
crystal has no symmetry plane parallel to the film sur-  
faces. 

We did not mention in this section the heavy holes, 
for which the quasiclassical quantization (1) i s  valid. 
If condition (20) is satisfied, they can be treated inde- 
pendently of the light holes. Allowance for the correc- 
tions relative to the parameter (20) leads to spectrum 
correction proportional to MIL << 1 and to an increase in 
the distance between the size-quantized subbands cor- 
responding to the heavy and light holes a t  the points of 
their intersection. 

Size quantization in the vicinity of the top of a degen- 
erate valence band was considered earlierc4' with null 
boundary conditions used for the envelopes. This ap- 
proach cannot yield Tamm states which, a s  shown in 
the present paper, al ter  significantly the spectrum of the 
size-quantized subbands in the valence band at n, 5 1. 
None the less,  the positions of the extrema of the size- 
quantized subbands corresponding to n, > 1 agree with 
Nedorezov's resultsc4] in the limit of thick films 
(d >> nn, l R, I ). A more detailed comparison of his and 
our results is difficult, since Nedorezov considers the 
opposite limiting case, where the spin-orbit interaction 
i s  assumed large and the mass of the heavy holes i s  as-  
sumed finite. 

We note in conclusion that the boundary condition (10) 
retains the same form in those cases  when additional 
fields that can be described in the language of envelopes 
a r e  present in the system. 

The authors a r e  deeply grateful to V. B. ~andomirskir  
for constant interest in  the work and to M. I. Kaganov 
for valuable remarks. 
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earth iron garnets 
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When the ground-state levels of a rare-earth ion cross (or approach one another) in a rare-earth iron 
garnet, the magnetic structure of the garnet becomes unstable. This phenomenon is very close to the well 
known Jahn-Teller effect. If the rare-earth ions have a strong magnetic-moment anisotropy, this 
instability involves some distinctive anomalies of the magnetic behavior of the crystal. We have 
investigated a theoretical model in which the rare-earth ions are treated in an extreme anisotropic (Ising) 
approximation. It is shown that at different orientations of the external magnetic field the instability 
produced by the level crossing has a fine structure that reflects the detailed character of the 
magnetization reversal of rare-earth ions situated in differnt non-equivalent positions. The magnetization 
curves of such a system are investigated and a comparison is made with the experimental data on 
holmium-yttrium ion garnets. 

PACS numbers: 75.10.Hk, 75.30.G~ 

1. INTRODUCTION tures. These jumps ar ise  a t  different orielitations of 
the external field relative to  the crystal axes and a r e  

Demidov, Levitin, and ~ o ~ o v ~ ~ * ~ ~  have observed an in- accompanied by hysteresis phenomena. The probable 
teresting phenomenon: in some mixed rare-earth iron cause of these anomalies, in their opinion, is the cross- 
garnets (REIG), the magnetization curves M(H) exhibit ing (or approach) of the low-lying levels of the rare-  
magnetization jumps in strong fields a t  low tempera- earth ions (REI) when the external magnetic field H i s  
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varied. We have shown incs1 that the crossing of the 
levels of an ion in a magnetic crystal is accompanied by 
an instability of the magnetic structure of the crystal, 
which leads to a lowering of its magnetic symmetry (the 
magnetic analog of the Jahn-Teller effect). The cause 
of the instability can be explained in the following man- 
ner. We divide the magnetic crystal into two interact- 
ing subsystems: a) magnetic ions, whose lower levels 
can cross; b) all  the remaining magnetic ions, which we 
shall call the matrix. In the case of REIG, the role of 
the subsystem a) is played by the RE1 and the role of the 
matrix by the Fe3* ions. Assume that in the initial sym- 
metrical state (m II H, where m i s  the magnetic moment 
of the matrix) the two lower levels of the RE1 intersect 
in a certain external magnetic field. The deformation 
of the magnetic structure, which leads to a lowering of 
the symmetry, will be characterized by the inclination 
0 of the magnetic field of the matrix to the equilibrium 
position in the initial state. This deformation causes a 
level splitting that is linear in 0 (A E = i a 0, where a i s  
the constant of the interaction of the ion with the ma- 
trix). The ground state energy of the ion is then low- 
ered. At the same time, the deformation of the struc- 
ture results in an energy loss b#/2 > O  (b is the "rigid- 
ity" of the matrix, including the energy of i t s  interac- 
tion with the magnetic field nzH and i ts  magnetic-anisot- 
ropy energy). The presence of terms linear in 0 in the 
energy leads to instability of the system; the quadratic 
terms limit i ts  development. The structure produced 
a s  a result of the instability is determined by the con- 
dition that the total energy be a minimum (at T = O  OK): 

The minimum is reached a t  0 =ia/b .  

