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The paper deals with the dynamics, particularly the character of the singularity and the process of 
isotropization of anisotropic wsmological models of the "diagonal" Bianchi types I, V, and IX (axially 
symmetric) filled with thermalized matter at rest with pressure P = nc (OS.n 5 I) and collisionless 
radiation (consisting of oppositely moving fluxes of ultrarelativistic free particles). The investigation is 
based on analytic solutions obtained in this paper. The latter are interpreted as perturbed flat, open or 
closed Friedmann metrios with infinitely (maximally in the type IX case) long gravitational waves against 
an isotropic background. The essential role of extremely "stiff' matter with an equation of state P = E 

near the singularity is brought to light. This equation of state imitates the dynamical influence of a free 
= 0) scalar field JI = +(T). General relativistic analogs are indicated for the homogeneous vacuum 

solutions and anisotropic models for T = Tf = c-3P for the types I, V, IX (axially symmetric) for the 
scalar-tensor Dicke cosmology. 

PACS numbers: 98.80.Dr 

In connection with the hypothesis of an initial aniso- 
tropic state of the Universe, intensive investigations a r e  
being carried out of the dynamics of more general mod- 
e l s  than the Friedmann model, namely spatially homo- 
geneous cosmological models of Bianchi types I-IX with 
gravitating matter, aimed at  finding the conditions for  
isotropization in the expansion and a t  singling out the 
anisotropic versions which do not contradict the ob- 
served isotropy of the Metagalaxy for red shifts z S 10 
- lo4 (cf., e.g.,C1-l'l). 

In the present paper we consider simple homogeneous 
generalizations of the flat, open, and closed Friedmann 
models, namely the Bianchi types I, V, and M (axial- 
ly symmetric) with diagonal frame (tetrad) metrics 
Yaa =x:(T) 8,& in a synchronous comoving frame, in the 
presence of an ideal fluid a t  res t  with the equations of 
state most interesting for cosmology I): P =nE (n = 0, c4]  
1/3, 1 )  and collisionless radiation of the type of oppo- 
sitely directed fluxes of free gravitons and  neutrino^."^) 
For these anisotropic models we list  and briefly discuss 
only the new analytic solutions of the Einstein equations 
in the presence of matter, which a r e  used for a study 
of the dynamical behavior near the singularity, and the 
process of isotropization. In particular, we discuss the 
type I with P = n s  (O<n s 1) a s  well a s  the case of a mix- 
ture of an ultrarelativistic component with P = ~ / 3  and a 
maximally "stiff" component with P = E ,  without mutual 
interaction; the type V with P = n s ;  the (axially sym- 
metric) type M with P =E.  In the types I and M (axial- 
ly symmetric) we indicate the asymptotic behavior near 
the singularity for gravitating fluids with P =n& (0 s n 
s 1) and collisionless radiation, and also consider the 
essential influence of a maximally "stiff" fluid with 
P=E, which appears as the equivalent of the homogeb 
neous scalar field in the Dicke cosmology ( ~ f . ~ ' ~ ] ) .  

In addition to the cosmological applications, the ex- 
act solutions for the isotropizing models of type I, V, 
and M (which may have claims to describing the early, 
essentially anisotropic, stages of expansion of the Uni- 
verse) a r e  also of independent interest. They -may be 

interpreted as perturbations of the Friedmann metric 
with an anisotropic mode of a tensor field of the type of 
an infinitely (or maximally, for type IX) long gravita- 
tional wave superimposed on the isotropic background; 
thus, with the help of the exact solutions one can easily 
analyze the behavior of this wave a t  all stages, and 
hence study the nonlinear interaction of 'long" (A 2 CT- 

the causal h o r i z ~ n ) ~ ' ~ " ~ '  waves with various material 
sources. 

1. In the Bianchi types I and V the homogeneous spa- 
tial sections V3 have isotropic vanishing o r  negative 
curvature, respectively, and on account of this the 
Einstein equations admit of f i rs t  integrals, whjch after 
separation, from the metric Xa =R(r) exp[fl,(r)], of the 
volume factor V = R =XYZ (which characterizes the 
general expansion) and of the shift anisotropy of the 
Hubble velocities ua =/ia, take the formc4] 

Taking into account the law of conservation of energy 
(T:;, =0) in a synchronous comoving coordinate system 
f o r  an adiabatically expanding fluid with P = ns,  written 
in the form 

the problem reduces the integration of the generalized 
Friedmann equation 

& l t 3 "  ZZ i\R2 P = ( ~ )  +--kt-, x * = ~ r r p  
R ' 3 

q ,=Z , /3Z=2 /3  sin $,, --nlG<$,=$Cnl2, (3) 

In the model of type V the restriction T: = 0 - YZ =x2 
=R, causes the set of constant exponents q, to be fixed: 
q1 = 0, q, = 3-'I2, q3 = - 3-'I2 (J, =O). The difference be- 
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tween (3) and the anisotropic Friedmann models is due 
to the homogeneous anisotropic mode of the free tensor 
field (E f O), which can be treated as an infinitely long 
gravitational wave in a nonstationary flat (k = 0) o r  hy- 
perbolic (k = - 1) space V3 of isotropic 

The anisotropy of Hubble ra tes  of deformation u2 
=+aab aab =%G +% + B : )  will, according to the Raychaud- 
hur i equationc6] 

yield a contribution to the density of active mass  and 
will influence the rate of volume expansion (3) similar 
to an ideal fluid with extremely "stiff" equation of state 
P, =&,. Therefore the effective density of the energy 
of the homogeneous mode (as well a s  of a long (X 5 c) 
gravitational wave) x &, = u 2  = 3E2/R6 will increase most 
rapidly for a general compression (R(r)- 0). This mode 
dominates over the contribution of matter with P <  c, 
which leads to an anisotropic vacuum stage and an initial 
singularity with a Kasner asymptotic collapse of V, into 
a line: 

p,='la (1+2 sin q.) . p,+p,+p,=p,2+p,'+p,2=1. 
(4 

This asymptotic behavior does not depend on the pres- 
ence of matter, and is determined only by the f ree  
gravitational tensor field (z, #0). 

