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The dehydration of a protein crystal is considered. It is shown that increase in the degree of dehydration 
at first leads to hydrostatic compression of the crystal, because of the surface tension. This compression 
may be accompanied by conformational changes. Subsequently, the increase in the dehydration leads to 
penetration of the surface water film into the crystal and then to internal boiling that develops at room 
temperature. In this case, the hydrostatic pressure ceases to depend on the degree of dehydration. The 
dependence of the saturated vapor pressure (for vapor in equilibrium with the protein crystal) on the 
degree of dehydration of the crystal is analyzed. 

PACS numbers: 81.20.Sh 

Some unusual effects a re  considered in the present 
paper that arise in crystals composed of macromole- 
cules and a re  connected with the presence of water in 
the intermolecular space. Similar phenomena, also 
connected with the presence of water within the material 
can be observed and, indeed have been observed, in 
porous glasses. A well-studied example of such crys- 
tals i s  the protein crystal. The structure of the protein 
crystal is described by a crystalline lattice at the sites 
of which a re  located globular molecules having char- 
acteristic dimensions - 50-100 A and molecular weights 
of - lo4-lo6. The interstitial space of such a crystal 
turns out to be filled with water. This latter circum- 
stance has significance in principle for the structure 
and properties of the protein crystal. The point is that 
the spatial organization of the polypeptide chain forming 
the protein globule is due in significant measure to the 
presence of the aqueous medium: the protein globule 
becomes self-organized in such a way that the links of 
the polypeptide chain containing polar radicals (the hy - 
drophilic parts of the chain) a re  located on the outer 
surface of the globule, while the links containing the 
nonpolar radicals (hydrophobic parts) a re  contained in- 
side the globule. Thus the outer surface of the protein 
globule can be regarded a s  wetted. 

Investigations carried out on crystals of myoglobin 
have shown that the dehydration of a protein crystal 
leads first  to a decrease in the parameters of the crys- 
tal lattice, and then to a serious disruption of i ts  regu- 
larity, which mainifests itself in the spreading and 
weakening of the x-ray reflections. C''21 An attempt is 
made in the present paper to consider phenomena ac- 
companying the process of dehydration of the crystal. 

1. SURFACE TENSION IN THE DEHYDRATION OF A 
PROTEIN CRYSTAL 

If we neglect the effect of surface tension of the water, 
then the dehydration of the protein crystal should lead 
to the result that the part of the protein molecules lo- 
cated near the surface of the crystal should be "raised" 
above the water level. This, however, does not occur 
because of the surface tension of the water. Since the 
protein globules a re  wettable, their "rise" above the 

level of the water should lead to a curving of the water 
surface and consequently to the appearance of a La- 
placianpressure that tends to "drown" the proteinglob- 
ule. This pressure leads to an elastic protein-crys- 
tal deformation obeying ~ o o k e ' s  law: 

where K i s  the hydrostatic compression modulus, p is 
the pressure due to the surface film and c , ,  is the trace 
of the strain tensor that describes the relative change 
of the volume of the crystal. Its value can be uniquely 
connected with the degree of dehydration A v,/v, of 
the crystal, which represents the ratio of the volume of 
the removed water to the volume V, of water occupying 
the interstitial space of the initial unhydrated crystal. 
In order that all the protein globules of the crystal stay 
in the aqueous medium when the degree of dehydration 
is AV,/V,, it is necessary to subject the "protein" lat- 
tice to hydrostatic compression. In this case the rela- 
tive change in volume of the protein lattice should be 
equal to the degree of dehydration 

It follows from the expression (1) that the strain (2) 
requires application of a hydrostatic pressure equal to 

The hydrostatic pressure (3) should be balanced by the 
surface (~aplacian)  tension, created by the surface film 
of the water which is curved by the "protruding" protein 
globules. The latter means that 

where p, is the Laplacian pressure, r,(S) and r , ( ~ )  a re  
the principal radii of curvature of the surface of the 
water film at an arbitrary point of the surface S, cu is the 
coefficient of surface tension of the water, and p is the 
elastic s t ress  of the hydrostatic compressions and is de- 
termined by the expression (3). It follows from (3) and 
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(4) that 

i. e. , the sum of the reciprocals of the principal radii of 
curvature i s  a constant quantity for any point of the wa- 
t e r  surface and i s  directly proportional to the degree of 
dehydration AV,/V,. 