At large RE1 concentrations, a cooperative phase 
transition takes place. If the interaction constant a is 
large enough or  the "rigidity" b is small enough, the 
foregoing arguments a re  valid also for the case when 
the levels approach each other. If it is assumed that 
the magnetization anomalies observed a re  actually 
due to crossing (or approach) of levels, then the onset 
of instability of the magnetic structure i s  attested here 
by the abruptness of the jumps and, in particular, by 
the presence of hysteresis. 1nt3] we investigated a sim- 
plified model that did not reflect certain important fea- 
tures of rare-earth iron garnets. In the present paper 
we see  a more realistic model, which takes into ac- 
count the actual symmetry of the REIG, and considers 
in greater detail than in C31 the properties of the REI. 

FIG. 1. Orientation of local axes 
of rare-earth ions and rare-earth 
iron garnets. 

TABLE I. Orientation of rare-earth ion axes 
relative to the crystallographic coordinate 
frame. - 

Non-equivalent points 

2. MODEL SPIN HAMILTONIAN OF RE1 

The rare-earth ions occupy in the REIG c-positions 
whose crystal-environment symmetry is determined by 
the point group D, (222). There a r e  six such non-equiva- 
lent positions that differ in the orientation of the sym- 
metry axis of the C,. Figure 1 shows the orientation of 
the axis for all  s ix  points (see also Table I). 

The crystal field in the REIG splits the ground-state 
multiplet of the RE1 into doublets in the case of Kra- 
mers  ions (i. e., ions with odd number off electrons), 
and into singlets in the case of non-Kramers ions. 
Sometimes (as, e. g., in the case of ~ b "  and HO~'), the 
very lowest levels in the RE1 spectrum a r e  two (or 
three) closely-lying singlets, which a r e  separated dis- 
tinctly enough from the higher-lying levelsc4] (see also 
Fig. 1 ofC2]). In this case one can speak of a quasi- 
doublet (quasi-triplet) and describe the behavior of its 
levels in the magnetic field in the same manner a s  in 
the case of Kramers ions, with the aid of a g-tensor, 
which is strongly anisotropic here. 

The dependence of the energy levels of the lower 
doublet (quasi-doublet, quasi-triplet) on the magnetic 
field in REIG is determined by the joint action of the ex- 
ternal field and of the exchange field produced a t  the RE1 
by the Fe3+ ions. We shall consider systems in which 
these fields a r e  oppositely directed (at least a t  certain 
definite directions of the external field relative to  the 
crystal axes; in the general case the angle between these 
fields is larger than a/2). This situation is realized in 
systems of the type R,Y3,1G, where R is the rare-earth 
element of the yttrium subgroup of the lanthanide group 
(from gadolinium to ytterbium) a t  a sufficiently low con- 
centration x.  The competition between the external and 
exchange fields in such systems afford a natural pos- 
sibility of level crossing (in the case of Kramers ions) 
o r  approach (in the case of non-Kramers ions). If the 
external field (H) is antiparallel to the exchange field 
(Hex), the crossing (approach) takes place a t  I HI = I Hex I ,  
i. e., when the RE1 is fully demagnetized. 

According to the statement made in the Introduction, 
the level crossing is energywise not favored and the sys- 
tem, without reaching the crossing point, goes over into 
the canted phase and remains in i t  with increasing field 
until it leaves the "dangerous" region near the crossing 
point. In the canted phase, the RE1 energy levels a r e  
"pushed apart, " inasmuch a s  H +Hex #O in this phase. 
The picture is particularly obvious in the case of RE1 
with an isotropic g-factor (Gd3+) and manifests itself 
macroscopically a s  a well known phenomenon-the flip- 
ping of the sublattices of an isotropic ferrimagnet in a 
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magnetic field (see, e. g., "I).  In the case of strongly 
anisotropic REI, this practice has a number of interest- 
ing features that differ qualitatively from the isotropir: 
case. To explain them, we consider a model in which 
the RE1 a r e  described in an extreme anisotropic-Ising- 
approximation, i. e., we assume that regardless of the 
direction of the fields acting in such an ion, its magnetic 
moment, while changing in magnitude, preserves its 
direction. The closest prototypes of such a model a re  
the ions HO", ~ b ~ ' ,  ~ y ~ ' .  

Let the direction of the magnetization of the "1sing" 
ion in position i coincide with the axis zi of the local 
coordinate system, i. e., let the only nonzero compo- 
nent of the g tensor in this system of coordinates be g,,. 
We note that this choice of the ion-magnetization axis, 
whereby the easy-magnetization axis of the crystal lies 
along directions of the type [ I l l ] ,  is the only one (this 
is realized also inLz1). We note also that with this choice 
of the axis of the "Ising" ion the positions 1 and 2, 3 and 
4, and 5 and 6 become pairwise equivalent (see Fig. 1). 

