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The electric resistance of superconductors in the intermediate state is calculated for various relations 
between the N and S layer thicknesses and the characteristic superconductor lengths (mean free path, 
energy relaxation length, and electric field decay length in the S region). It is shown that Andreev 
reflection at the S-N boundaries leads to electric field discontinuities at the boundaries, whereas the 
potential remains continuous. 

PACS numbers: 74.20. - z 

1. INTRODUCTION superconductor in the intermediate state. The analysis 

In measurements of the resistance of a supercon- 
ductor in the intermediate state, ~ a n d a u ~ ' ]  and then 
Pippard and coworkersc2] found that the resistance R 
of the system exceeds the resistance RN of the N re -  
gion, i. e. ,  the S region has a finite resistance. The 
presence of an excess resistance 6R = R - RN was con- 
nected by Pippard et al.I21 with a discontinuity in the 
electric potential 40 a t  the S-N boundary, arising a s  a 
consequence of the Andreev reflection of the quasi- 
particles from the S-N boundary. They assumed the 
field E= - Bcp/Bx to be equal to zero in the S region. It 
was subsequently made clear, however, both experi- 
mentallyc31 and theoretically, c41 that an electric field 
exists in the S region and falls off exponentially with 
distances from the boundary. 

The equation which describes the spatial change of 
the field E in a superconductor was derived phenomeno- 
logically by Rieger et al., c4' who found that the charac - 
teristic field decay length is the correlation length 5(T). 
However, a s  shown by Gor'kov and Eliashberg, C51 this 
result is valid only for  gapless superconductors with 
high concentration of impurities. In the case of ordi- 
nary superconductors with a gap, the field penetrates 
into the superconductor to a significantly large depth 
1, = ( ~ r , ) ' / ~ ,  where D =  v1/3 i s  the diffusion coefficient, 
T,= T,(T/A)'/~ is the time in which equilibrium i s  estab- 
lished between the populations of the electron-like 
(5 = ( p  -po)v> 0, Po and v a r e  the Fermi momentum and 
velocity, respectively) and the hole-like (5< 0) branches 
of the spectrum, and T, is the energy relaxation time 
of the quasiparficles. This idea was advanced by Clarke 
and Tinkham, tG71 who determined the time r, both theo- 
retically and experimentally, and produced the asym- 
metry of branch populations by means of tunnel injec- 
tion. The equation describing the spatial change of E 
in ordinary superconductors with a gap was derived 
for temperatures near T, in the work of Schmid and 
SchSncal for the case of dirty superconductors (1 << 5/(T)) 
and by usCS1 for the case of pure superconductors (I 
>> ((t)); see  also Ref. 15. 

The distribution of the electric field E (and thus the 
resistance) i s  calculated in the present paper f o r  a 

wiil be carried out a t  various relations between the - 
thickness of the layers of the S and N regions (L, and 
LN) and characteristic lengths I ,  I,, l , ,  where 1, 
= (DT,)'" i s  the energy relaxation length of the quasi- 
particles. In the case L,, L, >> I,, the problem is iden- 
tical in i t s  setup with that considered previously. 
However, reflection of the quasiparticles a t  the S-N 
boundary, investigated by Andreev, C1O1 was not consid- 
ered in Ref. 9. This can be done in the lowest approxi- 
mation in A/T, since the fraction of quasiparticles re-  
flected from the S-N boundary near T, i s  small. Then 
the field E and the potential turned out to  be continu- 
ous at the S-N boundary. Account of Andreev reflec- 
tion in this case leads to a new effect-discontinuity of 
the electric field E at  the S-N boundary and, conse- 
quently, a decrease in the resistance of the supercon- 
ducting regions. This discontinuity decreases a s  one 
approaches the critical temperature, and increases with 
increase in the ratio 1,/1. It will also be shown that in 
the presence of a temperature gradient in the super. 
conductor the reflection of quasiparticles from the 
boundary leads in f i rs t  order in T: to perturbation af the 
gap near the boundary. 

We note that a qualitative analysis of the effect of 
Andreev reflection on the coordinate dependence of field 
and potential was undertaken by ~ a l d r a m .  clll How - 
ever, a s  a consequence of the incorrect boundary con- 
ditions used by him, even his qualitative conclusions on 
the role of the reflection of quasiparticles turned out to 
be in e r ro r .  

