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Dielectric transition in a quasi-one-dimensional system with 
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It is shown that the interaction between electrons located on different chains may lead to a three- 
dimensional dielectric transition even if the electrons on a single chain repel one another. The relevant 
interaction constant of electrons on a single chain is obtained. If the converse inequality holds, the ground 
state of the system is metallic. 

PACS numbers: 71.25.Cx, 71.30. + h 

1. INTRODUCTION 

Materials possessing a chain structure have been in- 
tensively investigated in recent years. We have in mind 
experiments on complexes on a TCNQ base and com- 
plexes of variable valence on a Pt  o r  I r  base and so on. 
Such quasi-one-dimensional systems should in princi- 
ple possess a number of interesting properties. Never- 
theless, in spite of the large variety of states theoreti- 
cally possible, almost all the known quasi-one-dimen- 
sional systems a re  dielectrics at low temperatures. 

In the present research, we consider one of the pos- 
sible mechanisms of dielectric transition. As a model, 
we consider a system of parallel metallic chains ar-  
ranged in a lattice. The interaction between electrons 
located on each chain is assumed to be large in compar- 
ison with the interaction between electrons on different 
chains. This interaction can be a direct Coulomb inter- 
action or indirect, through phonons. The interaction 
through phonons becomes significant at temperatures 

below the Debye temperature; therefore, in the initial 
junctions we consider only the Coulomb interaction. 

The case of repulsion brought about by the Coulomb 
interaction is usually considered to be "uninteresting." 
The fact is that the simplest calculation by the molecu- 
lar-field method, with neglect of the interaction be- 
tween neighboring chains, leads to the conclusion that 
any sort  of transition is absent. An exception is the 
case of just one electron per unit cell. We shall not 
consider this case. We shall show that allowance for 
an arbitrarily weak interaction between electrons on dif- 
ferent chains leads to a renormalization of the interac- 
tion of the electrons on a single chain and, in final anal- 
ysis, to a dielectric transition. The characteristic fea- 
ture of this transition is that the renormalized interac- 
tion between electrons on different chains becomes of 
the order of the renormalized interaction on a single 
chain. This leads to the suppression of purely one-di- 
mensional fluctuations and makes possible the descrip- 
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tion of the transition by means of the'molecular-field 
method. We shall use  the very well known method of 
summation of principal terms-the "parquet" method. 

In the one-dimensional case, there exist two particu- 
l a r  scattering channels, those of Cooper and Peierls. 
The f i rs t  corresponds to coupling of two electrons on 
opposite ends of the Fermi surface," while the second 
corresponds to coupling of an electron and hole at op- 
posite ends of the Fermi  surface, with total momentum 
2P,. 

Both channels give logarithmic integrals of the order 
of ln(c/T), where G- e,. Summation of terms of the 
form (gln(;/~)n leads to a system of parquet equations. 
Following Gor'kov and ~ z ~ a l o s h i n s k &  ['I we write down 
the complete vertex part, explicitly separating the de- 
pendence on the spins ( 4 ~ 6 )  and the numbers of chains2) 
(iklm): 

Here the signs * correspond to an electron located at 
one "Fermi point" *pF or  another; yl corresponds to 
scattering with momentum transfer 2pF; y2 corresponds 
to scattering with zero momentum transfer. 

We shall not derive the parquet equations, but use the 
equations obtained in Ref. 2. In contrast to Ref. 2, we 
shall consider the case in which electrons a re  repelled 
on one chain, i. e., the nonrenormalized constants g,, 
g2>0. We shall show that, upon satisfaction of the in- 
equality 2g2 - gl > 0, the interaction between electrons 
located on different chains increases like 1 / ~ ~ 2 * 1 ' ~  with 
decrease in temperature. When this interaction be- 
comes of the order of the interaction on a single chain, 
the equations become nonlinear. Therefore, i t  is pos- 
sible to prove rigorously that a three-dimensional di- 
electric transition takes place only in the case of certain 
limitations on the initial conditions. This is either a 
limitation on the signs of the interaction constants be- 
tween chains o r  the requirement of rapid decrease of 
the interaction on different chains. 