Under the foregoing assumptions, the spin-Hamilto- 
nian of an ion situated in the position i in an exchange 
field and an external field can be represented in the lo- 
cal coordinate system in the form 

where p is h e  magnetic moment of the ion and Seff =$. 
We have confined ourselves to the case se" = $, since 
the qualitative conclusions (also quantitative a t  T = O  OK) 
do not depend on the multiplicity. We note also that we 
confine ourselves here to an isotropic exchange field 
(i. e., we assume that -Hex It mFe). The energy levels 
defined by the Hamiltonian (2) a r e  

3. MAGNETIC TRANSITIONS AT T =  0 9< 

At T = O  OK, the equilibrium states of the crystal a re  
determined by minimizing its ground-state energy. We 
represent it in the form (per REIG molecule) 

where m is the magnetic moment of the iron sublattice 
(Im l = 5  PB at T = O  OK), x i s  the RE1 concentration in 
the molecule RXY,,Fe,Ol2. We assume x<< 1 through- 
out. " Since -Hex Il m, it  follows that 8 depends on the 
orientation of m relative to the crystal axes. The an- 
gles that specify this orientation must be determined a s  
functions of the external field by minimizing 8. The 
minimization of (4) with the additional condition 1 m 1 
= const determines the equation 

where 

H; is the exchange field exerted on m by the RE1 lo- 
cated in position i and having a magnetic moment pi; X 
is the exchange constant of the R-Fe interaction (A 
zHex/m). The left-hand side of (5) is the sum of the 
fields acting on m, and c is an indeterminate Lagrange 
multiplier defined by the condition Im l = 5pB. Generally 
speaking, (5) is an equation for m, since the direction 
of Hp, according to (6), depends on the orientation of 
the vector m. From (5) i t  follows, in particular, that 
a t  H=O the diagonals of the cubic unit cell ( [ l l l ]  etc.) 
a r e  easy axes. Indeed, the resultant of all  the fields 
Hf along the edges of the cube is directed along one of 
i t s  diagonals. The eight equivalent positions of m (at 
H = 0) can be obtained by going through all the combina- 
tions of the signs of pi. 

At H + 0 i t  is more convenient to investigate the be- 
havior of m(H) in a spherical coordinate system. We 
consider the cases normally encountered in the experi- 
ments: H 11 [OOl], H I1 [llO], H I1 [ I l l ] .  

A. Case H I1 [OOl]. We define m in a coordinate sys- 
tem with axes [loo], [OlO], [OOl] with the aid of the cus- 
tomarily introduced polar angle 6 and azimuthal angle cp. 
In this coordinate system, the components Hz, + H z  a re  
for positions 1 and 2 

H-H "'cos 0, ( 7 4  

for positions 3 and 4 

-Hexsin 0 cos cp, 

and for positions 5 and 6 

- H ~ X  sin . 0 sin q. ( 7 4  

Substituting them in (4) and introducing the dimension- 
less variables E =8/nlHeX, h =H/H~", and a =xp/3n1 << 1, 
we obtain 

Minimizing (8) with respect to cp we find that if B # 0 we 
have ip = in(2k +I), where k = O,1,2,3, corresponding to 
the crystal planes ( l i ~ ) ,  (ilo), ( i i ~ ) ,  (110). All these 
planes a r e  energywise equivalent, this being the conse- 
quence of the symmetry: [OOl] is a fourfold axis. The 
presence of such a "degeneracy" can lead physically to 
a domain structure. Since such domains a re  energy- 
wise equivalent, they exist also in strong fields (so long 
a s  6#0).  

Minimizing (8) with respect to 6 (at cp =an(2k +l)), we 
obtain 

a ~ ?  
tg 8 = 

h-a sign(h-cos 0) ' (9) 

We note that according to (7a) we have sign(h - cos6) 
= sign pi. 

As noted earlier, at H=O there a r e  eight equivalent 
directions of the vector m in the crystal. There can be 
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just a s  many different domains. In a relatively weak 
field, domains with "unfavorable" direction of the mag- 
netic moments vanish. We shall disregard from now 
on the solutions corresponding to such domains. In this 
case these a re  four domains having tan0 = - a at  h =O. 
Equation (9) has a t  small a the solution 

I a12 aa - h>h,-l-- 
h-a (I-a)' (p1>0) 

The overlap of the solutions in the region h, < h <h, and 
the presence of hysteresis can be interpreted as a first- 
order phase transition between the phases (p, < 0) and 
B(pl >0). The transition point is determined by the con- 
dition that these phases have the same energy, equal to 
h, =1 -a2. 