2. BOUNDARY CONDITIONS AT THE S-N 
BOUNDARY 

We shall calculate the distribution of field and poten- 
tial in a superconductor, a s  before, with the help of 
the kinetic equation, which i s  applicable to the case of 
pure superconductors when the characteristic scale of 
change of all the quantities entering into the equation is 
large in comparison with <(T). c121 On the S-N bound- 
ary, where the kinetic equation i s  inapplicable, we shall 
match i ts  solutions together with the help of boundary 
conditions. The conditions of reflection of quasiparti - 
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where eS a r e  the even and odd parts (in g N e S )  of the 
distribution function in the Nand S regions, =px/po, 
and 

FIG. 1. Dependence of the energy gap on the coordinate. 

cles a t  the S-N boundary were made clear by ~ n d r e e v . ~ ' ~ ]  
We shall use the same model of the boundaries used in 
his work, C1O1 i. e., we shall assume that a t  equilibrium 
the gap changes jumpwise from zero in the N region to 
a value A in the S region (see Fig. 1). In the derivation 
of the boundary conditions, ~ n d r e e v ~ " ~  copied the 
Bogolyubov-de Gennes equations and obtained from the 
condition of continuity of the solutions a t  the boundary 
solutions that corresponded to incident, reflected and 
transmitted waves. The transmission coefficient of 
quasiparticles with energy c through the boundary (w(c)) 
was then calculated, with the help of which a connection 
was established between the quasiparticle distribution 
functions nN and nS in the N and S regions; 

and 

Here v,=ux([/c) i s  the group velocity of the quasiparti- 
cles. The functions nN and nS enter into (1) and (2) a t  
the same values of the energy c and directions of the 
momentum p = mv and, consequently, a t  different values 
of 5 = ( p  -po)u in the Nand S regions. 

It i s  necessary for us to generalize the conditions (1) 
and (2) to the case of the presence of a field E and a 
current in the system. For this purpose, we must in- 
ser t  the scalar and vector potentials p and A in the 
Hamiltonian in the Bogolyubov-de Gennes equations and, 
separating out the phase x of the order parameter, 
introduce the gauge-invariant potentials 

Here the equations, meaning theref ore the transmission 
coefficient and the conditions (1) and (2), retain the 
same form, except that 5 must be replaced by 

and by nN and nS in (1) and (2), we must mean the dis- 
tribution functions a t  the energies 

We write down these conditions in the form 

[n-] =n+"-nTs=yn-'- sign p - at $>A, 

We also derive the effective boundary conditions which 
we need in the case in which the thicknesses o f  the S and 
N layers exceed the mean f ree  path. We write down 
the kinetic equation 

where I,,, and I,,, are  the collision integrals of the quasi- 
particles with the impurities and the phonons. At dis- 
tances from the boundary that a r e  large in comparison 
with the path length I = VT, in the case in which the f re -  
quency of the inelastic collisions with phonons is small 
(v, << it), the solution (5) in f i rs t  order in the perturba- 
tion has the formc93 

where %(:) i s  the Fermi distribution function and a. and 
a,  satisfy the equations 

aa, 
a,=-1 sign 5 [- ax - ~. 'ET, ' /T]  . 

where D=u1/3, I;;;, (a, is the linearized integral of the 
collision with the phonons, averaged over the angIes). 
We have written out here the term proportional to the 
temperature gradient, aiming to analyze later the 
change in the gap A near the S-N boundary under the 
action of T',. 

The equilibrium part of the solution no(&) satisfies the 
conditions (4). We should require that the correction 
n, also satisfy the boundary conditions. Since n, i s  
proportional to the perturbation, and we solve a prob- 
lem that is linear in the perturbation, it suffices to re -  
quire that n, satisfy the condition (4), in which cand  E 
should be replaced by 5 and c .  The increment n, in the 
form (6) does not satisfy the boundary condition a t  &>A.  
This means that a t  1x1s I we can no longer limit our- 
selves to the f i rs t  two terms in the expansion of nL in 
Legendre polynomials. It is necessary to  seek n, in the 
form 

where the function f i x ) ,  the expansion of which contains 
everything with the exception of the f i rs t  Legendre poly- 
nomial, tends to zero a t  ] X I > >  1.  We need to obtain the 
matching condition for  functions a, and a, that do not 
vanish a t  I x I > >  1. Since f (x )  falls off a t  distances 

n-r=n-se (E-A),  (4) i ts  behavior i s  determined only by the collisions with 
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the impurities; therefore, we omit the collision integral 
with phonons in the equation for  f (x). The boundary 
conditions for  a. and a, follow from the equations for  
f (x) (see the Appendix). 

al-"-a,-s=[a,l] =3/2ya,-, [a,-] =o, €>A. (8) 
[ao,] =3/iya,-, [a,-]=O, €>A, (9) 

where the plus and minus signs denote the even and odd 
(in 5) parts of the functions. The boundary conditions 
(8) and (9) allow us  to find the form of the distribution 
functions and, consequently, the ~ ( x )  dependence a t  
distances from the boundary exceeding the path length 1. 