We shall not take into account effects connected with 
hops of electrons between chains. This means that the 
temperature a t  which the logarithmic integrals a re  cut 
off is always assumed to be higher than the energy of 
the transverse motion of the electrons (T> w,). '21 

2. INSTABILITY IN THE QUASI-ONE-DIMENSIONAL 
SYSTEM WITH REPULSION ON A SINGLE CHAIN. 
MOVING POLE 

We make use of the equations for  the complete verti- 
ces y,, y2 a s  functions of the logarithmic variable 

a 
-ln max(T, o, 08p) 

obtained in the parquet approximation[21: 

~ , 2 k = g , i k  - j dir  [ l , ' k l . i k - y . i h 1 2  4-x l l i l l l ' k ]  , 
0 I  

(1) 
1 '  

.,;k=gsjk - - 5 dt'(71")'. 
0 

We write down the equations for ytb and ykk in differ- 
ential form: 

If only the constants of interaction on a single chain a re  
different from zero, then Eqs. (2) have a simple solu- 
tion: ['I 

In the case of repulsion of electrons on a single chain, 
g l >  0, the solution does not contain singularities as T - 0, 5 - m. Let the interaction between electrons on 
nearest chains be small in comparison with the interac- 
tion on a single chain and much greater than the inter- 
action with more remote chains. Then we have, in first  
order in yi '+I, 

Substituting (3) in (4) and integrating, we obtain 

In the case of repulsion on a single chain, g l>  0, the 
limiting behavior of y:'" a s  T- 0 is determined by the 
sign of the expression g2 - igl: 

If g2 - ig1> 0, then y: '+' increases with decrease in tem- 
perature and becomes of the order of yl, y2 at 

To-B exp {- ln (g/& ' + I . )  / (g,- ' / ,g,)  }. 

Substituting (3) and (5) in Eq. (2) for the next nearest 
chain y;!i2, we see  that y: i*2 becomes of the order of yl, 
y2 simultaneously with y: and s o  on. Thus, at 5 -  t o  
i t  is necessary to solve the problem of the interaction 
of electrons on a large number of chains. 

A similar situation ar ises  in the case of the attraction 
of electrons on a single chain, g l <  0. Then a pole sin- 
gularity appears in the solution (3) at 5, = - (gl)". As 
is seen from (4), the interaction of the electrons on dif- 
ferent chains increases more rapidly than on a single 
chain, as (1 +g15)-3'2, and in this case also, it is neces- 
sary to solve the problem of the interaction of many 
chains. 

In the Fourier representation in terms of difference 
of the coordinates of the chains pi': 

(S is the area of the reciprocal cell), Eq. (2) is written 
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down in the following form: 

It has been shownc2' that the Eqs. (2) and (6) can have a 
singularity of the "standing pole" type: 

Bi* Aik , y;* =- yl'h = - 
c - E-EO ;-SO 

o r  a singularity of the "moving pole" type: 

where [,(q) is a significant function of the transverse 
quasimomentum. The solutions (7) and (8) correspond 
to different physical states of the quasi-one-dimension- 
a1 system. Because of the nonlinearity of the equations, 
it is impossible to indicate which initial conditions cor- 
respond to one solution o r  the other. Consequently, all 
the states considered in Ref. 2 a r e  possible in principle 
in our case. Nonetheless, for the physically important 
case of an initial interaction between chains that falls off 
rapidly with distance, we can show that the singularity 
is of the form of a moving pole. The existence of a so- 
lution of the moving pole type can be demonstrated also 
without the condition of rapid decrease in the interaction 
of the electrons on different chains, but with a limita- 
tion on the sign of this interaction. This is either the 
requirement of attraction of all electrons on different 
chains o r  the requirement of alternation of repulsion and 
attraction a s  the distance between chains increases (see 
the Appendix). In all probability, the solution of the 
standing pole type (7) i s  a special case of the solution of 
the moving pole type (8) with a degenerate dependence 
[,(q)= to and is realized only under specific initial con- 
ditions. 

The fact that the pole part yl(q) contains a dependence 
on the transverse quasimomentum q means that near the 
transition the basic contribution to Eq. (6) for yi(q) is 
made by the term which does not contain the integration 
over q .  This term has the form C , y ~ ' y ~ k  in the coordi- 
nate representation and describes the contribution of 
the Peierls channel to y:k. 

Actually, in the absence of hops of electrons between 
chains, transitions with participation of electrons on in 
termediate chains a r e  possible only in the Peierls  chan- 
nel. The fact that the pole singularity ar ises  only in the 
Peierls  channel means that a dielectric transition is 
taking place. 

The transition is accompanied by the appearance of a 
charge-density wave with longitudinal component 2pF and 
transverse component qo (qO is that value of q a t  which 

has a minimum). The charge-density waves on dif- 
ferent chains a r e  in phase, qo= [O,O] if the unrenormal- 
ized interaction between the chains is one of attraction, 
and in counterphase, q,= [n, n] if it is one of repulsion. 
These cases a r e  considered in the Appendix. In the gen- 
e ra l  case, the vector qo is generally incommensurate 

with the transverse vectors of the reciprocal lattice and 
is temperature dependent. 