Knowing 0(h), we can determine the behavior of the 
magnetization of the crystal from the formula 

Differentiating (8) with respect to h and substituting in 
it O(h) defined by formula (lo), we obtain (Fig. 2a) 

h+a 
[ (h+a)~+2a~] 'llam' 

h<h, 

M=m[cos 0+a sign p,] = 
h-a 

. (12) 
+am, h>hI 

, [ (h-a)2+2az]" 

Those branches of M(H) which correspond to metastable 
states of the crystal near H =Hex will be omitted hence- 
forth. 

The results can be interpreted in the following (Fig. 
3a). Positions 1-6 a t  H 1 1  [001] and when m is rotated in 
the indicated planes can be divided into two groups: 1, 
2 and 3-6. The ions in positions 3-6 a r e  not acted upon 
by the external magnetic field; their levels a re  split 
only by Hex. The splitting i s  maximal when Hex (and m) 
lie in the (001) plane, and is equal to zero when m il H 
(see (8)). This means that these ions produce an anisot- 
ropy energy that hinders the rotation of m towards the 
[OOl] axis. The ions of positions 1 and 2, in turn, pro- 
duce a field HR that acts on m and is parallel to H in the 
phase A ( p l  < 0) and is antiparallel to H in the phase B 
(p, > 0). Thus, rotation of m towards H takes place un- 
der  the influence of the field h +a in phase A and under 

FIG. 2. Dependence of the magnetization M ( h )  on the external 
field at T = 0 K with allowance for the rearrangement of the 
magnetic structure (the possible hysteresis near the phase- 
transition points is  not shown): a) HI1 [0011, b) HI1 [1101, C) 
HI1 [ I l l ] .  

FIG. 3. Dependence, on the magnetic field h ,  of the energy of 
the ground state of the rare-earth ions in various non-equiva- 
lent points, with allowance for the rearrangement of the mag- 
netic structure (the line I = 0  i s  the center of gravity of the 
quasi-doublet, the hysteresis i s  not shown, T = 0 K): a) 
HI1 [loo], b) HI1 [1101, c) HI1 (1111; solid line-points 1 and 2; 
dashed-point 3; dotted-points 5 and 6. 

the influence of h - a  in phase B, producing somewhat 
different 0(h) dependences in these phases and leading 
to  a hysteresis of O(h). We note that in this case the 
splitting of the levels 1 and 2 depends quadratically on 
0 (like I cos0 - h I), and therefore the hysteresis is nar- 
row a t  small a. 

The jump of the magnetization a t  the level crossing 
point (Icos0-hl =0) is equal to AM=2ma=2xP/3 and 
has an obvious meaning: it is the result of the reversal  
of magnetizations of ions 1 and 2, the concentration of 
which is equal to  x/3. 

B. Case H n [110]. In the coordinate system with 
axes [ l i ~ ] ,  [oo~],  [110], where the polar angle 6 and the 
azimuthal angle cp define m, the projections of Hzi +Hz 
for positions 1 and 2 a r e  given by 

-Hexsin 0 sin cp, (134 

and for positions 3 and 4 by 

2-'" (H-HeXcos O+HeXsin 9 cos cp) , OW 

and for positions 5 and 6 by 

2-'"(H-HeXcos 0-Hexsin 0 cos cp). ( 1 3 ~ )  

Substituting them in the energy (4) we obtain in the same 
dimensionless variables as in (8) 

E (9, cp) =-a sin 0 I sin cp 1 -2-'"a ( 1 h-cos 9+sin 0 cos cp I 
+I h-cos +sin 9 cos cp I ) -h cos 0. (14) 

Minimization of (14) with respect to 0 and cp yields 

1 sign p,-sign p, 
ctgcp = -- 

12 sign(sincp) I 

(1 5) 

aisin c p l t ~  o ws ?(sign yl-sign PC.) 
tg9= 

h-2-"a (sign p,+sign PI) 
(16) 

where the signs of the magnetic moments ~ c ,  and co- 
incide with the signs of the fields (13b) and (13c) acting 
on them. 

Equation (15) has the following stable solutions: 

X 3% 
qr = ; sign y,=sign ps 

c p =  cps, cpr=-cp,; ps>O, PS<O, 
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where sincpg = and coscp, =%. Substituting (17) in (16) 
we obtain B(h): 

Thus, three phases exist: A ( h  <O, p5 < O), B ( pg 
> 0, > 0), and C(sign & = - sign p,). The regions of 
their existence (stability) a r e  determined in the follow- 
ing manner. For example, for hase A the condition 2 h <O means that h - cosO(h) + 7 sinO(h) <0, where O(h) 
is given by (18b). Solving the corresponding transcen- 
dental equations for the critical fields, we obtain the 
following conditions for the existence of the phases (a 
<< 1): phase A exists a t  

phase B exists a t  

and phase C exists in the region 

Phases A and B overlap little (h, < h,). Phase C over- 
laps both phases A and B in the region near h = 1. This 
means that first-order transitions take place between 
phases A, C, and B; the transition points a r e  deter- 
mined by equating the energies of the corresponding 
phases. The A- C transition takes place at hl = 1 
- a f i / 2  and the C-- B transition a t  hII = 1 + a a / 2 .  