3. THICK LAYERS 

In this section we calculate the electrical conductivity 
of the system for the case in which the thicknesses of 
the layers a r e  large in comparison with the path length; 
L,,,>> I .  The continuity of the potential @ at  the bound- 
ary at any ratio of the thickness of the layers to the 
path length follows immediately from the continuity of 
the odd part of a, in 5 and from the expression which 
follows from the condition of neutralitycg1 

which i s  valid for any temperature. To find E, we must 
solve Eq. (7b) with the matching conditions (8) and (9). 
We first  consider the case of a temperature close to 
critical (A << T) . 

In lowest approximation in A/T, continuity of the dis- 
tribution function on the S-N boundary follows from (8) 
and (9), and the problem reduces to one previously 
solved.c91 In this approximation, the electric field 
created in the N region by the flowing current is contin- 
uous a t  the S-N boundary, and the solution of Eq. (7b) 
i s  of the form 

ao=-no'@ (x) sign E. (11) 

In the S region, @ satisfies the equationc3] 

where 1, = I,(T/A)'/~. Allowance for the finiteness of A 
leads to the result that the solution should differ from 
(11) in the energy range c << T, where the parameter y 
in the boundary conditions is not small. 

At E << T, the collision integral with phonons zh(ao) 
can be simplified (for the expression for  Ta, see Ref. 
12, for example). We substitute expression (11) in that 
part of Fa(ao) in which a, is contained under the inte- 
gral sign. This is valid with accuracy to small correc- 
tions, since the essential contribution to the integral is 
made by the region E << T. Calculating the integrals 
entering into I,, (a,), we obtain 

where 

i s  the energy-relaxation frequency. In the same way, 
the equation reduces at E << T to the differential equa- 
tion 

At c << T, this equation i s  exact, and a t  c 5  T it gives 
the qualitatively correct result. 

We now consider the structure shown in Fig. 1. As 
i s  known, a phase difference that increases linearly 
with time ar ises  between two superconductors separated 
by a normal region. We shall therefore assume that 
the quantity = a p , / ~ t ,  determined by Eq. (3), is dif- 
ferent from zero in the N layer. We note that a suffi- 
ciently thin layer i s  considered in the present work 
(L,,,>> ((O)), s o  that we do not have to take the Joseph- 
son effect into account (see Ref. 13, for  example). The 
electric field in the N region i s  equal to 

where b, does not depend on the time. In the S region 

In correspondence with what has been said, the ex- 
pression for a, in the N region i s  of the form 

We find a. from (13): 

The constants cNeS are  determined from the matching 
conditions (8) and (9) and the relation (16). We need the 
expression for a:(0) a t  E >> A; i t  is of the form 

E-'--ES+@ (0) a  
aoS (0) =-no1 sign j 

~ + ' / ~ y  ( 1 ~ 1 )  ' 

From the expressions (7a), (10) and (14), (15) for the 
field difference at the S-N boundary, we have 

The fundamental contribution i s  made here by the sec- 
ond term. Substituting af(0) from (18) in (19), we find 

where c0 = ~ ( 3 1 , / 4 a 1 ) ~ / ~  >> A is the characteristic energy 
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in the integrand in Eq. (19). In obtaining (20), we have 
used the form of @(x) in the S region: 

We note that at go<< T, the formula (20) i s  exact and 
a t  go>> T it  has only a qualitative character, since the 
model collision. integral in (13) i s  used in this case. 
However, if L,,,<< I,, then the formula (20) i s  valid a t  
any zo, since in this case the integral of inelastic col- 
lisions i s  unimportant. Moreover, at L,,,<< I,, we can 
obtain an expression for the discontinuity of the fields 
that i s  valid at any temperature: 

At A<< T, the formula (20) follows from (22) at L,,, 
<< 1, and a t  A >> T, we obtain 

What i s  measured in the experiment i s  the effective 
electrical conductivity a*, i s  defined by the equation 

Taking i t  into account that j = UE, in the N layer, we 
find 

Formulas (20), (22), and (24) connect the measured 
quantity a* with the characteristics of the system L,,,, 
I, I,, and so on. 