The equilibrium shape of the surface film i s  deter- 
mined from the condition of minimum surface energy 

with the additional condition of conservation of the vol- 
ume 

where x and y a r e  the coordinates along the surface of 
the crystal, z i s  the coordinate in the direction perpen- 
dicular to the surface of the crystal, z = z(x, y )  describes 
the shape of the water surface, which forms menisci be- 
tween the protein globules. The corresponding varia- 
tional procedure yields the partial differential equation 

here p,is an undetermined Lagrangian multiplier, which 
i s  equal to the Laplacian pressure. In the case con- 
sidered here, Eq. (8) is subject to rather complicated 
boundary conditions and can scarcely be solved exactly. 

It follows from Eq. (5) that a s  the degree of dehydra- 
tion increases, the radii of curvature of the water film 
decrease. This latter circumstance allows the film to off - 
set  the increasing elastic s t ress  of the hydrostatic com- 
pression of the protein crystal. However, mechanisms 
exist which limit the possibility of unbounded cancellation 
of the elastic stresses. Beginningwith some critical pres- 
sure p, = K(Av,v,), (or, equivalently, with some critical 
degree of dehydration (AV,/V,),) the surface film of wa- 
ter  i s  not in a state to withstand the pressure which the 
compressed protein lattice exerts on it. The film loses 
i t s  stability and the protein globules of the surface layer 
of the crystal break through the film and land outside 
the aqueous medium. This takes place at the instant 
when the reduced radius of curvature 7: 

reaches i ts  minimum possible (critical) value. 

In the case considered here, the problem of the de- 
termination of the critical radius of curvature and, con- 
sequently, the critical pressure Po, is extraordinarily 
complicated, since i t  requires the solution of Eq. (8) 
under complicated boundary conditions. However, the 
critical pressure p, can be estimated i f  i t  is assumed 
that the very "broad" hole which connects the neigh- 

boring unit cells can be approximated by a circle of 
some radius r,. In this case, the determination of the 
critical pressure po reduces to the simple problem of the 
extrusion of a film with a surface tension coefficient a 
through a circular aperture of radius r,. In this formu- 
lation of the problem, Eq. (8) can be solved exactly. It 
has two solutions, described by two parts of the spheri- 
cal surface 

which a re  separated by a secant plane parallel to the 
plane of the circular opening. The location of the se-  
cant plane i s  such that intersection with the sphere is a 
circle of radius r,.(Fig. 1). The solution that corre- 
sponds to the portion of the spherical surface having the 
lesser areaalso corresponds to minimum surface energy. 

The film loses stability in the case when the radius of 
the spherical surface formed by the film becomes equal 
to r,. The condition for this 

determines the critical pressure 

If we assume the numerical values a- 70 dyn/cm and r, - 16' cm, then ar. estimate for  p, gives - lo3 kg/cm2. It 
follows from the expression (1) that at K -  10l0 dyn/ 
cm2 C 4 1 5 1  the critical change of the relative volume of the 
crystal, which i s  equal to the relative degree of dehydra- 
tion, is of the order of cy, = (AV,/V~),- 0.1. It must be 
kept in mind that the radius ro which characterizes the 
dimensions of the very "broadest" aperture between the 
neighboring unit cells of the protein crystal is the soli- 
tary critical radius only for the case of an ideal crystal. 
In a real crystal, in which a large number of defects is 
usually present (vacancies, dislocations, pores, etc. ), 
a hierarchy of critical radii ro <?'A1) <?-A2). . . , is always 
present and their dimensions exceed yo: For  this 
reason the loss of stability of the water film will take 
place at lower degrees of dehydration than in the ideal 
crystal. In the process of dehydration, the water film 
should "pierce" through the "aperture" with the maxi- 
mum dimension first, and then, a s  the degree of dehy- 
dration increases, it should pierce through apertures of 
smaller dimensions. 