In the course of the unlimited expansion ( ~ ( 7 ) -  m) 

the gravitating matter and the isotropic curvature V3 
(which a re  inessential in the neighborhood of the sin- 
gularity) become the determining factors of the dy- 
namics and guarantee the asymptotic isotropization. 
This means that after the termination of the vacuum 
stage the models of type I (for P <  & )  and of type V go 
over into the corresponding Friedmann solutions Rp(r) 
with small damped corrections: 

Such homogeneous anisotropic additions ha(r) to the 
Friedmann metric are,  according to the classification 
of E. Lifshitz, L'51 tensor-type perturbations of the f ree  
gravitational field h t  =v(r)G:, and a r e  analogous in the 
linear approximation with respect to the structure to the 
Weyl curvature tensor (the Petrov type I) and to the dy- 
namical behavior 

to long gravitational waves (A 2 cr)  superimposed on an 
isotropic quasi-euclidean o r  open model. A similar de- 
scription for the models of type I and V agrees with the 
interpretation of the metrics of the Bianchi type VII , "01 
which represent monochromatic circularly polarized 
waves of finite wavelength (qf 0) against an isotropic 
Friedmann background, namely a standing wave in flat 
space for the type VII, and two oppositely travelingwaves 
in hyperbolic space of constant curvature for the type 
VII*, respectively. In the limit of infinitely long waves 

(q = 0) the type VII,, goes over into type I, and the type 
Vl&, into type V. 

The metric of the Bianchi type M can also be repre- 
sented in the form of a superposition of an isotropic 
closed part and a set  of standing gravitational waves of 
maximally possible length X = 2/3aR, (tensorial har- 
monics with wave number I = 3) compatible with V3 being 

For  the types VII and M the spatial curva- 
ture is anisotropic (in distinction from types I and V), 
so that one must attribute to gravitational waves of f i -  
nite length an energy -momentum pseudotensor with an- 
isotropic stresses.  In the purely wave situation (A 
<< CT) such short-wave perturbations of the Weyl curva- 
ture tensor a r e  equivalent to a set of massless par- 
ticles-gravitons-against a large-scale background of 
an averaged metric, and if the distribution is isotropic 
they influence the-dynamics similarly to a n  ultrarela- 
tivistic gas with P, =;,/3. 

Thus, with the aid of the exact solutions for the an- 
isotropic models of types I, V, and M, which a re  inter- 
preted as perturbed isotropic metrics, it is easy to 
study the dynamical behavior and the influence of homo- 
geneous tensor modes of the free field,') modes which 
appear a s  the limit of long gravitational waves with A 
>,CT on a Friedmann background in the nonlinear re- 
gime. 

2. The Bianchi type I always admits a diagonalization 
of the frame (tetrad) metric (if T,b = ~ ~ 6 : ) :  

and contains a s  special cases homogeneous plane-sym- 
metric T-models with an additional axial symmetry 
(X = Y) and a quasi-Euclidean Friedmann model (x= Y 
= Z = R,). Sufficiently many exact solutions a r e  known 
for  the metric (6) for various material sources: the 
ideal fluid with P=o , '~ ]  ~ = & / 3 ,  C51 free 
particles in a kinetic des~ription," '~ a scalar fieldc"' 
and a "primary" magnetic field in combination with mat- 
t e r  (P =o) t']; these solutions have served as a basis for  
analyses of astrophysical processes and possible ob- 
servational consequences for such a parabolic version 
(po = p, = 3~;/8aG - 5 x g/cm3) of anisotropic cosmol- 
ogy (cf. C'21). 

An analytic solution for the type I metric (6) can also 
be obtained for  a more general equation of state P 
=(n& ( 0 s  n < 1) of matter if one introduces in (3) the di- 
mensionless parameter 7 by means of the substitution 

We then have for A =0: 
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here To, qO, and X! a r e  integration  ons st ants.^' In the 
limit n = O  this solution goes over into the Heckman- 
Schiicking metric for "dustlike" matter with P = O  (7, 
= 4 ~ / 3 ~ ,  q, = 1) C4' and for  n = 1/3 it yields a different 
parametrization for the standard "hot" (big bang) model 
of type I, which i s  radiation-dominated with P = E / ~ . ~ ~ '  

We analyze the dynamical behavior of an infinitely 
long "gravitational wave" on a flat Friedmann back- 
ground and i ts  interaction with an ideal fluid with the 
help of Eq. (7), assuming an equation of state P =n& 
with O s n  < 1. The latter encompasses all physically 
admissible asymptotic forms of the equation of state of 
matter (0 < P< E) and contains the variants which a r e  
most important fo r  cosmology: 

1) P = 0-nonrelativistic matter, dominating in the 
source term at relatively late stages of expansion of the 
Metagalaxy; 

2) P = &/3-equilibrium radiation and a mixture of ul- 
trarelativistic particles, dominating in the radiation and 
lepton e r a s  in the "hot" variant. The ultrarelativistic 
equation of state P = c / 3  is possibly applicable also dur- 
ing the hadronic stage, particularly within the frame- 
work of the quark-parton picture of strong interactions 
at high energy.'"' - 

The case P = O  may turn out to be a good approxima- 
tion also for the early 'rhot" hadron e r a  if Hagdoern's 
hypothesisc1g1 on the existence of a limiting temperature 
for  the strongly excited vacuum, T,, =m,c '/k = 2 
x 10" K, is valid. 