With the help of Eq. (40) (see the Appendix), we can 
clarify the behavior of the field and the potential at dis- 
tances less than or  of the order of the path distance 
from the boundary. The function j,(x), obtained with 
the aid of the Fourier transform of the principal (sec- 
ond) term in the right hand side of Eq. (41, i s  negative, 
i. e., the Andreev reflection leads to a decrease in the 
difference of the electron-like and hole-like perturba- 
tions a t  distances less than o r  of the order of 1 from 
the boundary. It turns out, moreover, that a s  x- 0,  
the functionf,(x) and, in accord with (lo), 9(x) also, 
behaves a s  xlnx + O(1) + Oh); consequently, the field 
E =  - d l  diverges logarithmically near the boundary. 
However, if we take i t  into account that the energy gap 
at the S-N boundary does changes not discontinuously 
but smoothly over the correlation length, the divergence 
i s  removed. This can be verified by replacing 6(x) in 
(37) by a smooth function that differs from zero at 1x1 
5 [(T). As a result, the electric field has an addition 
with a maximum in the N region and a minimum in the 
S region, the value of which is of the order of 

FIG. 2. Coordinate dependence of the electric field and of the 
potential near the boundary. 

At distances I x l>  1 the contributions to the field and the 
potential due to f l  (x) fall off exponentially. This means 
that they do not make a contribution to the measured 
difference in the potentials. The variation of the elec- 
t r ic  field and the potential with the  coordinate a r e  shown 
in Fig. 2 for the case LNts >> I,. 

We note that, in spite of the fact that the electric field 
existing in the interior of the S region (at distances -1,) 
produces a quasiparticle current, there is no total cur- 
rent in the interior of the superconductor. The compo- 
nent of the current of quasiparticles in the direction 
perpendicular to the boundary is cancelled by the cur- 
rent of pairs in the interior d the superconductor 

a s  a consequence of the Meissner effect, since the total 
current distribution is described by the same equation 
a s  in the absence of an electric field, i. e. , the total 
current in the S region flows in the Meissner layer along 
the S-N boundary. 

4. THIN LAYERS 

In this case, the solution of Eq. (31) (on the left side 
of which there should be added a term nLis u p )  i s  sought 
in the form (32). For  the nonequilibrium antisymmetri- 
cal (in the angles) contribution to  the distribution func- 
tion q we have: 

For the contribution $ that is symmetric over the angles, 
we obtain the following from Eq. (33), in which only the 
f i rs t  term on the left side should remain, 

In addition, we must again substitute the solutions (26) 
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and (25) in the boundary conditions (3), taking into ac- 
count the antisymmetry of $(x)  relative to the median of 
the Sand N layers. We can neglect the component with 
y in the right side of (3), since this leads to contribu- 
tions of the type LS,,/l. Acting in this fashion, we find 
that 

where the plus sign refers  to the S region and the minus 
sign to the N region. 

It i s  not difficult to  verify with the help of Eqs. (27) 
and (25) and also Eq. (9), in which a, should be replaced 
by $, that the current in the N region is equal to j = UE 
and the average field E i s  equal'to E= (E 'L, + E ,L,) 
x (L, + L,)", since the field E S * N  in each layer does not 
depend on the coordinates. If we determine next the 
field E S p N  by means of (41, (15) and (9), we find, finally, 
that 

This expression is valid a t  all temperatures. 

5. THE PERTURBATION OF THE ENERGY GAP 
NEAR THE S-N BOUNDARY 

By studying the passage of current through the S and 
N layers, we have seen that the equilibrium-distribu- 
tion-function increment symmetric in the angles is 
asymmetric in [[Eqs. (18) and (27)], i. e., perturbation 
of the gap does not occur in the linear case considered. 
A different situation ar ises  in the presence of a tem- 
perature gradient T: in the system. In this case, be- 
cause d the Andreev reflection of the quasiparticles, 
the gap A(T) i s  perturbed a t  distances - 1, from the 
boundary. 