We note also that the phase A and B a r e  doubly "de- 
generate" in cp ([I101 is a twofold axis), so  that domains 
with different directions of m can exist in the crystal. 
On going from these phases into the phase C, the de- 
generacy doubles; each of the domains of phase A o r  B 
is "split, " thus, for example, 

q1=n/2+cps, qr, and q2=3n/2+cp,, q,. 

The magnetization M ( H ) ,  determined by formula (11) 
takes the form (Fig. 2b) 

M=m[cos O f  2-'I2a(sign ps+ sign ps) 1 

The results can be interpreted in the following man- 
ner (Fig. 3b). The ions in positions 1 and 2 add the 
maximum level splitting according to (13) and (14) a t  8 
= n/2, and zero splitting at 8 =O;  they produce an anisot- 
ropy energy that prevents the rotation of m towards H. 
The ions in positions 3-6 produce a field acting on m; 

i t  is parallel to H at  15 < 0  and p5 <O, and antiparallel in 
the opposite case. This causes 8(h) to be somewhat dif- 
ferent in phases A and B and to overlap. In contrast to 
the case H 1 1  [OOl], in this situation the splitting of the 
levels of ions in posjtions 3-6 depends linearly on the 
angle 8 i f  q # i7/2 and y # 38/2. This creates conditions 
for an "azimuthal" instability-the deflection of m in 
other planes near the level crossing point h = 1. In the 
A -  C transitions, the magnetizations of ions 3 and 4 
(or 5 and 6) a r e  reversed, '' and the levels of ions 5 and 
6 (3 and 4) a re  "pushed apart. " In phase C, the levels 
of the ions with reversed magnetization (3, 4) move 
apart with increasing h, and those of the ions without 
reversal  (5, 6) come closer until their relative position 
becomes energywise unfavorable. At h = h,, (C - B), the 
magnetization of ions 5 and 6 i s  also reversed and the 
system returns to the initial plane. The magnetization 
jumps A M  = 2112rna = 2x p / 3 a  have an obvious physical 
meaning and Jfi is the projection of the magnetic mo- 
ment of the "Ising" ions of type 3 and 5 on the [I101 axis. 

C. Case H I I  [ I l l ] .  We define m in a coordinate sys- 
tem whose axes coincide with the directions [lzl] ,  
[lei], [ l l l ] ,  with the aid of the polar angle 8, and the 
azimuthal angle y ,  In this system 

where n =0, 1, - 1 at  i = respectively to 5, 6; 3, 4; 1, 2. 
Substituting them in (4) and using the same dimension- 
l e ss  variables a s  in (8), we get 

~ ( 0 , y ) = - 4  I: 1 1 - c o s ~ + l ~ s i n ~ c o s  q+-  
13 ( 2;n ) 1 -h cos 0. (21) 

n=d,+, 

The stationarity conditions 8~ /8O = a.E/aq = 0 yield 

% cos q sign p5+cos (cp+2n/3)sign p,+cos (q-2n/3) sign p, 
tg o=. (f) 

h-3-"a(si& p,+sign pJ+sign ps) 
(22) 

sin O[sin cp sign pa+sin ((p+ 2n/3) sign yr 
+sin ((p-2n13) sign p, I =o, (23) 

- 

where the signs of p,, k, ~5 coincide with the signs of 
the fields (20) acting on them. 

Depending on the conbination of the signs of pl, k, 
p5, the following solutions (phases) of Eqs. (22) and (23) 
a r e  possible: 

phase A (pi<O, pI<O, p,<O): 
o=o; (244 

phase B (sign p,+sign p3+sign &=-I) : 

cp=O (pr>O, @s<O, pi'o) 
V = Z X / ~  (pr<O, ps<07 PL>O), (24b) 

y=4n/3 (pr<O, ps>O, pi<O); 

phase c (sign p,+sign ps+sign p ~ 1 ) :  

v=n (ps<O, p:>O, ~r>O)t 
y=5n/3 (pr>O, ps>O, pi<O), ( 2 4 ~ )  
( ~ = ~ 1 3  ( ~ 5 9 0 ,  !.k<O7 FI>O); 

phase D (pt>O, ps>O, P~>O): 
o=o. 