The intermediate barotropic forms P =nc (0 c n 
s 1/3) allow one to imitate a mixture of nonrelativistic 
matter (P = 0) and equilibrium radiation (P =c/3), and 
the case of "stiff" equations of state with 1/3< n < 1 can 
in principle be realized during the "hot" hadronic e r a  
and may be preferable for superdense baryonic matter 
in the "cold" model. LZO1 

In the vacuum &a (q << qO), which is determined by the 
strong homogeneous "gravitational wave" (A- m): 

the common expansion from the "linear" Kasner sin- 
gularity 7 =0, (4), is accompanied by a contraction in 
one of the directions (pl < 0, p2,3 > 0). The gravitating 
matter at rest ,  which for P <  & behaves a s  a test  ob- 
ject on the strongly anisotropic background of the 
dominating homogeneous mode of the f ree  tensor field 
('C #O) slows down and stops this contraction, convert- 
ing it into an expansion with subsequent asymptotic iso- 
tropization. In (8) rpis the characteristic time of 
the end of the vacuum stage or  the beginning of the iso- 
tropic Friedmann stage (7- 7,) when the dynamical in- 
fluence of the gravitating matter (A # 0) and of the ani- 
sotropy of velocities of deformations ('C # 0) is of the 

same order. 

The special axially symmetric variant of (7) with the 
kinematic set of Kasner exponents p, = 1, pz =pz =p, 
=0(+=s /2 )  (which represents the analog of the New- 
tonian collapse of an oblate ellipsoid into a "pancake" 
a t  P = O ~ ~ ' )  exhibits a degenerate behavior: it does not 
in fact have a vacuum stage, since there is no f ree  
gravitational field (the invariants of the Weyl curva- 
ture tensor a re  (Y, = - P ~ ~ , / T ~  = 0), and the correspond- 
ing Taub-Kasner metric in vacuum (4) transforms to 
the Minkowski form. Such a kinematical singularity of 
the degeneracy of V3 into a "pancake" becomes physical 
on account of the presence of matter (c, p cc 7-(lW)- w): 

The gravitation of matter is always dynamically im- 
portant, and the time derivatives 

have the same order of magnitude a s  the contribution 
of matter (and a r e  not of order Y2, as in the vacuum 
stage (4)); for  P # 0 the Hubble velocities and accelera- 
tions increase without bound a s  V3 collapses into a 
"pancake. " 4, 

The process of isotropization and the dynamics of the 
quasi-isotropic stage in (7) (q>> qO) depends essentially 
on the equation of state of the gravitating matter. On 
account of the slower decrease of the energy density 
of matter during i t s  adiabatic expansion (c a: R-~"'"'), 
compared to the contribution of the vacuum anisotropy 
of the ra tes  of deformation c2aR- '  a t  P < c ,  this matter 
is in fact responsible for the transition of the type I 
models to a quasi-Euclidean Friedmann metric with 
P = n c ,  of the form 

In the quasi-isotropic stage (7 >> 7,) the small cor- 
rections to the Friedmann solution (9), necessitated by 
the influence of the homogeneous anisotropic mode ('C 
# O), yield in the linear approximation only perturba- 
tions of the metric if Pf 0: 

and the volume of the elements of V3 does not change 
under such an anisotropic deformation (s, +sz  +s3 = O), 
so that the energy density does not deviate from the 
Friedmann law. 

It is knowncbz1 that short gravitational waves (x<< CT) 
do not interact with a homogeneously distributed ideal 
fluid, and their amplitude decreases according to the 
adiabatic law I h t  I a R-' F a T * / ~ ( ' + ~ )  (corresponding to 
the behavior of the-energy density of the ultrarelativ- 
istic graviton gas P, = ;,/3 a R:). In distinction from 
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the short waves, long-wave (hzcr )  anisotropic perturba- 
tions of the metric of the type (10) a re  damped out some- 
what faster if ~ < & / 3 ,  owing to interaction with matter 
(in particular, for P =oClS1). 

For ~ = & / 3  the amplitude of long gravitational waves 
(10) varies according to the same law a s  for short 
waves ( I h8, I oc v a R F cc r'lI2), and this agreement is 
closely related to the conformal invariance of the lin- 
earized Einstein equations for weak gravitational waves 
against the isotropic Friedmann background in the case 
when the trace of the energy-momentum tensor van- 
ishes: T =& - ~ P = O , ~ ' ~  

In the second approximation, the nonlinear interac- 
tion of a homogeneous anisotropic mode with a fluid at 
rest produces a deviation of the time-dependence of the 
volume factor V=R' =XYZ and of the energy density 
from the Friedmann law (9) at n # 1/3, given by 

and appearing a s  a result of the reaction of the long 
wave via its effective energy density &,=PC on the be- 
havior of R(T) in (3). 

