 

{ I V - - V ~ I ' ) = ~  Iv-v , I~A,~ ( ~ q v I x , q ~ v , ) d v a 6 ~ , 6 ~ ~ ~ .  where 
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FIG. 3 .  Half widths b e , ,  of the resonance I , ( n ) ;  1- = 0 .25;  
2- = 1; 3- = 3; 4 - 1  = 9; n,= n .  Half-widths 60,1 of the 
Bennet dip B i ( a ) :  5-n= 0 .25;  6-= 1; 7 1 2  = 3 ;  8- = 9.  The 
abscissas represent x = (I',,+ urn,,-- F,,)/v' 1 +nk&, and the 
ordinates yo,,= (bO, , -  I', ,-v,,+v,,)/~'nkAv. 

The quantity I(xq) is the radiation polarization tensor in 
the wq representation, c241 @(T) is given a s  before by for- 
mula (3.4), where A,,@) must be replaced by A,, ,(r). 
We note that the relations between the vj,, a r e  analogous 
to (2.7) and follow from (5.5) - (5.7). Just as in (2.7), 
the equality 2 Rev,, = v,, + v,, is satisfied. In addition, 
the following inequalities hold 

and reflect the role played by the disorientation of the. 
states in the collisions. 

Each term of the sum in 12(62) yields a contour similar 
to that considered in Secs. 3 and 4 ((cf. (5.9) and (3.10)). 
The resultant contour I,@) obviously preserves all  the 
qualitative features of the terms, and in particular, the 

disorienting collisions change the meaning of the width 
of the function 12(62) at high pressures: the quantity r,, 
+ v k  - vm is subject, besides loss of phase stability and 
inelasticity, also to  the influence of collisional disorien- 
tation. 

Let us examine in greater detail the case of a vibra- 
tional-rotational transition in a molecule, when the am- 
plitudes of the scattering in states m and n can be as- 
sumed identical, as a result of which 

and summation over n only is left in (5.9). Let the 
wave be linearly polarized, and then the only nonzero 
components a r e  I(nq) with n = O  and 2. The ratio of the 
coefficients a, =a, +a, in the sum (5.9) for the transi- 
tion J, = J- J, = J + 1 is equal to 

At large values of J, the term with x = 2  is represented 
in (5.9) with a much smaller weight and it can be ne- 
glected. In molecular systems, besides, one can ne- 
glect the radiative relaxation relative to  the collisional 
relaxation, s o  that the formula for I,(Sa) takes the form 

If we assume in addition that AO(r) and A1(r) a r e  identi- 
cal in form, then (5.13) describes the nonlinear struc- 
ture considered in detail in Secs. 3 and 4. 

6. DISCUSSION. COMPARISON WITH EXPERIMENT 

The foregoing analysis allows us to conclude that the 
shape and width of the nonlinear resonance is strongly 
influenced by many characteristics of the collision pro- 
cesses, namely, the form of the differential cross sec- 
tion of the elastic scattering, the form of the kernel of 
the collision integral, the departure and arrival fre- 
quency ratio, which reflects the presence of processes 
that a r e  essentially inelastic; disorienting collisions in- 
crease the number of spectral components of the non- 
linear resonance and alter the relations between such 
parameters a s  the numbers n,,, of the collisions. 

characteristic pressure dependence of the width, with 
Experimental investigations of the shapes of nonlinear 

the relatively rapid increase and subsequent slow de- 
resonances can, consequently, serve a s  the basis for 

crease of the difference 6 - r,, - vk, +Ck,,. Allowance the extraction of extensive information on the foregoing 
for the degeneracy and for the disorienting collisions 

characteristics of the states of atoms and molecules, 
has led to certain quantitative changes in 12(62) and to a 