We thus arrive at the following picture of the dehydra- 
tion of the crystal. Hydrostatic compression of the 

FIG. 1. Surface corre- 
sponding to two solutions of 
Eq. (10): the solid line de- 
scribes the stable solution, 
the dashed line the unstable 
solution. 
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crystal takes place first. In principle, this can be ac- 
companied by polymorphic transformations and confor- 
mations of the protein molecules. 2' Next, when the crit- 
ical pressure is reached, the protein globules located 
on the surface of the crystal pierce through the water 
film. Here the question arises a s  to whether other al- 
ternative mechanisms exist which allow cancellation of 
the increase in the Laplace pressure p, upon increase 
in the degree of dehydration. One such mechanism is, 
apparently, boiling, i. e. , internal evaporation of water 
in the volume of the protein crystal. 

2. BOILING IN THE INTERIOR OF THE PROTEIN 
CRYSTAL 

As is well known, boiling is defined as the process in 
which evaporation begins to occur in the interior of a liq- 
uid. This takes place at a temperature at which the 
pressure of the saturated vapor becomes equal to the at- 
mospheric pressure; However, the situation is more 
complicated when we a re  dealing with a protein crystal. 
The fact here is that the formation of the vapor bubble 
crowds the water out to the surface of the crystal and, 
consequently decreases the elastic s t r ess  of the hydro- 
static compression. This effect assures a decrease in 
the free energy of the system by an amount 

where p is defined by expression (I) ,  vP0 is the volume 
of one mole of the water vapor, and 6mH2, is the number 
of moles of vaporized water. The increase in the ther- 
modynamic potential upon evaporation of 6mH2, moles of 
water i s  equal to 

where pat is the atmospheric pressure and p,,, i s  the sat- 
urated vapor pressure at the given temperature. 

Finally, a contribution to the thermodynamic potential 
of the system is made, upon evaporation of water in the 
interior, by the surface tension on the liquid-vapor 
boundary. The value surface-tension energy of vapor 
bubbles of radius R, following evaporation of 6mH,, 
moles of water, is 

where a, i s  the surface tension coefficient on the vapor- 
water boundary. It follows from (12)-(14) that the total 
change in the thermodynamic potential of the system is 
equal to 

Formation of the vapor bubbles of radius R becomes 
thermodynamically favored i f  AS2 = 0. The latter condi- 
tion yields the equality 

FIG. 2. Mechanism of propagation of vapor bubbles from one 
unit cell of the protein crystal to another. 

or ,  using Eq. (I), 

Since 3 a 1 / ~ > > p a t  -psat at R =  lo1 cm, Eq. (17) can be 
simplified by representing it in the form 

Since the vapor bubbles can be formed in an ideal lat- 
tice only inside the unit cells, the maximum possible 
radius of the bubble is the radius Ro of the interstitial 
pore. Substituting R =  4 in (18), we find that the spon- 
taneous formation of vapor bubbles inside the unit 
cells of the protein crystal, i. e. , boiling, becomes 
possible if the degree of dehydration AV,/V, reaches 
the critical value 

Vapor bubbles will be formed in different unit cells, 
since they cannot coagulate up to dehydration degrees 
that assures the complete loss of stability of the water 
film relative to the Laplacian pressure. In fact, the 
propagation of the vapor bubble from one unit cell to the 
next requires the formation of a water surface with a 
curvature radius equal to the radius ro of the channel 
connecting the neighboring cells (Fig. 2). The Lapla- 
cian pressure in this situation should be equal to the 
critical pressure po = 2a/r0 of stability of the water film, 
which exceeds the critical pressure of evaporization 
P!~,, = 3 a 1 / ~ 0  (we consider the case 2a/r0> ~ c Y , / R ~ ) .  