We limit our consideration to  thick layers LsPN>> I, 
and assume that the temperature is near critical. Eq. 
(13) has then a solution that satisfies the boundary con- 
ditions (8) and (9) in the S region, in the form 

@ 0  E a; =---- 
@, sign E -(E/E) ( l+3/21y I1,/1) 

4T E (PC) '{z l + ( e / l E l ) '  +3/21ylLe/l 

In the case T:+ 0, the symmetric (in the angles) in- 
crement (29) to the equilibrium function contains a part  
that is even in 5 and, consequently, leads to a pertur- 
bation of the gap in f i rs t  order in the temperature 
gradient. In obtaining the expression (291, we have 
taken i t  into account that the temperature gradient is 
the same in the N and S layers, to within terms of order 
(A/T)~.  Moreover, since the correction (29) to the dis- 
tribution function leads to a change proportional to 
( A / T ) ~  in the mean energy of the quasiparticles and the 
heat flux, while the coefficient of thermal conductivity 
in the Nand S regions also differs by an amount -(A/T)~, 
it follows from the condition of constancy of the heat 
flux 

that 

to  within terms - (A/T)'. For  this reason, we have 
omitted the term with 8 2 ~ / ~ ~ 2  from (7b) and (13). 

It follows from (29) that the change in the thermo- 
electric field on the S-N boundary i s  also determined 
by Eq. (20), where the field in the N region is now 

Here p/u i s  the differential thermoelectric power in the 
normal state. 

In order to calculate the increase in the energy gap, 
we make use of the self -consistency condition, which i s  
applicable also in the nonequilibrium 

The expression for  the increase in the gap a t  A<< T fol- 
lows from (30): 

Then, substituting the even part of a, from (29), we ob- 
tain 

6. CONCLUSION 

At the boundary of superconducting and normal 
phases, there i s  a jump in the electric field if flow of 
current o r  heat is produced in the transverse direction 
and the potential changes jumpwise on going through the 
boundary. Thus, for example, in the case of sufficient- 
ly thick layers (L,, .>> 1 )  a t  (T, - T)/T, << (Z/Z,)~, inaccord 
with (201, the jump in the field i s  small and the contri- 
bution of the S region to the total resistance o r  thermal 
emf of a superconductor in the intermediate state is the 
same a s  in the normal state (if L, << I,) o r  is equal to 
the resistance of the normal layer of thickness 21, 
= 21 , (~ /~)" '  (if L, >> 1,). If (T, - T)/T, 2 (1/1,)', which, 
by virtue of the condition l/l,<< 1, is possible even at 
temperatures near critical, the field in the S region be- 
comes much less  than the field in the N region. At low 
temperatures (A>  T) the electric field in the supercon- 
ductor is proportional to e'A'T (see (22) and (28)) and, 
correspondingly, the contribution of the S region to the 
resistance and the thermal emf of the superconductor 
in the intermediate state become exponentially small. 

The energy gap in the superconductor i s  not perturbed 
by passage of current in f i rs t  order in the current (to 
within small terms - T/[,). The presence of a temper- 
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ature gradient leads to  the perturbation of the gap a t  dis- 
tances of the order of the energy relaxation length. The 
increase o r  decrease of the gap (depending on the direc- 
tion of the thermal flux) i s  in this case a consequence 
of the Andreev reflection of excitations a t  the S-N 
boundary. 

As i s  seen from the obtained formulas, the effective 
electric conductivity d' of the superconductor in the. 
intermediate state depends on many parameters (LStN, 
1, I,, I,, A(T)). By changing the magnetic field and the 
temperature, we can vary the relation between the thick- 
ness of the layers LStN and the characteristic lengths of 
the system 1, I,, I, and obtain important information on 
the parameters of the superconductors from measure- 
ments d a*. 

The authors a r e  grateful to A. F. Andreev, Sh. M. 
Kogan, A. I. Larkin, Yu. N. Ovchinnikov and A. Ya. 
Shul'man for a discussion of the work. 

APPENDIX 

We introduce the boundary conditions (8) and (9). We 
linearize (5) relative to perturbation of the distribution 
function 121. Omitting I,,, we obtain 

where the bar  indicates averaging over the angles and 
the scattering by impurities i s  assumed to be isotropic. 
Since a, + pa, satisfies Eq. (311, it follows that Ap ,x )  
also satisfies this equation. We divide f(p, x) into parts 
symmetric and antisymmetric with respect to  the an- 
gles: 

From (31) we find equations for q and cp: 

with boundary conditions that follow from (4): 

where y= [-'(E - I  < 1 ). 

