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We investigated the odd "drift" modes in a tokamak, which were discussed earlier in a number of Coppi's 
papers. We show that Coppi's premises, that the odd and even modes are independent of one another, do 
not hold in general. For this reason the odd modes, just as the even modes, are sensitive to dissipation on 
trapped electrons, albeit to a lesser degree than the even ones. It is shown that one of the physical factors 
leading to the coupling of the odd and even modes is the compressibility of the plasma. It is also shown 
that odd modes are coupled with the even ones also if compressibility is neglected, providing that the 
number of wavelengths spanned by the toms is not an integer. The growth rates (or decrements) of the 
odd modes are small in comparison with those of the even modes; they can be substantial, however, in 
problems dealing with the buildup of odd modes by a group of fast ions in a two-component tokamak, 
since the growth rates of this buildup are also small. This is precisely the situation in the case of buildup 
of odd modes by fast ions, a buildup considered by Coppi and Bhadra. It is concluded that the theory of 
collective processes in a two-component tokamak, developed by Coppi and Bhadra, calls in general for a 
revision. 

PACS numbers: 52.55.Gb 

1. INTRODUCTION 

Coppi and ~hadra '"  have considered the excitation of 
odd "drift" modes by fast ions in a tokamak. The in- 
fluence of the trapped electrons on these modes was ne- 
glected by them. This neglect was justified by qualita- 
tive arguments, advanced in Coppi's review, 12] that 
there is no relation between the even and odd modes in 
symmetrical magnetic traps. 

The purpose of the present paper is to analyze the 
relation between the even and odd modes in a more rig- 
orous and consistent matter than in Coppi's paper. '21 

With an axially symmetric tokamak of round cross sec- 
tion a s  an example, we show that Coppi's premise'21 that 
the even and odd modes a r e  independent do not hold in 
general. For this reason, the odd modes, just a s  the 
even ones, a r e  sensitive to dissipation on trapped elec- 
trons, albeit to a lesser degree than the even ones. We 
shall show that one of the physical factors that lead to a 
coupling of the odd modes with the even ones and not ac- 
counted for by Coppi and ~ h a r d a " ~ ~ ]  i s  the compressi- 
bility of the plasma. The odd modes a r e  then coupled 
with the even ones even if an integer number of wave- 
lengths is spanned by the length of the torus. We show 
in addition that the odd modes a re  coupled with the even 
ones also when compressibility is neglected, 'if an 
non-integer number of wavelengths is spanned by the 
torus. 

The initial equations describing the coupling of the 
even and odd drifts modes in a tokamak a r e  shown in 
Sec. 2. The calculation of the growth rates (or of the 
damping decrements) of the odd modes is carried out in 
Sec. 3. The role of mode coupling and the associated 
dissipation on the trapped electrons, in the problem of 
excitation of odd modes by a beam of fast ions is dis- 
cussed in Sec. 4. The results a re  summarized in 
Sec. 5. 

2. INITIAL EQUATIONS 

1. General relations that describe the perturbations. 
The perturbations a r e  assumed potential, with an elec- 
t r ic  field 

The perturbation potential is represented in the form 

Here w is the oscillation frequency, a i s  the "radial" 
coordinate that characterizes the distance between the 
running magnetic surface and the magnetic axis, 6 and 
cp are  cyclic coordinates in the minor and major azi- 
muths of the torus. For  details on these coordinates 
see, e. g., '31. 

The quantity k, denotes the radial wave number. We 
note that by representing the radial dependence of the 
perturbation in the form exp(ikaa) we neglect by the same 
token the effect of the shear. This neglect is introduced 
to simplify the effect of interest to  us, that of the cou- 
pling of modes of opposite parity. It will be made clear 
that when shear is taken into account, the coupling be- 
tween modes of opposite parity should be even stronger 
than when shear is neglected. 

The integer n is the wave number of the perturbation 
along the major azimuth of the torus. The integer m at  
constant $(8) characterizes the poloidal dependence of 
the perturbation and in this case constitutes a wave num- 
ber along the minor azimuth. We, however, will con- 
sider perturbations with $(@ # const. Then the number 
m can generally speaking be set  equal to any integer. 
We assume m to be such that the difference 
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is smaller in absolute magnitude than one-half, where f '2' satisfies the equation 

In (2.3) we have designated by q =~B,/RB, the tokamak 
margin coefficient, B, and B, a r e  the toroidal and poloi- 
dal magnetic field, and R is the radius of the magnetic 
axis. 