If the electrons on one chain attract  one another, gl 
< 0, then in all the cases considered in the Appendix, a 
moving pole is also formed. But, a s  is seen from (5), 
this takes place when all l yfk I > 1, i. e . ,  the parquet ap- 
proximation is inapplicable. Therefore, it is entirely 
possible that arguments favoring a dielectric transition 
a t  g1 < 0 can turn out to be incorrect. 

The conclusion that a moving pole exists is valid also 
in the case of complicated systems consisting of sublat- 
tices of conducting chains imbedded in one another, as,  
for example, TTF-TCNQ. It can be shown that the for- 
mation of a moving pole in the subsystems TTF and 
TCNQ takes place simulataneously. Denoting the chains 
of TTF and TCNQ by the indices a and b,  we write down 
equations3' similar to the f i rs t  of Eqs. (6), in the form 

(we omit the integral terms).  It is then seen that if 
there is a singularity in yaa(q) a t  q=qo ,  then this singu- 
larity exists also in yab(qo) and in ybb(qo). (If db(qO)  = 0 
for any reason, then the transitions take place indepen- 
dently in the different subsystems. ) 

3. EQUATION FOR THE DIELECTRIC GAP 

The fact that a singularity ar ises  only in one of two 
scattering channels allows us  to apply the ladder ap- 
proximation, analogous to BCS, near the transition. The 
effective vertex of the interaction of an electron and a 
hole will be the sum sik of all  diagrams that a r e  irreduc- 
ible to a Peierls channel (Fig. 1). True, in contrast to 
BCS, sik in the parquet approximation is a function of 
the maximum momentum o r  frequency to the right o r  
left of the sik cross section (see Fig. 1) or the corre- 
sponding logarithmic variables 5 and 5': 

where 

Salt) =gl'*+C1"(E) -'A (g>+CLii(b) ) 6ik, 

here Cfk and Cji a r e  the contributions made to yik and 
yii by diagrams that a r e  reducible in the Cooper chan- 
nel. 

FIG. 1. 
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At 5- to the function sib([) does not have singularities. 

We write down the equation for  the dielectric gap x 
with accuracy to within components of third order in n : 

On the right side of (10) summation over all chains k i s  
understood. 

We shall not take into account the diagram with n in- 
serted in sib. Actually, if we insert a GnG or  GxGx*G 
line in place of any G line in s", then the integration in 
the corresponding cross  section will not be logarithmic 
and the resultant diagram will have an additional small- 
ness -g besides the smallness (x /T)"  corresponding to 
an expansion in x .  We write down (10) in the coordinate 
representation: 

where Sik differs from the dimensionless quantity sib by 
the factor 2sv,. 

We transform from the variables rl and r2 to their 
arithmetic mean R and difference Y. We shall assume 
R to be a three-dimensional vector. It is then not nec- 
essary to write the numbers of the chains i and k. 

We change R and r to the Fourier components P and 
p. The vector P corresponds to the total quasimomen- 
tum of the paired particles and contains the longitudinal 
and transverse components P = {P, 9). The quantity Ip I 
-p, is the distance of the paired particles from the 
Fermi surface. Near P= 2p, and q =qo, we carry  out 
an expansion, limiting ourselves to terms of second or-  
der in P - 2p, and q - qo. After simple calculations we 
obtain 

b 

, dp' 
XG:~ ( p ' )  G:,, ( P ' + ~ P F ) S ( ~ Q ,  P ,  P ) 2 ~ .  (12) 

In the BCS theory, one always separates the variables 
by writing u(P, q,p) in the form x(P, q) f (p), and obtains 
an equation for  H ( P ,  4). In our case, because of the one- 

dimensionality of the G functions of the electrons, this 
cannot be done; therefore, we write n(P,q,p) in the 
form 

where the function f (p)  satisfies the equation 

with the normalization f (p,) = 1 and fl  (P, q, p)  is a small 
correction. In what follows, we shall show that the cor- 
rections to the equation for n(P,q)  due to f i (P ,q ,p)  a re  
small. 