The threefold degeneracy of the phases B and C is de- 
termined by the "symmetry": [ I l l ]  is a threefold axis. 
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Substituting the values of the angles y, in (22), we obtain 

0 ( phase A, phase D),  
2 v x a / ( h  + a / f a  (phase B),  (25) 
2 a h  - a )  (phase C ) .  

We note that any solution of the phase B goes over into 
the corresponding solution of phase C by the transforma- 
tions cy - cp + a  and pi - - y,. This means that in both 
phases the deflection of m takes place in identical 
planes, but in different directions away from the [ I l l ]  
axis. Thus, for example, when considering the rotation 
of m in the (110) plane, we see that the phase B corre- 
sponds to a deflection of m towards the [I101 axis and 
the phase C corresponds to a deflection towards the 
[OOl] axis. In each of the planes (01T) (cp =0, a), (10i) 
(cp =2rr/3,51~/3) and (01i) (cp =4a/3,7r/3) i t  i s  possible to 
define the deflection of m with the aid of a single angle 
O', which assumes positive and negative values. The 
transition B- C means reversal of the sign of 8' and a 
corresponding reversal of the signs of all the magnetic 
moments pi. 

The regions of the existence (stability) of the phases 
A, B, C, and D can be determined in the same manner 
a s  for the case H 1 1  [I101 above: the phase A exists a t  

the phase B exists in the region 

the phase C in the region 

and the phase D at  

Phase overlap means that the transitions between them 
a re  of first  order. Their sequence with increasing field 
is A - B - C - D. The transition points a r e  obtained from 
the conditions that the corresponding energies be equal 
and a re  given by a) h, = 1 - 2a/& (for A - B),  b) h,, = 1 
(for B- C), and c) h,,, = 1 +2a/& (for C- D). 

The magnetization, defined by formula (12), is given 
by (see Fig. 2c) 

The detailed picture of the transitions and of the succes- 
sive magnetization reversal of the IEI takes an interest- 
ing form in this case. With increasing field (h- 1) the 
levels of all  ions 1-6 in phase A come closer together 
(like I1 - h l a t  0 =0 according to (3), (20), and Fig. 3c). 
At h- h, they come s o  close together that the deflection 

of m (say in the (110) plane) towards the [I 101 axis be- 
comes energywise favored. Following this deflection, 
the levels of the ions 3-6 a r e  "pushed apart, " but their 
magnetization is still not reversed (k, <O), while the 
magnetization of ions 1 and 2 is reversed (p,,, >O). This 
fact can be understood purely geometrically. .As a re-  
sult of the deflection of m towards the (001) plane, the 
projection of Hex on the magnetization axis of ions 1 and 
2 decreases, so  that the resultant field acting on these 
ions becomes positive and their magnetization is re-  
versed; for the ions 3-6 the situation i s  reversed: the 
projection of H ex on their axis increases, the absolute 
value of the resultant field decreases, and consequently 
the level splitting also increases. With further increase 
of the field, h- 1, the levels of the "non-remagnetized 
ions" continue to approach each other, and a different 
transformation of the magnetic structure becomes en- 
ergywise profitable a t  h = 1, namely the deflection of m 
in the same plane, but in the opposite direction-towards 
the [OOl] axis. The projection of Hex on the axis of the 
ions 3-6 then decreases abruptly and their magnetiza- 
tion is reversed along the external field, while the pro- 
jection of Hex on the axis of the ions 1 and 2 increases 
and they a r e  forced to reverse their magnetization. We 
note that the states in which all pi >O a r e  here patently 
energywise unprofitable, inasmuch a s  a t  pi >O the only 
stable state is 8 = 0, and at O = 0 and h - 1 the levels of 
all  the ions come closest to one another. With further 
increase of the field, a t  h = h,,,, the deformed (canted) 
structure becomes unfavorable, the magnetization m 
returns to the [ I l l ]  axis, and the ions 1 and 2 have their 
magnetization reversed along the external field. Each 
jump of magnetization is equal to A M  = 2x p / 3 6 ,  where 
p / 6  is the projection of the magnetic moment of each 
"Ising" ion on the [ I l l ]  axis. This is the magnetization- 
reversal picture when the deflection of m is in the (1TO) 
plane, a s  is realized in one of the domains. In the other 
domains (where m is deflected in other planes), the se- 
quence of the magnetization reversal  of the RE1 will be 
different, The role of the magnetic-structure insta- 
bility mechanism near the level crossing, referred to 
in the Introduction, can be clearly traced in the cases 
H 1 1  [I101 and H l l  [ I l l ] .  