including excited ones. Thus, for example, from the 
refinement of the interpretation of the parameters. asymptotic behavior of the width 6 of the resonance as a 
Thus, in place of the three spectral components in function of the pressure we can estimate the "wings" of 
(3. lo), (5' yields in the genera' case seven the kernels and of the differential cross section. In the 
terms. What is added is summation over x =0, 1, and simplest case, the pressure dependence of 6 is deter- 
2 in accordance with the relaxation of the total popula- mined by only two (Av and n), which can be 
tion of the levels (x =O), of the orientation (n =I) ,  and easily obtained from the ewerimental curve. 
of the alignment (x =2). Next, if f,, =f,,, then in the 
model of nondegenerate states we have n =nj, and (5.9) The experimental material concerning the effect 
contains a term with a "diagonal number of collisions" exerted on nonlinear resonances by collisions accom- 
nj j ,  larger than n,,, and under certain conditions this panied by change of velocity a r e  still exceedingly scanty 
term can be the principal one (see (5.12)). Finally, the and constitute only the f i rs t  steps in this field. Data on 
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and is determined by the broadest component of the 
kernel. 

FIG. 4. Comparison of the experimental values of 6, with the 
theory. Points-experimental datat4': A-  T = 629 K, 0 - T 
= 587 K, e- T = 465 K. Curve 1-calculation for I , ( Q ) ,  n = n, = 1, 
kAv = 0.23 MHz; 2-61 = v - ldlf = v / ( l +  n) = 0 . 5 ~ ;  3-h1 = v  
= 10.3 p (p is in Torr and v in MHz), T = 465 O K .  

the width and shift, obtained inL1'51 do not make it pos- 
sible, unfortunately, even to obtain the general function- 
a l  connection between the width and the pressure, since 
they pertain to a relatively small pressure interval. 

The existing theory has also a number of important 
gaps. Even though a general connection has been es- 
tablished between the collision integrals and the scatter- 
ing amplitudes, the theory i s  phenomenological to a con- 
siderable degree, since there a re  practically no calcu- 
lations of the differential cross section on the basis of 
microscopic representation. An exception isC16', where 
a calculation of this type was made for a Lennard-Jones 
potential, but no account was taken of inelastic and dis- 
orienting processes that may turn out to be substantial 
in the case of molecular systems. We emphasize also 
that in Secs. 2-4 of the present paper we have assumed 
that the kernels can be characterized by such a param- 
eter as  the width Av. It i s  known, however, that be- 
sides scattering through diffraction angles, there exists 
scattering through "classical angles" which a re  small 
in comparison with unity but greatly exceed the diffrac- 
tion angles, as  follows from the obvious relations 

where Uo is a characteristic value of interaction poten- 
tial. 

Thus, the kernels describing the selective scattering 
should contain each two components, whose widths dif- 
fer by one order of magnitude. The presence of small 
angle "classical scattering" leads, obviously, to a more 
complicated dependence of the width of the nonlinear 
resonance on the pressure: at the very lowest pres- 
sure, the nonlinear variation of the width is due only to 
diffraction scattering, and classical scattering assumes 
the role of strong collisions; on the other hand, the ap- 
proach of the plots of Fig. 3 to their asymptotes will 
take place at much higher pressures, since this ap- 
proach depends on the width of the kernel (see (3.18)) 

Despite the foregoing circumstances, some quantita- 
tive comparison of the developed theory with experiment 
can be made by using the data of Vasilenko et al., 
which a re  at present the most reliable ones. They reg- 
istered the first derivative of the power spectrum of a 
CO, laser with an absorbing sail on the P(20) line of the 
transition 001-100 (A = 10.59 pm) and obtained an ex- 
perimental plot of 6, (Fig. 4). We assume that over the 
greater part of the pressure interval in Fig. 4 the a r -  
rival of the collision integral i s  determined by the most 
selective (diffraction) part of the scattering. It be- 
comes reasonable to assume that no disorientation o r  
inelastic processes take place in scattering through dif- 
fraction angles. '' Within the framework of this hypothe- 
s i s  we obviously have 

V , = J , ~ -  v d i f ,  no=nl-ndif =P d i f / ( ~ - ~ d i f  ), 

A. ( 7 )  =A,  (z) = A  ( r )  

(the kernel A(r) being due exclusively to diffraction). 