For the case P=&/3,  Eq. (7) (where the integral at 
n = 1/3 can be expressed in terms of elementary func- 
tions) implies that in the expansion (11) there appears 
a logarithmic contribution (q>> vO, 7 >> rF = 8z2/3dS): 

For P = O ,  the models (7) have a qualitatively different 
asymptotic behavior of the isotropization (r>> r , = 4 ~ /  
3 4 :  

which yields even in the linear approximation a change 
of the volume of the elements of V, and of the density 
of "dustlike" matter. However such fictitious homo- 
geneous perturbations can be removed by shifting the 
origin of time r + r o o  7, so that the anisotropic additions 
to the flat Firedmann metric a r e  again described by (10) 
with n =0, in agreement with law of decay of long waves 
for P =oLl5]: 

3. a) The special case P = e  is not covered by the 
solution (7) and requires separate consideration, since 
such a maximally "stiff" matter becomes dynamically 
important near the singularity, and the anisotropic 
models have no vacuum stage. Although the problem 
of reality of the equation of state P =& in the "hot" 
variant during the hadronic e ra  is not clear (cf ."I1), 
the limiting asymptotic form P =& is admissible in 
principle, e. g., for superdense strongly degenerate 

baryon matter at low temperatures and i s  usually used 
for the description of the early stages of expansion in 
the "cold" charge-asymmetric variant of the initial 
state of the universe. C201 

In addition, gravitating extremely "stiff" matter im- 
itates the dynamical influence of a scalar massless 
field, insofar a s  it appears only a s  an additional mate- 
rial source, as, for instance, in the conformal presen- 
tation of the scalar-tensor theory of Dicke for a vanish- 
ing trace of the energy-momentum tensor, T =& -3P 
= 0. 'I4] The canonical energy-momentum tensor of a 
scalar massless field 

has a hydrodynamic structure similar to the case of an 
ideal fluid with 

so that in the homogeneous case 9 =@(r) the scalar f ree 
field (oq = 0) is equivalent to extremeiy "stiff" matter 
at rest with P, =&, =:c$~. Consequently, the homoge- 
neous cosmological models in general relativity, filled 
with motionless maximally "stiff" matter with P, =&,, 

can be considered a s  an analog of the corresponding 
vacuum solutions for the conformal presentation of the 
scalar-tensor theory of Jordan-Brans-Dicke, and they 
are  easily transformed to the original version with a 
variable gravitational coupling "constant" G - (p-l(r), 
9 =lnq (~ f .~" '  for details). 

Starting with this analogy between the general-rela- 
tivistic theory and the conformal presentation of the 
Dicke scalar-tensor cosmology, it is easy to clarify the 
essential influence of a homogeneous mode of the f ree  
scalar field on the character of the initial singularity 
and the dynamics of the anisotropic expansion, if one 
considers the Bianchi type I models which contain in ad- 
dition to ordinary matter with P =n& (0 c n < 1) also a 
maximally "stiff" fluid of the form 

For such a mixture of two noninteracting components, 
the Einstein equations (3) admit of an analytic solution 
of the type (7) with the substitutions 

- z+-z= (zz+A;)'", s.+s.=(Z/Z) sin 9.. (74  

Owing to the maximal "stiffness," the "scalar fluids' 
(A, # 0) predominates over matter with P< & for unlim- 
ited contraction, and acting on a par with the anisotropic 
tensor mode (C +0), it alters the Kasner asymptotic 
behavior (4) in agreement with the exact solution for the 
model of type I for P, =&, = i(G/(p)2 C5*b13*141: 
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This generalized asymptotic behavior with ja = (1/3) (1 
+ Ga) at 0 < lj < 3x2 (0 < p < i), in addition to the col- 
lapse of V into a line, contains also an anisotropic 
point collapse, which becomes at A: >3x2 ( p  > 4) the 
only possible type and in the limit p - (-4: >> 3z2) ap- 
proaches the isotropic one. We note that in the axially 
symmetric variant there is for  A: = 3x2 (p  =+) an 
anomalous type of collapse into a "barrel" (P; = 0, j, 
=j3 =+), and the kinematic regime of the collapse of 
V3 into a "pancake" becomes utterly impossible a t  P, 
=c,. 

In the course of the expansion the dynamical influence 
of the matter with P >> & (which is negligible near the 
singularity) increases compared to the more rapidly de- 
creasing contributions of the "scalar fluid" and the ani- 
sotropy of the Hubble velocities, which has a s  a result the 
transition to the solution (7) and i ts  subsequent iso- 
tropization. It should be stressed that when the "scalar 
fluid" with P, =&, dominates over the tensor mode ( p  
> f )  the strong anisotropic stage is absent and the dy- 
namics of the expansion is always close to the quasi- 
isotropic regime, even near the singularity. 

Since a t  T =& - 3P = O  the material sources do not gen- 
erate a scalar field and i t  can only be free, the general- 
relativistic models filled with a mixture of noninteract- 
ing maximally stiff (P, = E,) and ultrarelativistic (P =& /3) 
components a r e  equivalent to the scalar-tensor variants 
in the conformal presentation of Dicke, [l4] as,  e. g., the 
model of type I with P =&/3, for  which the general solu- 
tion can be  written in parametric form different from 
(7a) (dr =R2d[/2~):  

b) In the investigation of the dynamics of anisotropic 
models, in addition to  the matter a t  thermodynamical 
equilibrium described as an ideal fluid with P =n& (0 
c n  c I), one must also take into account the presence 
of weakly interacting particles such as gravitons o r  
neutrinos, with mean f ree  paths L >,c, the contribution 
of which may predominate a t  early stages of the expan- 
sion of the Universe, and even at the present epoch."2' 
On account of the kinetic acceleration (PJa =const) dur- 
ing the sharply anisotropic background, such collision- 
l e ss  radiation has a distribution function in momenta Pa 
which is strongly prolate along the direction of contrac- 
tion. It can be regarded a s  two fluxes of relativistic 
particles moving in opposite directions, e. g., along 
the xl axis, with an energy-momentum tensor of the 
form 
T: = - Ti = II, T: = 2': = 0, xll = I ' / X 2 Y Z ,  I ' = const. (16) 

