Critical points of ternary molybdenum chalcogenides

N. E. Alekseevskii, N. M. Dobrovol'skii, D. Eckert, 1) and V. I. Tsebro

Institute of Physics Problems, USSR Academy of Sciences (Submitted September 14, 1976) Zh. Eksp. Teor. Fiz. 72, 1145–1148 (March 1977)

The critical current density of ternary molybdenum sulfides with composition $M_x Mo_6 S_8$ were measured by various methods. The obtained value of j_{cr} reaches $2 \times 10^4 \ A/cm^2$ in an 80-kOe field at 4.2 K. The relatively large values of the critical currents in strong magnetic fields point to the need for a more detailed analysis of the superconductivity mechanism in ternary molybdenum chalcogenides.

PACS numbers: 74.40.+k, 74.70.Lp

We have already reported^[1] measurements of the critical currents of superconducting samples of ternary molybdenum chalcogenides with lead and tin as the third component. The samples on which the measurements were made in^[1] were thin superconducting layers produced in the surface of a molybdenum foil. In some cases these layers were removed from the molybdenum foil and measured in the free state. It followed from the results of^[1] that the critical currents of the Mo-Pb-S system are relatively large, for example, the critical current density in a magnetic field H = 100 kOe exceeded 5×10^2 A/cm². Since, as already noted in^[1], the thin layers investigated there were not perfect enough (they could have, for example, microcracks that decreased the measured critical current), it was of interest to carry out current measurements on bulky samples. The current measurements were performed in the present study both by a contact method and by an inductive method at a temperature T = 4.2 K. The samples were prepared by the method described by us in earlier papers (see, e.g., ^[2]). Samples of the compound were pressed into cylinders of 5 mm diameter and 10 mm long and were sintered in an oven at 1000 $^{\circ}\mathrm{C}.$

For the contact measurements, we cut out of these cylinders samples measuring 1.5×8 mm, and the end faces of the samples were electrolytically coated with copper to which current and potential contacts were soldered. The measured current density was of the same order as in^[1]. However, the obtained weak dependence of the critical current on the magnetic field pointed to a possible influence of the current contacts.

599

FIG. 1. Critical current density vs magnetic field for molybdenum chalcogenides of several compositions:
△—SnGa_{0.25}Mo₆S₈,
O—PbGa_{0.25}Mo₆S₈, ×—SnMo₆S₈,
□—Pb_{1.2}Mo₆S₈

The inductive method described in^[3] makes it possible, by using triangular or trapezoidal modulation of the magnetic field (with amplitude from 20 to 250 Oe and frequency $f \approx 10$ Hz) to obtain on the oscilloscope screen the distribution of the magnetic flux inside the sample. It is thus possible to investigate the dependence of the critical current $j_{\rm cr}(r)$ on the radius and to check on the homogeneity of the investigated sample. To increase the accuracy we used in some cases, in lieu of the os-cilloscope, the instrument described in^[4], which makes it possible to record periodic voltage signals with an x-y recorder. The inductive method has enabled us also to measure the pressure dependence of $j_{\rm cr}$. In this case the sample with the receiving coil were placed in the beryllium-bronze bomb described in^[5].

In the investigation of critical currents of the molybdenum-chalcogenide samples it was observed that the critical current depends strongly on the sample preparation conditions. Thus, for example, the critical current increases with increasing pressure at which the sample was pressed prior to sintering. The dependence of $j_{\rm cr}$ on the pressure took the form of a curve that tends to saturation. Without dwelling on the results of the investigation of the dependence of the critical current on the sample-preparation technology, it should be noted

Sov. Phys. JETP **45**(3), Mar. 1977

0038-5646/77/4503-0599\$02.40

FIG. 3. Comparison of the critical current density of molybdenum chalcogenides with data for Nb₃Sn and V₃Ga ribbons from^[6] (the values of $j_{\rm cr}$ in^[6] pertain to the total cross section of the ribbon; $j_{\rm cr}$ in the current-carrying layer is approximately four times larger): a) SnGa_{0.25}Mo₆S₈, b) Nb₃Sn ribbon, c) V₃Ga ribbon.

that all the results that follow pertain to samples prepared under conditions as close as possible to optimal.