A comparison of the experimental and experimental 
data will be carried out within the framework of the 
model of the Lennard-Jones potential. C18' From the 
slope of the experimental plot at  low pressures we de- 
termined the Weisskopf radius (d6,/dp = 10.3 M H Z / T O ~ ~ ,  
T =465 OK): From the relations obtained inc16' we get 

On the other hand, if we calculate p, by using the Len- 
nard-Jones potential parameters a and Uo, determined 
from viscosity data, C25' then it  turns out that 

3n aU ' I3  

p o = a ( - ~ )  2 Aii 
= 9.6A. 

Thus, the spectroscopic and gas-kinetic data give re- 
sults that agree well, thus favoring the applicability of 
the models of the Lennard-Jones potential. 

With the aid of (6.3) and (2.12) we calculate the theo- 
retical width of the kernel of the collision integral: 

The number n of the collisions can be obtained from the 
results of the calculation of the kernel inc1", according 
to which n = 1-1.5. A plot of 6, at n = 1 and Av ~ 2 . 4  m/ 
sec i s  shown in Fig. 4 (curve 1). Taking into considera- 
tion the simplifying assumptions made, the agreement 
between the theoretical and experimental results should 
be regarded a s  perfectly satisfactory. We note that al- 
lowance for the disorientation in diffraction scattering 
leads to a decrease of n, at a fixed value njo, and the 
theoretical curve will lie higher, i. e., closer to the ex- 
perimental points. We emphasize also that the values of 
the parameters n and v were calculated theoretically, 
i. e., no "fitting" parameters were used in this compari- 
son, so that Fig. 4 illustrates the "absolute" relation 
between theory and experiment. 
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We believe that the foregoing analysis inspires con- 
fidence in the quantum (diffraction) character of the 
change of the velocity in the collisions that lead, under 
the conditions ofC14], to a nonlinear dependence of the 
width and shift of the power resonance on the pressure. 
By the same token, the hopes expressed in Secs. 1 and 
6 to be able to investigate the collision processes men- 
tioned there by nonlinear-spectroscopy methods become 
realistic. 

In conclusion, let us dwell briefly on the results of 
Meyer et al .  and Berman et al .  "' Berman et al. de- 
termined from the data on the photon-echo signal a value 
Av =O. 85 m/sec (C&F molecule). Recognizing that 
C&F has a dipole moment (d = 1.79 D~'), and estimat- 
ing the Weisskopf radius from the formula &-d/= 
= 13 A, we obtain from (1.1) Av = 0.7 m/sec. Thus, in 
this case, too, we are apparently dealing with diffrac- 
tion scattering. 

Meyer et al.  c51 have also observed a nonlinear depen- 
dence of the width on the pressure for the fluorescence 
resonance, which has the same shape as the power res- 
onance. They interpret this phenomenon, however, a s  
the consequency of the joint influence of the saturation 
effect and of the so-called transit effects. We believe 
that this conclusion does not correspond to reality, 
since the allowance for the transit effects inCS1 is incor- 
rect, a s  can be concluded on the basis of our earlier 
results. LP73 

 he possible influence of diffraction effects on the width of 
the Lamb dip is mentioned incT3. 

2 ) ~ h e  approximation of the kernels by ~ a u s s i a n ~ ' ~ * ' ~ ~  or Lo- 
r e n t ~ i a n ~ ' ~ ]  curves seems less appropriate in light of the 
foregoing. 

3)Some justification for this hypothesis may be the fact that the 
cross section of the disorienting and inelastic collisions is 
much smaller than the total scattering cross section. This 
is indicated by the noticeable difference between the slopes 
of the experimental 6' (N-) plot at large and small N,. 
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