Solving this equation by expansion in powers of l/v,,, we 
obtain in the approximation required by us (cf. C5-71) 

H~~ ,nea-no)  for the trapped electrons 
0 for the untrapped electrons . (2.14) 

We represent the function q(6)  in the form of a Fourier 
ser ies  (cf. ''I): The equation for H takes here the form 

e,F - 
H i  ( H )  - ( - 2  Ye-'nqB, 

T. 
(2.15) 

where the superior bar  denotes averaging over the closed 
trajectory of the trapped particle, and 

Here 0, = 1 for 1 2  1 and 0, = 2. It is assumed that only 
the first  few terms a r e  significant in this series, so  that 
actually the summation extends only to a certain I =Im,. 
It i s  assumed also that m >> l,,. 

The condition that must be satisfied by the perturba- 
tion potential \k is obtained by using the quasineutrality 
equation 

We introduce the functions 

where n, and n, a r e  the perturbations of the electron and 
ion densities, which a r e  connected with the correspond- 
ing perturbations of the distribution functions by the 
known relations 

where X = p / ~ ,  E =v2/2 is the particle energy per  unit 
mass, p = v v 2 ~  is the magnetic moment, and u, is the 
modulus of the particle transverse velocity.. Taking 
(2.17), (2.18), and (2.15) into account, we rewrite (2.15) 
in the form 

We proceed to find f,, fi, and correspondingly n, and n,. 

2. Perturbation of the electron density. We start  
with the drift kinetic equation for the electrons It will be useful to represent H in the form 

Here F, is the electron equilibrium distribution function, 
assumed to be Maxwellian with density n,(a) and tem- 
perature T,(a); e, is the electron charge; C i s  the col- 
lision integral. The operator d/dt stands for 

where the functions h:(X, E) satisfy the equations 

Thus, the total perturbed distribution function of the 
trapped electron is represented in the form 

v,, =v,,e,, where u,, is the particle velocity along the 
tokamak magnetic field B; e, =B/B is a unit vector along 
B. The symbol &, stands for the operator of the elec- 
tron drift frequency 

whereas for the untrapped electrons we have 

where k,  =m/a is the poloidal component of the wave 
vector, = d  ln T,/d lnn,, z, =M,V~/~T,,  Me is the elec- 
tron mass, and v is the modulus of their total velocity. 

Representing the perturbed electron density in the form 

1 
n.= erp(- io t+ikOa+in8- inq)  C - ( n . , +  01 cos lB+ne1-sin18) (2.24) We represent the solution of (2.8) in the form 

and taking into account (2.22), (2.23), and (2.7), we ob- 
tain 

501 Sov. Phys. JETP 45(3), Mar. 1977 Mazur et a/. 501 



represented in the form 

(2.25) 
where M ;* i s  the complex conjugate of M :, and the 
symbol (. . .) stands for 

The values of hi were calculated by us previously. '8*" 
The explicit form of these quantities will be used later 
on. 

3. Perturbation of ion derzsity. To determine the 
perturbed ion density we assume 

It is assumed that the function f $" satisfies a drift-ki- 
netic equation of the form 

where v,, is the magnetic drift velocity of the ions and 
is determined by the relation 

wBi =eiB/Mic is the cyclotron frequency of the ions, ei 
= - e, and Mi a re  the charge and mass of the ions, Ti 
and Fi a re  their temperature and the equilibrium dis- 
tribution functions, and c&i is the ion drift-frequency 
operator, defined by a relation analogous to (2.10). 

The function f 1'' takes into account the transverse 
inertion of the ions and their magnetic viscosity (effect 
of finite Larmor radius of the ions), and in accordance 
withts1, is assumed equal to 

where kZ, = ki +kE is the square of the transverse wave 
vector, w;i = (kbcTi/eiB,)(d Inpoi/&) and poi =noTi is the 
drift frequency of the ion along the pressure gradient. 

We assume that 

The solution of (2.28) can then be represented in the 
form (cf. "I): 

o-G., ill, (ti,'/2+~~,') mc +--- a d Y  
F -  C O O - i - - 0  

o RTi oaB. m aa 

Here (w +iv,,v)" is an operator inverse to the operator 
w +iv,,V; it takes into account the effects of the finite 
v,,v/w. In the derivation of (2.32) we used the explicit 
expression for v,, fromc3]. 