4. H-T PHASE DIAGRAMS 

The thermodynamic potential of the system can be 
represented in the quasidoublet approximation in the 
form 

where Hz* + H ;  aredeterminedby formulas (7), (17), and 
(201, respective1 y for H l l  [loo], H ll[110], and H 11[111]. 

We consider first  the case H 11 [ I l l ] .  Assuming a con- 
centration x << 1, we confine ourselves to the behavior of 
the system at  small angles O and fields close to Hex. It 
is convenient to introduce the dimensionless variables 

578 Sov. Phys. JETP 45(3), Mar. 1977 Zvezdin eta/. 578 



FIG. 4. H-T phase diagrams in relative coordinates: a) 
H II [Ill], b) HI1 [ loo] .  

Then, omitting the terms independent of 0, we find that 
f takes the form 

8" W-8 cos ((p+2nn/3) 
f =?-T  I.[." 2r 

We note that the dependence on the physical parameters 
x, Hex, m,  and p enters in this expression only via the 
scales of the quantities 8, H, and T, so  that we can con- 
fine ourselves to citing the results of an investigation of 
the phase diagram in numerical form. The correspond- 
ing analytic expressions a re  cumbersome and not illus- 
trative. The equilibrium values of the angle cy a r e  here 
the same a s  a t  T = O  OK, and we shall therefore assume, 
a s  before, that the angle O take on positive and negative 
values in the "equilibrium" planes ( l i ~ ) ,  (10i), ( ~ l i ) ,  
and set cp in (29) equal to zero. 

The results of the former problem of minimization 
axld numerical calculations reduce to the following 
(Fig. 4a). 

1. The collinear phase 0 = 0 (the phases A and D )  is 
absolutely stable (in equilibrium) in the region outside 
the curve AQA'. It is metastable in the regions OQA 
and OQA'. 

2. The canted phase B (QB(W, T) ) ,  defined by the equa- 
tion 

is absolutely stable in the region bounded by the curve 
AQA, and is metastable in the regions AQF and A'M'QO. 

3. The canted phase C (O,(W, T )  =-aB(-  W, 7) )  is ab- 
solutely stable in the region bounded by the curve OQA', 
and is metastable in the regions F'QA' and AMQO. We 
note that certain details connected with the overlap of 
the two metastable phases and the presence of supple- 
mentary (metastable) canted solutions in the regions 
AM0 and A'M'O have been left out of Fig. 4a. Thus, 
even at finite temperatures the realignment of the mag- 
netic structure near the level crossing point proceeds 
via three jumps (first-order phase transitions) on the 
lines AQ, OQ, and A'Q. At H 11 [110], the H-T phase 
diagram of the system in the quasi-doublet approxima- 
tion coincides in main outline with the diagram described 
by us incs1. 

We consider now the case H 11 [001]. For finite tem- 

peratures, the equilibrium values of the angle qp will be 
the same a s  at T = O  OK. The free energy (8) then takes 
the form 

where 7 = T / ~ H ~ ~ .  An analysis of the free energy (31) 
in the small-concentration approximation leads to the 
following picture (see Fig. 4b): 

1. At sufficiently low temperature (T < T * = 2a3 p H") 
there exist two phases, the regions of existence of which 
overlap near Hex. The phase A (p, <O) exists in the re- 
gion below the NQ curve, and the phase B (p, >O) exists 
in the region above the MQ curve. The KQ curve is the 
line of the first-order phase transition between the two 
canted phases. The point T = T * is a critical point of 
the vapor-liquid type, above which only one canted 
phase exists. 

2. At sufficiently high temperatures (for example, T 
-a p Hex at  H - Hex) the canted phase goes over smoothly 
(second-order transition) into the phase 8 =0 on the 
line FE. 

5. DISCUSSION OF RESULTS 

A comparison of the anomalies of the magnetization 
of Ho,Y3,1G in a strong magnetic fieldc2' with the theo- 
retical conclusions that follow from the considered 
model show them to be patently similar. Attention is 
called to  the following: a) the equality of the number of 
magnetization jumps observed in experiment and pre- 
dicted by the theory at all  investigated directions of the 
external field; b) the equal spacing of the jumps and the 
equality of their magnitude a t  H l l  [ I l l ]  and H 1 1  [110]; c) 
the behavior of the susceptibility a t  different field direc- 
tions; both in theory and in experiment the susceptibility 
is maximal a t  H l l  [OOl] and minimal a t  H i l  [ I l l ] ;  d) the 
similarity of the H-T phase diagrams. 

