
" ~ t  T < T,, the results were independent of the material of the 
substrate. 

2 ) ~ e  note that the theoretical curve does not contain any 
arbitrary fit coefficients. 
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the Curie point 
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A four-dimensional Ising model and an easy-axis ferromagnet with dipole interaction (d = 3), containing 
randomly distributed pinned impurities, are considered. The renormalization-group methods yields exact 
equations of states for both systems. The temperature and field dependences of the susceptibility, the 
magnetization, and the heat capacity are obtained below T, and in an external magnetic field. 

PACS numbers: 75.40.Dy, 75.30.C~ 75.30.H~ 

In systems having randomly disposed pinned impuri- In this paper we obtain by the renormalization-group 
ties, scattering by impurities leads to an additional in- method an exact equation of state for impurity systems, 
teraction of the critical fluctuations of the order param- with a single-component order parameter, and the tem- 
eter, their sign being that of attraction. Despite the perature and field dependences of the thermodynamic 
appearance of the new type of interaction, a second- quantities below T, and in an external field. 
order phase transition takes place in such systems as  
before, and scale invariance is present with critical ex- 
ponents that differ from the critical exponents of the 
"pure" system. There is no doubt that one of the 
most interesting is the case of impurity systems with 
single -component order parameter, examples of which 
are Ising's 4-dimensional impurity model with short- 
range exchange forces, or  a three-dimensional impurity 
easy-axis ferromagnet (ferroelectric) with dipole inter- 
action. lS5' The interest in these systems i s  due to sev- 
eral factors. First, the renormalization-group equa- 
tions for them can be solved exactly, so that the singu- 
larities of the thermodynamic quantities at the phase- 
transition point can be determined exactly; second, 
as shown inc5', these singularities (above T, in a zero 
external field) contain besides powers of t and lnt (here 
(t = T,)/T,) also the unusual factor exd-(D I lnt l )I/?, 

where D is a certain number (see below). Finally, the 
conclusions of the theory can be verified experimentally 
on impurity easy-axis ferromagnets (ferroelectrics), 
e. g., LiTbF,, ''I with nonmagnetic atoms as impurities. 

To make the exposition clearer, we describe first the 
general procedure for the analysis of impurity systems 
(the effective-Hamiltonian method) and the necessary 
relations obtained for the region above T, inLs1; this is 
followed by a derivation of the equation of state in th$ 
spirit of the known paper of Larkin and ~hrnel'nitskii~'] 
and an examination of its consequences. In the conclu- 
sion we discuss the possibility of an experimental ver- 
ification. 

The Hamiltonian of Ising's 4-dimensional impurity 
model is 

where $(x) - n(x) - (n(x)) i s  a random variable describing 
the local fluctuations of the temperature in the average- 
field approximation, n(x) i s  the impurity density, and yo 

is a linear function of the temperature. 

For a given impurity configuration, the free energy is 
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equal to 

The free energy observed in experiment is the config- 
uration mean value over the distribution of the impuri- 
ties: 

where P($) is the impurity distribution function. It is 
not convenient to average logarithms of a continual in- 
tegral directly; the logarithm is therefore usually rep- 
resented in the formc8] 

Averaging (4) according to (31, we obtain 

where 

Near the transition point, the fluctuations of the impur- 
ity density can be regarded as &correlated and Gauss- 
ian, and consequently 

The non-Gaussian correlations of the impurity density 
lead to the appearance of interactions of the type 
($)4, and higher orders, which play no role in the 4-di- 
mensional problem. 

It i s  easily seen from (6) and (8) that the Ising impur- 
ity model i s  equivalent to an n-component Heisenberg 
ferromagnet with cubic anisotropy in the limit a s  the 
number of components n tends to zero. The Ising ver- 
tex v plays the role of the cubic vertex, while the impur- 
ity vertex u plays the role of the isotropic vertex, with 
u,< 0 and vo> 0. It i s  quite important that the Gell- 
Mann-Low equations for the charges u and v turn out 
in the parquet approximation, in the limit as n- 0, de- 
generate and have no zero-charge solutions for  the phy- 
sical initial conditions uo< 0 and vo> 0. This degener- 
acy is accidental and takes place only in the parquet ap- 
proximation. To obtain a nondegenerate system of equa- 
tions i t  suffices to calculate the Gell-Mann-Low functions 
accurate to third order in the amplitudes, as was done 
in fact incs5]. ~ h a r o n ~ ' ~ ]  obtained the asymptotic be- 
havior of the charges u and v: 

where r is the reciprocal susceptibility. For  r there is 
an equationt'J 

&/at-T ( r )  , (10) 

where T(Y) is a vertex with two ends and one corner; 
this vertex satisfies, in turn, the equation (in f i rs t  or- 
der in the effective charges) 

dln T ( r )  v+2u 
P V f  

d lnr  3 2 t  (11) 

From (9)-(11) we obtain 

T ( r )  -a erp {-( ' / , , (In rl I%), 
r-at exp ( -?/5~j  ln t 1 )'h), a-const. 