From the analysis of solutions of the type I""'~ it 
follows that the f ree  particles (16) do not influence the 
"linear" Kasner singularity (4), but remove the Fried- 
mann point collapse (even in the presence of a fluid 
with Pc &/3) and the regime of collapse of V3 into a 
"pancake." On account of their gravitational influ- 
ence, the process of isotropization is slowed down, and 
a t  the stage when P =&/3 the anisotropy is practically 

conserved, decreasing only logarithmically. However, 
a t  P ? &/3 quasiisotropic collapse becomes possible, 
matter dominates (II/&- T ~ ~ " - ~ ) ' ~ ( ' + " ) -  0), and there ap- 
pears  also a special type of anisotropic point collapse, 
where the dynamical influences of the "stiff" matter 
with P = n &  (n > 1/3) and of f ree  particles (16) a re  of the 
same orderc1': 

XO. r Z a / ! l + l i )  -0, yZaT2(1-n)/( l+r~) - 0, 

2 ( 1 - n )  ( I - n )  (3n-4)  
X E = -------- X n = -  

( l + n ) ' r 3  ' ( l + n ) ' r 2  ' 
(1 7) 

This regime yields also an asymptotic behavior of un- 
limited expansion in a model of type I, which on account 
of the influence of the free particles is not isotropized 
for P > c/3. 

In the case of a mixture of a maximally "stiff" ("sca- 
lar") fluid with P, =&, and free particles (16) with T =0, 
one can obtain an analytic solution if one  take^^-'^*'^ 

Then 
x e , = 3 ~ X , ' / R ~ ,  x n = ; X ' / X Z Y Z ,  

- - X / X , = E P , ~ ~ ~ - P , ) ~ ~  ~ / y o = ~ ? 2 1 1 1 - ~ )  - - z/z 0 -~". / ' I -Y, '  - 

The free  particles do not change the dynamics of the ini- 
tial expansion, and the generalized asymptotic behavior 
(15) remains in force near the singularity 5 -  0. For  a 
general expansion, however, the high pressure along the 
axis of acceleration of the particles 6, < 0) is damped 
with a transition to the quasi-inertial regime (cf. (8a)): 

4. The Bianchi type V is a generalization of the open 
variant of the Friedmann model with negative spatial 
curvature (k = - 1) and low mean matter density (go< &, 

= 3 ~ ! / 8 . n ~ )  and is characterized by the diagonal metric 
in a comoving coordinate system of the form 

For  the model of type V with immobile matter the equa- 
tions (1)-(3) can be integrated in terms of elliptic func- 
tions for  some n = 0, 1/3, 1/3, 1 and for the equation of 
state P =E and P =&/3 one may propose a simpler para- 
metric form for the exact solutions in terms of ele- 
mentary functions if one carr ies  out the substitution 

In the case P, =&,, HE, = 31:/R6 we have 

Maximally stiff matter is dynamically essential near 
the singularity and determines i t s  character on a par 
with the homogeneous anisotropic mode of the f ree  gravi- 
tational field, leading to an asymptotic behavior of the 
.type (152 with a set  of exponents 3, = 1/3, jh3 = 1/3 
* .Z/d?f E. Owing to the isotropic negative curvature 
of V3 the models of type V always isotropize in the case 
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of infinite expansion; even in vacuum (A, = 0) and a t  
P =& they (in distinction from the model of type I) go 
over in the limit into the Friedmann-Milne model with 

and with small corrections of the form (1, =0) 

which a re  due to the homogeneous anisotropic mode 
against the nonstationary hyperbolic background V3. 

The model of type V, at P = &/3, x & = 3 .H2/~  4, and a 
metric of the form (la), with d r  = ~ ( q ) d q ,  admits of the 
analytical solution 

After the vacuum (4) stage (with p1 =1/3, p , ,  = 1 / 3 i  1/ 
a) is over, the model approaches the open Friedmann 
metric on account of the joint action of gravitating mat- 
t e r  with P = & / 3  in the parabolic stage (as in the type I 
model, (7), (lo), (12) if 7, = 2z /d2  << 1) and of the curva- 
ture of the homogeneous Milne stage of the type (20) 
for q0 2 1, when the matter is dynamically unimportant 
and may be considered a test object against the vacuum 
background (19) with A= 0. 

In the case of a model of type V filled with a mixture 
of noninteracting ultrarelativistic (P =&/3) and maxi- 
mally "stiff" (P, =&,) components, one can also write 
down an analytic solution of the form (19) and (21), 
where C - ,f = (c' +A~)"~ .  Its behavior is intermediate 
between (19) during the early stage near the singularity 
q =0 of type (15) (controlled by the dominating "scalar" 
fluid with P, =&,), and (21) a t  a later epoch, when ultra- 
relativistic matter with ~ = & / 3  and the curvature, which 
a re  inessential near the singularity, become the deter- 
mining factors in the dynamics of the expansion. 

For  P=O the solution can be written in terms of ellip- 
tic functions, but qualitatively the dynamics of such mod- 
e ls  differs little from (17) for ~ = & / 3 ,  although nonrela- 
tivistic matter (P=O) leads to a faster isotropization 
than radiation with P =&/3. 