Figure 1 shows the plots of the critical current $j_{\rm cr}$ against the magnetic field *H* obtained by the inductive method for samples of several compositions. In a number of cases an increase of $j_{\rm cr}$ was observed in the layer next to the surface (see Fig. 2). This indicated that further improvement in the sample preparation technology can yield even larger critical currents than those shown in Fig. 1.

Figure 3 shows the optimal data obtained in the investigation of the critical currents of molybdenum chalcogenide samples in our paper, and also the values of the critical-current density for V_3 Ga and Nb₃Sn published in^[41]. It is seen from the data that the critical-current density obtained for the investigated chalcogenides (and also for an Mo₈PbS₈ wire) is quite high.

It is difficult to reconcile the high critical-current densities with the point of view of the quasi-zero-dimensional character^[7] of the superconductivity of the considered molybdenum chalcogenides. Indeed, although the idea that the superconductivity of these systems is due to the *d*-electrons of molybdenum clusters is attractive, the localized character of the wave functions of each cluster, which accounts well for the high critical magnetic field, should have two rather low values of the critical-current density precisely because of the weak overlap of the wave functions of the cluster. A "zerodimensional superconductivity," if it exists at all, should apparently lead to critical currents of the same order as in the case of layered dichalcogenides, when the current is perpendicular to the layer. In accordance

FIG. 4. Relative critical-current density vs. pressure measured for $SnMo_6S_8$ sample in a magnetic field 80 kOe.

with^[8] the situation here should be analogous to that in the Josephson effect, and consequently the critical current should be small. It should also be noted that if the wave functions of the molybdenum clusters were indeed to have a local character, then one should expect an increase of the critical current with pressure, in contrast to the decrease we have observed in j_{cr} (see Fig. 4). Thus, the large critical currents call for an additional analysis of the superconductivity mechanism of multicomponent molybdenum chalcogenides.

The authors are grateful to V. I. Nizhankovskiľ and Yu. A. Deniskin for help with the preparation and performance of the experiments.

- ¹⁾Central Institute of Solid State Physics and Metallurgy, Academy of Sciences of East Germany, Dresden.
- ²⁾Since the field frozen in the hollow cylinder underwent no damping, we were able to estimate the upper limit of the sample resistivity at $10^{-16} \Omega$ -cm.
- ¹N. E. Alekseevskii, M. Glinskii, N. M. Sobrovol'skii, and V. I. Tsebro, Pis'ma Zh. Eksp. Teor. Fiz. **23**, 455 (1976) [JETP Lett. **23**, 412 (1976)].
- ²N. E. Alekseevskii, N. M. Sobrovol'skii, and V. I. Tsebro, Pis'ma Zh. Eksp. Teor. Fiz. 20, 59 (1974) [JETP Lett. 20, 25 (1974)].
- ³D. Eckert and A. Handstein, Phys. Status Solidi A **37**, 171 (1976).
- ⁴V. I. Voronin, Prib. Tekh. Eksp. No. 4, 118 (1976).
- ⁵N. E. Alekseevskii and V. I. Nizhankovskii, Pis'ma Zh. Eksp. Teor. Fiz. **17**, 352 (1973) [JETP Lett. **17**, 250 (1973)].
- ⁶N. E. Alekseevskii, C. Bazan, K. H. Berthel, V. A. Ermolov, R. R. Hesske, and G. S. Zaitsev, Phys. Status Solidi A **31**, 283 (1975).
- ⁷Ø. Fisher, Proc. Fourteenth Intern. Conf. on Low Temp. Phys., 1975, p. 172.
- ⁸L. Bulaevskii, Usp. Fiz. Nauk **116**, 449 (1975) [Sov. Phys. Usp. **18**, 514 (1975)].

Translated by J. G. Adashko