We substitute (13) and (14) in (12). We have left in 
f, only t e rms  of f irst  order. We write down the remain- 
ing integrals in terms of logarithmic variables: 

where 

We can apply to fl  the condition of orthogonality to f in 
the logarithmic integration: 

f f i ( E ) f  ( i ) d i = O .  
I 

We multiply (15) by f(5) and integrate over 5: 

We note that the integral in front of the curly brackets 
is equal to unity. (see (14)). Comparing (16) with (15), 
we can establish the fact that f1 (P, q,p) - (q - qol2 (p, q); 
therefore, we can neglect the last term in (16). We ob- 
tain the Ginzburg-Landau equation for the order param- 
eter: 

aZ 
x7S(q ,  a to, t f )  Iqmqo+q lx ( P ,  q )  12 )  X(P,  q )  so. (17) 

The function S(5) can be calculated with logarithmic 
accuracy by solving Eq. (6) numerically. Knowing $51, 
we can determine f(5). We write down (14) in the loga- 
rithmic variables: 

Differentiating with respect to 5, we get 
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We introduce the function 

i 

then f(() is determined from the solution of the equation 

F"('s)=SJ(qo, I ) F ( E )  (19) 

with initial conditions F ( tO)  = 0 and F'( tO) = 1. 

With the help of (17), we can determine (see, for ex- 
ample, Ref. 4) the region of applicability of the theory 
of the molecular field: 

T T  aZ -2 1 %  w [ S f ' s  j ' s f  - E 2) I ]  -a z  (20) 
0 0 aq- 

From (17) and (12), we can establish the expression for 
the free energy. Substituting the equilibrium value of n 
in it and differentiating twice with respect to the temper- 
ature, we obtain (exactly a s  in BCS theory) the expres- 
sion for the temperature jump at  the transition point: 

It is  not difficult to establish the fact that the logarith- 
mic corrections that a r e  typical of one-dimensional sys- 
tems a r e  lacking in the heat capacity and the permittivi- 
ty. Actually, the complete vertex in the corresponding 
diagram (Fig. 2) does not contain any singularity at the 
transition point. The value of the gap at zero tempera- 
ture is connected with the transition temperature in the 
usual way: x =nTo/y, where lny = C =  0.577. 

4. PHONONS 

The expression for the temperature of the dielectric 
transition To - B exp{- (l/g) ln(g/g' '+I)) contains an addi- 
tional smallness: therefore, the transition takes place 
a t  a temperature known to be below the Debye tempera- 
ture. Account of the phonon mechanisms a t  T <  w~ leads 
to a renormalization of the constants of interaction and 
of the limits of integrationcz1: 

where g,, is the constant of electron-phonon interaction. 
We shall assume that the inequalities for the interaction 
constants, which we have used, do not change here. At 
T- w ~ ,  the effective interaction constant of electrons 
and holes S" experiences a jump. The delta-shaped 
singularity in S1(q0, () leads to a break in the function 
F ( [ ) ,  i. e., a jump in the value of the dielectric gap. 
Thus, below the transition point, a singularity of the 
order of ( T ~ / w ~ ) ~  occurs in the density of states a t  w - WD. 

FIG. 2. 
L+ -k 

The author thanks I. E. ~ z ~ a l o s h i n s k i i  for interest 
shown in the research and for valuable discus~yions, and 
also D. E. ~hmel'nitski'i and S. A. Brazovskii for con- 
structive critical comments. 

APPENDIX 

We write down the f i rs t  of Eqs. (2) in the form 

(A. 1) 

At some 5 let al l  yi:2 < 0 (i # k, and also y2 - 2y1 > 0). Then 
all  the terms in (9) a r e  negative. We write down the 
following equations for  yl, yz: 

-=- dyz I - y ( y l t h ) 2 ,  -=-- 
d's 2 (" tdZ.  

d E  k 

(A. 2) 

The increments yl a r e  at least twice the increment in 
y2 and these increments a r e  negative. Therefore, the 
inequality yz - 2y1 >O is preserved. The signs of the 
second and third terms of (A. 1) a r e  also preserved. 
Therefore, al l  the yik (i #k) will be negative for all  suc- 
ceeding 5. 

The f i rs t  of the Eqs. (6) is equal to the sum of Eqs. 
(A. 1) with the factors exp(iqpik). Since all the terms of 
this sum a r e  negative, the derivative of y,(q) is maxi- 
mum in absolute value a t  q =  0 and increases. There- 
fore, yl(0) becomes less than zero at some (. We write 
down for dyl(0)/d( the inequality 

3 r l Y O )  d r l ( 0 )  < - y i2 (0 )+yr  (0) y2< -- --y?(O)<- 
2 d's 2 .  (A. 3) 

Thus, yl(0) h a s  a pole singularity. In order to make 
clear the character of the singularity in the vicinity of 
q =  0, we differentiate (6) twice with respect to q. At q 
= 0, we obtain 

where 

Near the pole, we write the integral terms in (6) a t  q 
= 0 in the form yl(0) (Al - Az). We denote the residues 
in Al and Az by gl and 62. Here, - $ G (6iV2) " 0. Then 