We f i rs t  consider the equations for the par ts  of 5 odd 
in $, i .e . ,  for Jc. Using (33) and. (36), we write down 
the equation for  $,: 

We now carry  out a Fourier transformation in the 
dimensionless coordinate x/l, and express $, (0) in 
terms of the-integral of the Fourier components $, (k) 
and $- (k) = f, (k) with respect to  k. Then, eliminating 
$, (0) and averaging over p, we obtain the integral equa- 
tion 

where D(k) = 1 - k-' tan'lk. We can obtain conditions on 
[a1+(0)] and ao,(0) from the requirement f, (k) be finite 
a s  k- 0: 

Eliminating [a,] from (39) and (38), we finally have 

Carrying out a similar procedure with the function $+, 
we can obtain expressions similar to (39) and (40) for 
f+(k), [a0+(0)] and a,,: 

kZln( l+k ,Z) -k ,Z ln( l+k2)  

- x  
kZ (kz -k ,2 )  D ( k )  

We must determine fl (k) from (41) and substitute in 
(39). The solution (40) cannot be found in the general 
case but, fortunately, i t  turns out that this is not nec- 
essary since, a s  is seen from (18), we a r e  interested 
in the values of a, and a, a t  small  y - 1/1,, i. e. , at  

- 
E - A ( Z , / Z ) ~ / ~  >> A. In this case, the solution can be found 
by iteration, assuming the integral term to  be  small  
(we note that even for values of y that a r e  not small, 
the solution of Eqs. (40) and (42) can also be found by 
iteration, assuming the integral t e rm t o  be small, since 
its smallness is assured by the numerical coefficient 
1/2r). On the basis of what was stated above, we find 
in the principal approximation in 1/1, the f i r s t  of the con- 
ditions (8) from (39). 

We find the condition (9) for [ao+] in similar fashion 
from Eqs. (41) and (42), to within a few percent. The 
conditions 

immediately follow from the second condition (4) and 
from the relation 

which follows from Eq. (31) under the condition m=Q 
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The feasibility of obtaining inverted hot-electron distribution functions and a negative differential 
conductivity (NDC) in semiconductors at high frequencies and in strong electric and magnetic fields is 
considered for the case when a strong scattering mechanism is turned on only above a certain critical 
electron energy r = 6,. In pure n-GaAs in a moderate electric field at lattice temperatures T<ho,,  the 
electron energy ro can be identified with the optical phonon energy Rw,. Numerical calculations of the 
electron distribution function by the Monte Carlo method show that in this case it should be possible to 
obtain in crossed electric and magnetic fields a maser type NDC at frequencies w Z  10'' Hz near the 
cyclotron resonance. In a strong electric field, when e, is the intervalley transition energy in n-GaAs, the 
NDC should appear at frequencies of the order of the reciprocal free-flight time of a light-valley electron 
in the electric field. The conditions for the appearance of NDC at frequencies determined by the time of 
flight of the electrons in a field E between t = 0 and e = co = hao> T in n-InSb in a magnetic field 
H II E are also considered for the case when the electrons occupy one lower Landau level. 

PACS numbers: 72.30.+q, 72.20.D~ 

1. INTRODUCTION tribution also when elastic scattering predominates, 

Negative conductivity should be possible in inverted 
distributions of charged particle systems with a region 
of energies c for which the population of the high-energy 
states is greater than the population of the low-energy 
states. For "hot" electrons, however, inverted dis- 
tributions a re  not possible a s  a rule. In fact, under 
typical conditions elastic (or quasielastic) scattering 
predominates for hot electrons over all other processes. 
Hence, the distribution function is almost isotropic, and 
is of the Druyvesteyn type with a maximum at E = O  for  
an arbitrary energy dependence of the scattering inten- 
sity (see, e. g., C192*31). Under these conditions, in- 
verted hot-electron distributions and the resulting nega- 
tive conductivity can arise, apparently, only when the 
electron creation and annihilation (capture and recom- 
bination) a r e  substantial1) (cf. C41). In addition, a s  shown 
by Rabinovich, there is no inverted hot-electron dis- 

while the electron-to-lattice energy transfer proceeds 
via inelastic processes. 

In pure semiconductors, however, conditions exist 
under which strong scattering sets  in (is "turned on") 
only at electron energies above a certain threshold co, 
and at &<cO the scattering is small and the electrons 
move almost freely under the influence of the electro- 
magnetic fields. Under these conditions the hot-elec- 
tron distribution can be strongly anisotropic and inverted 
due to electron recoil o r  accumulation a t  E =cO. The en- 
ergy &,, can be the optical phonon energy Awo (for Awo 
>> T), the energy E, a t  which the intervalley transfer be- 
gins to take place (as for example in n-GaAs), and 
others. Such conditions a re  also favorable to  the for- 
mation of a bulk negative differential conductivity (NDC) 
of hot electrons a t  microwave frequencies. The micro- 
wave NDC can be of two types. 
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