In the case of a real crystal, when there a re  vacan- 
cies, pores, and other defects in the lattice, the spon- 
taneous formation of vapor bubbles (boiling) will occur 
a t  lower degrees of dehydration than (AV,/V~)~,,,, since 
the radii of the pores and vacancies exceed the intersti- 
tial radius R,. 

3. DEHYDRATION ISOTHERMS 

We now consider the equilibrium between the water 
in the protein crystal and in the vapor (gas) phase. In 
the case considered by us, the water surface in the pro- 
tein is not planar. Its radii of curvature a re  uniquely 
connected with the degree of dehydration by Eq. (5). As 
is well known at a given temperature the saturated vapor 
pressure above a curved surface differs from the corre- 
sponding pressure over a plane surface. If we assume 
that the gas phase can be described in the ideal-gas ap- 
proximation, then the saturated vapor pressure over the 
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curved water surface will be equal to 

where vo is the volume per water molecule in the water 
phase, k is Boltzmann's constant, T is the absolute 
temperature, and p:,, is the saturation pressure over 
the plane surface. Substituting (6) in (20), we obtain 

Equation (21) connects the equilibrium saturated-vapor 
pressure with the degree of dehydration of the protein 
crystal. It follows from (21) that to each saturated va- 
por pressure p,,, there corresponds an equilibrium de- 
gree of dehydration of the protein crystal, equal to 

AV, kT pLt = - I n - .  
VB Kuo pwt 

It should be kept in mind that the relation (22) de- 
scribes the degree of dehydration of the crystal only so 
long as  no conformational changes of the globule, poly- 
morphic transformations, o r  boiling and loss of stability 
of the water film relative to the Laplace pressure take 

place. All the enumerated processes offset the change 
in the Laplace pressure and should lead to the appear- 
ance of plateaus on the dehydration curves. 

''1n the one-dimensional case,  a similar problem a r i se s  i n  the 
calculation of the crit ical  s t r e s s  necessary for  the extrusion 
of a dislocation line between pinning points (theory of pre- 
cipitation hardening). [*I 

 his effect has  been observed in particular i n  crystals of 
gramicidine . c"Tl 
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We investigate the condensation of high-density excitons and nonequilibrium carriers, produced by intense 
optical pumping at low temperatures, into drops of electron-hole liquid. The phase diagram of the 
gas-liquid transition is plotted in coordinates n and T (density and temperature) on the basis of an 
analysis of the shapes of the recombination-radiation spectra and of the kinetics of their evolution in time. 
The principal thermodynamic characteristics are determined, as well as the temperature dependences of 
the chemical potential, of the density, and of the Fermi energies in the liquid phase. The critical 
parameters n, = (1.2h0.2)X 1018 cm-3 and T, = (28*2) K are obtained. It is shown that at an average 
density n = (5*3)x lo6 the dielectric exciton gas is transformed into a metallic electron-hole plasma. 

PACS numbers: 71.35.+z, 64.70.F~ 

1. INTRODUCTION 

At low temperatures, an exciton gas of sufficiently 
high density in semiconductors can become condensed 
into drops of an electron-hole liquid (EHL). The re-  
gion of existence of electron-hole drops (EHD) can be 
obtained from the n-T phase diagram, in which the gas- 
liquid equilibrium curve is determined on the gas-phase 
side by the singularities of the kinetics of exciton con- 
densation, and on the side of the liquid phase by the in- 
ternal properties of the EHL. We point out here a sin- 
gularity that should be possessed by the gas-liquid phase 

transition in a high-density system of excitons (or non- 
equilibrium carriers). I t  turns out that the density of 
the nonequilibrium e - h pairs in the liquid is n, >n,, 
where n, is the density at which the "metallization" of 
the excitons takes place. Therefore a t  average densi- 
t ies E<n, a dielectric exciton gas condenses into EHL 
drops whereas a t  n,>E>n, a gas of metallic electron- 
hole plasma (EHP) should be condensed. Thus, the 
gas-liquid coexistence curve (at E- n,,) has a region in 
which the exciton gas is transformed into a metallic EHP. 
What is still in question is whether this transformation 
is analogous in character to  a first-order phase transition. 
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