We write down for A(0) an inequality similar to (A. 3): 

The residue on the left side of (A. 4) is equal to 

(A. 5) 

Therefore, the degree of the pole singularity in A(0) 
= a2y1(q)/aq2 I is higher than first, i. e. ,  yz(q) has the 
form I/(( - tO(q)) near the pole. 
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Thus, the sufficient conditions for the formation of a 
moving pole for y:'+'<O a re  the following (at 5 = 0): a) 
all $lPz < 0 (i # k) o r  b) all gi '+' << (g/n !)( gi This 
means that on the right sides of Eq. (9) we have left only 
terms with y: '" from (5) and at some 5 ,  all the y r  be- 
come less than zero. 

If y:'+'>O, then the moving pole is formed under the 
conditions: c) gf ''2 < 0, g: "3> 0, . . . a11 gkk < 0 or  b). 
Here all the yik will have alternating signs. Therefore 
the singularity appears at q +O. For example, for a 
square lattice of chains, q = [a, a]. 

"we shall also make use of the mixed representation. The mo- 
mentum along the corresponding chain and i t s  number a r e  in- 
dicated here.  On each chain, the electrons occupy in  the one- 
dimensional reciprocal cell  the region between - p F  and + p F .  
We then ma? use of the term "Fermi point. " 

"1n place of gak, qk, we shall also use the notation gi "", yi '+", 
where n i s  the minimuin number of transitions between near- 

e s t  chains, which must be undergone in,order to proceed from 
chain i to chain k .  F o r  the quantities g'i, y", we shall use 
the notation g, y. 

3 ) ~ h e  Fe rmi  momenta a re  the same in  both subsystems. The 
difference in the Fe rmi  energies can be removed by renor- 
malization of the constants. But the variables [a'b = ln(;/ 
max{T, w, vFbp)) a r e  nevertheless all differently defined be- 
cause of the difference between the Fermi  velocities. There- 
fore, Eqs. (9) can be written down only a t  w = 0, p  = 0 in the 
investigation of the temperature dependence of y([). 
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The spectrum of the submillimeter photoconductivity of n-GaAs and n-Ge in a magnetic field up to 60 
kOe at helium temperatures was investigated. A large number of lines due to transitions between excited 
states of the donors have been investigated, and the measurement results were used to determine a 
number of levels of the energy spectrum in a wide range of magnetic fields. For GaAs, these data are 
compared with calculations of the energy spectrum of the hydrogen atom in magnetic fields up to -2X lo9 
Oe. For the donors in Ge, the energy spectrum is investigated at different orientations of the magnetic 
field relative to the crystallographic axes (H 11 [loo], [I 1 I], [110]), and these results are also compared 
with the corresponding calculations. 

PACS numbers: 72.40. + W, 72.60. + g 

INTRODUCTION 

The photoexcitation spectrum of shallow impurities in 
many superconductors lies in the submillimeter band 
and makes i t  possible to obtain information not only on 
the properties of the impurities, and particularly on i ts  
energy spectrum, but also on the semiconducting crys- 
tal itself. The results of submillimeter spectroscopy of 
semiconductors a re  of interest for atomic spectroscopy. 
By using a s  a model a shallow impurity in a semicon- 
ductor, it is  possible to obtain in a number of cases ex- 
perimental data which cannot be obtained by studying 
the atoms in free space. A sufficiently well-known ex- 
ample i s  the problem of the properties of atoms in very 
strong magnetic fields. Indeed, from the point of view 
of the influence on the impurity-atom spectrum, the ef- 
fective magnetic field is equivalent to one that is larg- 
e r  by 4-6 orders of magnitude than in the case of atoms 

in f ree  space. This i s  caused by the small character- 
istic energies and by the strong interaction of the shal- 
low-impurity atoms with the external magnetic field, 
a fact explained by the low effective mass m*  of the 
electron (hole) and the large dielectric constant x of 
the medium-the semiconducting crystal. The impuri- 
ty-atom spectrum therefore turns out to be strongly 
shifted towards longer wavelengths. 

We have investigated the energy spectrum of shallow 
impurities in Ge and GaAs and the effect exerted on it 
by a magnetic field H, using fo r  this purpose a highly 
sensitive backward-wave-tube (BWT) submillimeter 
spectrometer of high resolution. ['I It i s  customary to 
use for such measurements long-wave infrared gratings 
and interference spectrometers. In particular, three 
groups have recently published on the spec- 
troscopy of residual shallow impurities in ultrapure Ge 
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