Thus, the behavior of the homogeneous anisotropic 
mode in a model of type V during the parabolic stage 
coincides with that of a model of type I and is undistin- 
guishable from the case of long waves in a flat Fried- 
mann model,C151 but during the Milne stage it decays 
faster,  according to the law 

1 h (  ( T ~ ' T ) ~ ~ R ~ - ~  (22) 

on account of the influence of the curvature, acting in 
analogy with a fluid with P, = - (1/3) &, (cf. (10) for n 
=-1/3).5' 

5. The Bianchi type M is the only homogeneous 
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modification of the closed Friedmann model (k = + 1, &, 

> E,) with closed spatial sections V, having the topology 
of a 3-sphere S3 and has been considered principally 
near the singularity during the vacuum oscillatory 
stage, neglecting the gravity of matter.c1-31 For  a 
diagonal frame (tetrad) metric when the proper rotation 
of matter is excluded, one has also investigated the full 
dynamics of triaxial modelsc4 and found that a gravi- 
tating fluid with P s & /3 can guarantee only approximate 
isotropization owing to the finiteness of the total ex- 
pansion in the model of type IX. The spatial curvature 
remains as a rule anisotropic, although in typical re-  
gimes there is a tendency of equalization of the two 
principal values of the curvature tensor of V3 and the 
model approached a perturbed axially symmetric model 
(up to the maximal expansion, which is replaced then 
by a phase of overall contraction to the second singu- 
larity). 

A special version of the type M metric with additional 
axial symmetry 

has anisotropic principal curvatures V3 

and includes a s  a special case X =  Y = R ~ / J Z  the closed 
Friedmann metric. As a cosmological model the axial- 
ly symmetric type M has been studied by a number of 
 author^!^*^'"^; Taub has found an exact vacuum metric 
which can be written in the following canonical form: 

- -d sL-U- ' (T )dTZ+U(T)  [d$+ 2N cos 6 dqI2  
+ (TZ+NZ)  [d6'+sin2 IY d q 2 ] ,  

- O<V(T)  =2 (I l fT+NZ)I(TZ+NZ) - I .  (25) 
T-<T<T+. T,=M+ (MZ+NZ)  ", 

which encompasses only the homogeneous T-region 
V4. C131 It represents a vacuum anisotropic modification 
of the closed Friedmam cosmology with one excited 
standing gravitational wave in the lowest homogeneous 
mode. The self -interaction of this wave imitates ma- 
terial  sources and guarantees the closed character of 
spatial sections V,. The boundaries T = T, in the syn- 
chronous system (23) manifest themselves as a "kine- 
matic" Kasner collapse of anisotropically hyperspheres 
S, (T = const) getting deformed into a "disk" 

At these pseudosingularities U(T,) =0, which, like the 
Schwarzschild sphere, represent in reality null-hyper- 
surfaces and only express the incompleteness of the 
T-system (23), the invariants of the curvature tensor 
of V4 a re  finite. Therefore the metric (25) can be 
analytically continued into stationary inhomogeneous 
R-regions V,, where U(T)< 0 and the time c_oordinate 
T and the spatial "angular" coordinate (0 s J, c 4) inter- 
change their roles. The stationary new man-Unti- 
Tamburino (NUT) form obtained from (25) by a simple 
relabeling T- R, $ - t appears as a generalization of 



the Schwarzschild metric (Nz 0) and contains an addi- 
tional invariant parameter N# 0, to be identified with 
the ggquasimagnetic" type of gravitational mass. c291 

As it is filled with gravitating fluid, the T-region 
(23) becomes a normal cosmological model with two 
singularities (e, P- -) and the R-regions which have 
physical anomalies, such a s  closed timelike geodesics, 
a re  removed from V4. In view of the instabilities of 
the properties of the Taub-NUT "universe" when mat- 
t e r  is introduced into the T-region (and with respect to 
metric perturbations of the f ree  gravitational field, 
also leading to a singularity in the vacuum) the axially 
symmetric type M model is degenerate. Its dynamics 
must differ qualitatively from the more general triaxial 
case, since there is no vacuum stage and only the gravi- 
tation of matter determines the appearance and the be- 
havior of the singularities. For  such models with mat- 
ter  with P=ne ,  no analytic solution could be found (ex- 
cept the isotropic Friedmann metric with X =  Y=R,/JZ) 
and one usually restricts one's attention to a qualitative 
analysis of the dynamics and numerical integration of 
the most characteristic examples. C111221 

However, in the special case of maximally "stiff" 
matter with P = E  the Einstein equations admit of an ex- 
act general solution if one se ts  in (23) d r  =xy2d7f1']: 

X==a ~ ' = ~ c h a q / c h ~ ~ ( q + ~ , ) ,  "I x r = -  b2 
chaq ' 4a 4X2Y'  ' 

(26) 

At p2 = O  this solution goes over into the Taub metric 
(25), so that the constants a and q, can be related to 
the parameters of the "dual" mass, M and N: 

y2(* m) ='/*a exp (Tarlo) =T,'+K2, T,=M* ( M Z + N Z ) ' ~ .  

As a special case, if 82 = 3a2 and 4 = 0, this solution 
contains the closed Friedmann model with P = e  can be 
sufficiently close to it in dynamical behavior in weakly 
perturbed ( I  a - B/O I < a, yqO << 1) anisotropic variants, 
particularly for time-symmetric solutions with q, = 0 
(M=O). These models (26) have an initial and final sin- 
gularity (q- * -) which in synchronous time T = JxY2dq 
is characterized by the same power-law asymptotic be- 
havior as the anisotropic collapse of the form (15): 

in which gravitating matter with P =& dominates and the 
influence of the anisotropic curvature (23) is negligible; 
the curvature scalar becomes negative and unbounded 
it?) p >  1/3, in spite of the S3-topology of the closed V3 
sections. 