The singular part of the heat capacity is defined in 
terms of the polarization operator II (0): 

The appearance of I lnrl 'I2 in (9) in place of I lnr  I ,  
and of the factor exp{ - (& I lnt l )"e) in (13) and (14), 
is due to the accidental degeneracy of the parquet equa- 
tions. In the & -expansion method, the random degener- 
acy leads to expansion of the critical exponents i powers 
of &1/2*  CS-51 

We have referred above to the Ising impurity model. 
It can be showncs1 that for an impurity easy -axis fer-  
romagnet with dipole interaction all the results remain 
in force, but the characteristic numerical factor D = $ 
=0.11321 must be replaced by the close quantity D' 
=9/(81 lnf  + 53) =O. 11 795. 

We proceed to study the system below T, and in an 
external magnetic field. In an external field i t  is nec- 
essary to  add to the Hamiltonian (6) the term 

Then, just a s  below T, at h=O, a macroscopic magnetic 
moment m, which can be regarded as a parameter and 
obtained from the condition for the minimum of the f ree  
energy: 

In analogy withL7', i t  can be shown that 

dZF/dmZ-r, (16) 
a2r/dmz=v(r) .  (171 

We call attention to the fact that (17) contains only the 
Ising vertex v(Y), and the impurity vertex u(r) drops out 
because of the transition to the limit as n- 0 (this cir-  
cumstance was noted in[']). As before, r is defined as 
a function of t by Eq. (10). It is very important that, in 
analogy with the impurity-free case, ''" the dependence 
of the amplitudes of T and v on r is the same as above 
the transition point. Indeed, to find, say, the amplitude 
of v(r) above the transition point i t  was necessary to 
sum the graphs of the principal logarithmic approxima- 
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tion (i. e., all the graphs of the type (a  lnr)") and the 
graphs of the approximation that follows the principal 
one (the graphs of the a ( a  lm)" approximation). It i s  
easily seen that the additional graphs that arise below 
the transition point differ from the graphs of the 
a ( a  lnr)" approximation by the factor I lnr  1 "I2, and can 
therefore be disregarded in the asymptotic region 

l lnrl >> 1. 

We recall that in the impurity-free Ising model the 
amplitude of v(r) is obtained by summing only the graphs 
of the principal logarithmic approximation, and the con- 
tribution of the additional graphs a re  of the same order 
as those of the a ( a  lnr)" approximation. 

Integrating (lo), (16), and (17) with logarithmic ac- 
curacy (i. e., assuming the logarithms to be constant) 
and taking (15) into account, we obtain a system of equa- 
tions for the quantities m and r (the equation of state): 

r=tT (r) fll,m'v (r) , 
h=mtT(r) +'i,m3u(r). 

An equation of state of exactly the same type was ob- 
tained by Larkin and ~ h m e l ' n i t s k i r ~ ~ ~  for the impurity- 
free Ising model, but with other amplitudes T(r) and 
v(r), which are  determined here by formulas (9) and 
(12). 

Solving the system (18) and (19) below the Curie point 
(t < 0) in a zero external field, we get 

r=-'at exp{- (6/,,Ilnltl I)'"), (20) 

Integrating (19) with logarithmic accuracy, we obtain 
the singular part of the free energy: 

Differentiating F,,,, twice with respect to t ,  we de- 
termine the singularity of the heat capacity: 

At the phase-transition point (t =0) and in a nonzero 
external field we get from (18) and (19) 

It is seen from (13), (14), (20), and (23) that the tem- 
perature dependences of the susceptibility and of the 
heat capacity a re  the same above and below the Curie 
point; this is the result of the asymptotic smallness of 
the additional graphs that arise below the transition 
point. The reciprocal susceptibility below the transi- 
tion point is double the value above the transition point 

at the same value of It l ("the rule of twoJ'), and a s  the 
transition point is approached it decreases more rapidly 
than the reciprocal susceptibility of the "pure" sub- 
stance (for which r- - t l In I t 1 1"13). [I1 The magnetiza- 
tion of the ordinary Ising model (d =4) vanishes likeL7]: 

i. e., more slowly than for  the model with impurities, 
The heat capacity of the ordinary Ising model diverges 
like I lnl t l Ill3 near the transition, [I1 but is finite for  the 
impurity model. The field dependences are  also differ- 
ent. For the "pure" substance the denominators of for- 
mulas (24) contain l lnm21 in lieu of l lnm2 Ill2, as for the 
substance with impurities, 

Experimental observation of the temperature depen- 
dences (13), (14)' (20), (21), and (23) is of great inter- 
est, and in particular that of the slowly varying (com- 
pared with the degree) factor exp{- (D I LnI t l 1 )112). 
Just as in the "pure" substance (in experiments with 
LiTbF,, [" we obtained a singularity of the heat capacity 
l lnl t l 1 'I2), this is best done by measuring the heat cap- 
acity and not the susceptibility or  the spontaneous mag- 
netization, where the slowly varying factors can hardly 
be discerned against the background of the power-law 
dependences. Another possibility i s  to determine the 
temperature dependence of the coefficients in the equa- . 
tion of state in a weak external field: 

In the Landau theory we have in the critic$ theory 
f2(t) = const, and in the Larkin-Khmel'nitskii theoryLll 
f )  - I n  It I I A recent experiment with triglycin sul- 
fateclO' has confirmed the conclusions ofL7]. For  an im- 
purity uniaxial ferroelectric (ferromagnet) we have ac- 
cording to (9) and (19) f2(t)- l lnl t l 1-'I2. 

The author is grateful to A. I. Sokolov and A. L. 
~orzhenevskir  for a useful discussion. 
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