1 n,=exp[-iot+ik.a+i(mO-nq) ] -(n,,+ cos 10+nil-sin 10). (2.33) 
01 

Then, taking into account (2.7), (2.27), (2.31), and 
(2.32) we obtain 

2 

eino kLZ --- (w-o"i) $I*. 
on,' 

(2.34) 

Here and below we assume for simplicity that qi = d ln Ti/ 
a Inn, =O; 

where Z(x) = - i f i x ~ ( x ) ,  W(x) is the Kramp function (the 
probability integral of complex argument)c83, vTi = (2Ti/ 
Mi)"' is the thermal velocity of the ions, and the k, 
stand for 

Since we plan to consider henceforth perturbations 
with s << 1 and (kiv,i/~)2 << 1, we simplify expression 
(2.34). We recognize that under the assumptions made 
above we have 

In this case (2.34) reduces to 

Here b,  = e ~ , / M , 4 , ;  c:= T,/M,; k: = l / q ~ ;  12, = s / q ~ .  

4. Quasineutrality equation. Taking into account 
Eq. (26) and the ensuing relation 

and using Eqs. (2.25) and (2.38), we obtain for $: the 
equation 

Here 

The perturbed ion density, in analogy with (2.24), is one = - T,wni/Ti is the drift frequency of the electron 
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along the density gradient, 51 = k,cTe/eiaB, is a quantity 
on the order of wni o r  w,,, and E =a/R is the ratio of the 
minor running radius of the tokamak to  the curvature 
radius of the magnetic axis. For  k, in (2.41) we can put 
approximately k, = l / q ~  (since we assume that Is I << 1). 

We introduce the notation 

so that the quantities A ,  characterize the even part  of the 
potential $ ( B ) ,  and B, the odd part. According to (2.40), 
these quantities a r e  connected by the relations 

Equations (2.43) and (2.44) a re  in fact the sought equa- 
tions with the aid of which we shall investigate the cou- 
pling of modes of different parity. 

5. Linziting case E - 0 and s - 0. From (2.43) and 
(2.44) it follows that Coppi's premises, that there 
i s  no relation between the even and odd modes, a r e  valid 
if c - 0 and s - 0. Actually, putting E = 0 in (2.43) and 
(2.44) and recognizing that 

lim ill,-=0, lim hi-=0, 
' - 0  8 - 0  

we reduce (2.43) and (2.44) to the form 

It is seen that Eq. (2.46) contains only the A,, whereas 
(2.47) only B,, thus indicating that there is no coupling 
between the even and odd modes. 

It i s  also seen that in accordance with the premises 
the odd modes, in contrast to the even ones, a r e  

not sensitive to  effects due to trapped electrons. 

Apart from a constant, Eq. (2.47) has a solution 

corresponding to eigenfriequencies w, that satisfy the 
equation 

In the approximations b i  << 1 and (k,c,/w)' << 1 assumed 
above, this means that 

These a r e  the "drift" waves, f i rs t  considered by Rada- 
kov and Sagdeev a s  bi - 0, and then by ~ t h e r s ~ ' ~ - ' ~ '  for 
finite bi. In the cited s t ~ d i e s ~ ~ " ~ '  they investigated also 
"drift" ("universal") instabilities due to the interaction 
of the resonance electrons with these waves. The mag- 
netic field is assumed in this case homogeneous, so  that 
the effect of the trapping of the resonance electrons, an 
effect typical of the tokamak geometry, was neglected. 
The growth rate of the perturbations, y = Im w, turned 
out to be of the order of 

where v,, = (~T,/M,)"~ is the thermal velocity of the 
electrons. 

The influence exerted on the drift instability by the 
trapping of the resonant electrons in toroidal traps was 
f i rs t  considered by Coppi et al., C'Sv141 who have shown 
that this effect leads to  a decrease of the growth rate 
(2.52) by an amount on the order of ~-'(w/k,v,,)~, SO 

that when this effect i s  taken into account we have 

(We have put here for simplicity q =O. ) 

We shall show that the coupling of the odd drift modes 
with the even ones and the associated interaction of the 
odd modes with the trapped electrons leads to a growth 
(or damping) of the odd modes with a growth rate (de- 
crement) much larger than (2.53). 