A qualitative analysis of the Einstein equations for 
the axially-symmetric type M models filled with gravi- 
tating fluid with P =ne ( 0 s  n < 1) C8*1'1 shows that there 
a r e  the following three kinds of singularities with power- 
law asymptotic behavior, depending on the equation of 
state P =ne of (there can be no other asymp- 

totic behaviors and limit cyclesL111): 

a )  A quasi-isotropic point collapse of the Friedmann 
type 

in the special case when there is no vacuum anisotropy 
of the deformation velocities of V, (C =0) and the gravi- 
tating matter with P = n c  by itself governs the dynamics. 
The influence of the spatial curvature may be neglected 
(Kcc T-* '~(~*)-  -) but i t s  anisotropy (Cl # C,) has a sub- 
stantial influence during the expansion and leads to in- 
creasing deviations from the Friedmann regime, par- 
ticularly during the phase of contraction with approach 
to the second singularity, which is now of a type differ- 
ent from the "disk." 

b) A degenerate anisotropic collapse of Vs into a 
point, according to the law 

when the dynamical influence of matter and the influence 
of the anisotropic spatial curvature K :  = -K:= -K: 
a: re'- m (i.e., the influence of the "stress" tensor of 
the homogeneous standing wave) a re  of the same order 
of magnitude, with the effective "energy density" (the 
curvature scalar K = - K:- - - for closed 5,-sections. 

c )  The general case of the anisotropic collapse into 
a "disk," when the spatial curvature is "switched off" 
near the singularity and the behavior of models of type 
M, (23) coincides with the kinematic asymptotic be- 
havior (8a) for the symmetric type I for P =n& (n < 1): 

2 I-,, 

X=X.r+O. y=yOTF [ i + - 
( i n )  (5) I - 
1 (30) 

In (30), in the same manner a s  for the Taub-NUT va- 
cuum metric (25) the horizon of causal connection along 
the symmetry axis (0 c $ s  4n) is absent on the null- 
boundaries of the T -region u(T,) = 0, and photons can go 
around a closed 5,-section an infinite number of times 
as T- 0. However, the gravitating matter transforms 
these boundary horizons of the type of the Schwarz- 
schild sphere into genuine singularities: &, Pe  T'('+") - m (without changing their lightlike orientation if P 
< E), SO that an analytical continuation from the T-re- 
gion into the R-regions becomes impossible. 

In the axially symmetric models of type M the gravi- 
tation of matter is always dynamically important, in 
particular for the most typical regime of initial expan- 
sion from the "disk" singularity (30). If matter pre- 
dominates significantly over the curvature in the dy- 
namics a t  T 2 T , (x; << Y: , >> I), then at this matter- 
dominated stage it guarantees the approximate iso- 
tropization of the expansion and the approach of a quasi- 
isotropic parabolic (k =0, eO=&,) regime (28), a s  in the 
case of the model of type I, (9). However, the curva- 
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ture does not become automatically isotropic (Cl f C,) 
and leads again to an increase of the anisotropy of the 
Hubble expansion velocities. Only for special initial 
conditions (Xo = Yo) does there appear an equalization of 
the principal curvatures of V3 (X= Y) together with the 
isotropization of the Hubble velocities, and such mod- 
els  of the type M will be sufficiently close to the closed 
Friedmann model with &, > &, at a sufficiently long dura- 
tion of the stage up to the maximum expansion. In the 
case when the curvature i s  switched on before the in- 
stant of isotropization T, (Xi>> YY',) the intermediate re-  
gime (29) is realized when the gravity of matter and the 
anisotropy of curvature together determine the dynamics 
of expansion. By means of the asymptotic behaviors 
(28)-(30) determined near the initial singularity, a nu- 
merical calculation was carried out on an electronic 
computer for a number of characteristic parameters 
with P = O  and P =&/3, confirming the results of a quali- 
tative analysis of the dynamics. The models of type M 
(23) usually have two "disk" singularities (30), a s  well 
as  a vacuum T-region, although combinations of the 
"disK9 collapse with a pointlike isotropic (28) o r  an- 
isotropic (29) singularity a re  possible. 

Opposed fluxes of free particles (16) a r e  incompatible 
with a quasi-isotropic asymptotic behavior of a point 
collapse (even in the presence of a fluid with P 5&/3)  
and exclude the possibility of kinematic collapse of V3 
into a g'disk" (30). Owing to the considerable reaction 
on the metric near the boundary of the T-region (ll 
a T-'- m) they must destroy null-horizons (similar to 
a "scalar fluid" with P, =&,) and in the axially sym- 
metric type IX model (23) they lead to the uniquely pos- 
sible regime of anisotropic point collapse of the form 

which is determined by the joint action of the anisotropic 
curvature and the free particles. 

In the case of a mixture of a fluid with n P  =n& (Oh n 
S 1/3) and free particles (l6), the latter dominate near 
the singularities (31), if n < 1 /5, and it dominates over 
matter and the asymptotic behavior (29) is realized at 
n > 1/5. At n > 1/3 a quasi-isotropic Friedmann col- 
lapse (28) becomes possible with II/& - 0, and also a 
singular anisotropic regime of collapse into a point (1'71, 
in which the influence of the curvature (24) is negligible. 