We present somewhat more detailed estimates, using 
the experimental results ofL2' (see Fig. 3 ofC2'). In our 
model there a r e  only two indeterminant quantities: Hex 
and the magnetic moment p of the "Ising" ion, which 
enters in the reduced concentration a =xP/3m. The 
quantity Hex enters in the theory in the form of the scale 
of the field, and i t  can be determined in the following 
manner. According to the theory, the central jump of 
M(H) a t  H 11[111], the mid-point between the jumps a t  
H I1 [ l l ~ ] ,  and (approximately) the jump at  H i t  [001] cor- 
respond to h = 1, i. e., H =Hex. From Fig. 3 ofCe' i t  
follows with good accuracy that a l l  these points corre- 
spond to Hex = 120 kOe. This quantity agrees with the 
known data. TO determine p we can use the following 
characteristics of the M ( H )  curves: the field intervals 
between the jumps a re  the values A M  of the individual 
magnetization jumps. All a re  determined by a single 
unknown quantity p. According to theory, we have a t  
H I 1  [ I l l ]  

AH,,,,,=2aHeXl\/3, ~ 1 T f = 2 a m / Y 3 ;  

a t  H 11 [I101 we have 

579 Sov. Phys. JETP 45(3), Mar. 1977 Zvezdin et a/. 



and at H 1 1  [OOl] 

According to Fig. 3a ofc2', AHClll1 = 17 kOe and x =O. 25, 
m = 5 pB; then p = 7.5 p,. Determining the same quantity 
from AHcl,,, =23 kOe, we obtain p =8.1 p,. The ob- 
tained values of p agree within the limits of experimen- 
tal  accuracy. The values of AM were measured with 
lower accuracy, and we confine ourselves therefore to 
an order-of-magnitude estimate. At H II [ I l l ]  we have 
AM51 p, (see Fig. 3 ofCS1), where p= 10 p,. We note 
that the values of the measured jumps of M(H) increase 
on going from H 11 [ I l l ]  to H 11 [I101 and to H 11 [001], also 
in accord with the theory. Thus, the values of p deter- 
mined from different independent characteristics of the 
magnetization curves M(H) of Ho,Y3,1G turn out to be 
close to one another (within the limits of experimental 
accuracy). This indicates that the magnetic-structure 
instability mechanism due to the crossing of the levels 
(the magnetic analog of the Jahn-Teller effect) is indeed 
realized in the system Ho,Ys,IG. 

Let us estimate the critical temperature T * at  which 
the first-order phase-transition lines converge a t  
H II [ I l l ]  (Fig. 4a). The dimensionless critical tempera- 
ture i s  T* =$ (Fig. 4a). According to (28) we have 

which yields T * = 15 K a t  x =O. 25 and p =  10 p,. The 
corresponding value of T * for H 11 [I101 is of the same 
order; the critical temperature at H 11 [OOl] is much 
lower. 

Let us discuss the question of the energy gap A, which 
is usually present between the singlet levels that make 
up the quasi-doublet (quasi-triplet). We have assumed 
it equal to zero. It is physically obvious (and is con- 
firmed by calculations) that if the gap is much smaller 
than the additional level splitting due to the instability, 
then the influence of the gap can be neglected. The split- 
ting in our case is 

Atx=0.25 we have 68-10 cm-'. For example, HoS'in 
YGaG has A-  5 cm-' c41 (see also Fig. l a  ofC2'). The 

most interesting effect due to the presence of the gap A 
is the presence of a concentration threshold. At small 
x, such that 68 <A, the instability of the magnetic struc- 
ture becomes energywise unprofitable. 

We have considered a model of an Ising ion, whose 
magnetization direction coincides with the z &s of the 
local environment of the rare-earth ion in the garnet. 
At other direction of thzmagnsf izat~on axis-@-or y), 
the behavior of the system can differ strongly from the 
investigated one. This is apparently the case with 
Tb,Y3,1G. 

The authors thank V. G. Demidov and R. Z. Levitin 
for acquainting them with their paperCe1 prior to publica- 
tion, and for discussions. 

"A lower bound on x i s  also imposed by the fact that we a re  
considering only matrix magnetic-structure deformations 
that are  homogeneous over the sample and a re  characterized 
by an angle 6. This i s  not a very strong limitation, as  can 
be seen from the following qualitative reasoning: The per- 
turbation 60 produced by the RE1 propagates in the matrix, 
owing to exchange interaction, to a region with linear di- 
mensions on the order of m, where A is the constant 
of the exchange between the iron ions and b  is the magnetic 
"rigidity. It  follows therefore that at x > > a d ( b / ~ ) ~ / ~  (ao is 
the distance between atoms) we can neglect the coordinate 
dependence of 6. For  REIG this condition is satisfied at 
x >> 10-~-10-~. 

2 ) ~ h e s e  probabilities are  equivalent. We are dealing in fact 
with different domains, in one of which the first to reverse 
magnetization are  ions 3 and 4 and in the second ions 5 and 6. 
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