The author is grateful to L. 6. Gurevich, A. G. 
Doroshkevich and V. N. Lukash for discussions and 
thanks E. M. Lifshitz for useful advice. 

l ) ~ h e  results of this paper were partially published before. 
2 ) ~ e  note that in the isotropic models the following anisotropic 

perturbation modes of the free gravitational tensor field are  
admissible: types I and VIIo in the quasi-Euclidean (k = 0) 
model, types V and VIb in the open model (k = - 1), and type 
M in the closed model (k = + 1). 

3 ) ~ h e  integral @(T)) can be calculated explicitly for the series 
n = m ( l + m ) =  0, 1/2, 2/3,. . . , and n =  (2m+1)/(2m+3)= 1/3, 
3/5 ,..., (m=O, 1, 2 ,... ). 

4 ) ~ h e n  "dust9' particles (p= 0) a re  focused on a two-dimension- 
al caustic there appears a flat :pancake9' with infinite volume 

density but finite surface density. Since the relative acceler- 
ation of two flat Lagrangian slices is proportional to the 
specific gravitational mass between them, a;h'ch is constant 
for P= 0, the relativistic and Newtonian motions are  similar. 
But if P* 0, the active mass between the slices changes on 
account of the work of the pressure forces, in agreement 
with the adiabatic compression of the medium m(r)  a eV 
oc V " a r q - m  and the mutual attraction of adjacent slices 
increases without bound during relativistic collapse into a 
"pancake". 

5 ) ~ n  the formulation of ~ i f s h i t z  [151 the gravitational waves in the 
open Friedmann model in the Milne stage (both short and long 
waves ( h  = RFM)) a re  damped according to the same law 
V(T) n: R ~ L  a r7-'. A faster decrease of the amplitude of the 
homogekous mode for the type V model is related to the dilu- 
tion effect of the wavefront for a wave of finite wavelength 
(hLRFM- c r )  on the curved hyperbolic background V3 in the 
type VII,, ['01 which seems to be preserved in the limit h - -. 

6 ) ~ h e  cosmological model of type M with maximally stiff mat- 
ter  (26) is equivalent to a solution of the simultaneous 
Einstein and DJAlembert equations in vacuum ( o l  = 0) for the 
coupled gravitational tensor and massless scalar fields, if in 
agreement with (14) one substitutes p4 -lzp:= (2w + 3)s2, 
*(q) = *o + ST). It can be treated as  an isolated T-region (23) 
with a homogeneous mode of the free scalar field l = *(r) a s  
material source of the geometry of V4 acting similarly to a 
gravitating fluid with Ps= &,= $ ~ ( d l / d r ) ~ ,  x eS = 3Cc:/~2r '  and 
leads to two point-singularities of the type (27), completely 
removing the boundary null-hor izons. In this respect the 
scalar massless field is qualitatively different from the vec- 
tor electromagnetic field, which in the axially symmetric 
type M is inscribed in the T-region in a nonsingular 
way, without destroying the boundary horizons U(Td = 0, and 
conserving the anomalous R-regions. We note that a spinor 
massless field of the neutrino type i s  incompatible with the 
"diagonal" metric (23) of the type IX, since its inclusion re- 
quires To, * 0. [241 
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A gravitational antenna with quantum magnetometer (SQUID) as sensor is considered. The factors that 
restrict the sensitivity of the SQUID in two regimes, without and with hysteresis, are analyzed. 
Expressions are obtained for the minimal detectable force connected with the intensity of gravitational 
radiation. Requirements are also formulated for the case of a sensor on an antenna with mechanical 
transformation of displacements. 

PACS numbers: 04.80. +z 

5 1. ~NTRODUCT~ON 

Negative results in experimental searches for gravi- 
tational  wave^^'*^' a r e  stimulating the creation of a sec- 
ond generation of antennas with parameters that a re  
close to the theoretical requirements. C3"1 For a reso- 
nance gravitational detector at the frequency w, = lo4 
and linear dimension 1, = 10' cm the required sensitivity 
level is characterized by fluctuation variations of the 
vibration amplitude equal to Axo= 10m" cm. C6*101 Con- 
crete programs are  underway to achieve this level by a 
high mechanical quality factor Q ,  = 101° C3'111 or  by lower- 

here, m is the equivalent mass of the gravitational de- 
tectorcgl; F,, is the amplitude of the "external force", 
which is related to the flux density I, of the gravitational 
radiation by F, = m  w,1,(8?r~c-~1,)'/~; T is the tempera- 
ture of the transducer; w is the pumping frequency; and 
7 is the duration of the radiation pulse. 

8 2. SUPERCONDUCTING DISPLACEMENT 
TRANSFORMER 

ing the temperature of the gravitational detector to On the antenna proposed the SQUII) is coupled 
T, = 3 . lom3 OK. The main experimental difficulties to the gravitational detector by means of a mechanical 
a re  connected with measuring the small amplitude of the displacement transformer. The idea is due to 
mechanical vibrations. It was suggested inL13*141 that a ~ a v r e n t ' e v ~ ' ~ ~  and reduces to a model of coupled oscil- 
quantum magnetometer, a so-ca11ed " should be lators: the gravitational detector with mass M and 
used. pendulum of small mass m fixed to it. At the natural 

The aim of the present paper is to analyze the SQUID frequency, the amplitude of the pendulum is (M/m)1/2 
as  a sensing element of a gravitational antenna. For times greater than the amplitude of the forced vibrations 
comparison, we shall use the characteristics of an an- of the gravitational detector. If Q,t, 2 Q ,  ( Q ,  and Q,,  
tenna with capacitative parametric transducer, 'lo* ''I a re  the Q factors of the detector and the pendulum), 
which in the optimal regime has the sensitivity then for T, = T, ,  the inherent fluctuations of the pendu- 
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