3. CALCULATION OF THE GROWTH RATE 
(DAMPING DECREMENT) OF THE ODD MODES 

We put s - 0 in (2.43) and (2.44). We then obtain 

Summation over repeated indices is implied, and the 
newly introduced symbols denote 

We assume the oqerators 4 and k to be of zero orders, 
and G, j, ;, and t of f i rs t  order in E. i. e., according to (2.41), 
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In zero order i t  follows from (3.1) and (3.2) that we obtain the following equation for i i l )  =A',')/&: 

where the zero superscript demotes the zero order. 

We consider an odd mode, putting (cf. (2.48), (2.49), 
(2.51)) We shall solve this equation by successive approxima- 

tions in the contribution of the trapped particles (i. e., 
in the parameter &'I2, see, e. g., C6*71). In the highest 
order we have 

We then obtain in first  order from (3.1) and (3.2) 

I@, 
Q::' . ~ i ~ ~ ' + p r l ~ ~ i ~  =0, (3.10) 

this means that 

(110- 62qZR20n, k a  ~ N , I  A,,, ---- 
c.l k, 2N*l' Here A!:! =R, ,. (w")), Q;:! = G,,, (w")), and the super- 

scripts 1 denote increments of first  order. Multiplying 
both halves of (3.11) by B!'), summing over I, and tak- 
ing (3.8) into account, we obtain 

At I =N, Eq. (3.20) is not valid. We obtain A$')' from 
the equation 

When (3.21) is taken into account, this yields 

A:"'= j d i ~ ~ + . ~ , ) / (  8. j d h ~ ~ " h ~ ) .  
ca2 k b  

i. e., the correction to the first-order frequency is equal 
to zero. It is therefore necessary to calculate the sec- 
ond-order frequency correction d2), and this calls for 
considering the second order perturbation theory. In 
second order i t  follows from (3.2) that The quantity gN introduced here is defined by the rela- 

tion 

and according to (2.21) i t  satisfies the equation Multiplying both halves of this equation by BIO)  and sum- 
ming over I, we obtain 

Next, putting 2;') 62i1), we obtain from (3.19) 

We a re  interested only in the imaginary part  of the in- 
crement to the frequency, Im d2). Recognizing that ac- 
cording to (3.11) we have 1m B I ~ )  = 0, we get from (3.14) 

Substituting the obtained values of A:"O, we obtain for 
I + N 

Taking into account the explicit form of the quantities in 
the right-hand sides of this equation, we get - @3, l d k  M,+.h , ) (  B. J d i  .Wr+'gN )/( B. J dk l l N + ' h N ) )  . 

(3.26) 
It follows therefore that 

8 qRo,, k. 
s~:tl,-sx,:': - - ( I  +$)-I(?) {( B. j d ~  ~ ~ e g , )  

4no,, 

- ( B .  j M )( B, j di. ~ , + , g ~ )  /( B. j dk M ~ + * ~ N ) )  . 

(3.27) 
With the aid of (3.16) and (3.27) we obtain 

1 r n C - L  { ( B ,  j d ~ a ~ . ~ . )  
0,. 411 c. 

- (8. j d i .  GNeh,+ )(B.  dh M N + ' ~ N  )/( B ,  J dh M N + ' ~ N  )) . 
(3.28) 

We now proceed to calculate 1mAh2~. We note that 
according to (3.10) and (3.19) we have 

Substituting here the explicit form of the matrix c$,,. 
from (3.3) and recognizing that according to (2.41) and 
(2.50) we have 
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Using our earlier results, "*" we get 

M N 2  

(3.30) 
Here I, and I, a r e  integrals calculated in our paperc6': 

I1=(z-'"[I+G(Yz)]'"~=1.61, 
Z,-<~-"(Z-~/,) [ I f  G(Yz) I">=-1.07. 

The symbol ( 0  . ) stands for (cf. (2.26)) 

The function G ( x )  is of the form 

ve is the frequency of the electron collisions, defined by 
the rebtion 

A is the Coulomb logarithm, w:, =4nn0e2 /~ ,  is the elec- 
tron plasma frequency. It is assumed that w> ve/&. 
The integration with respect to A in (3.30) is carried 
out from l/Bm, to l/Bm,,. 

Substituting (3.29) in (3.28), we obtain ultimately 

In particular, for N = 1 we have 

It is seen that the growth rate increases with k,. The 
value of k,, however, cannot be too large, since we have 
used above perturbation theory with respect to a small 
parameter proportional to k,. An estimate of the max- 
imum permissible k, and kFaX at which formula (3.34) is 
still valid can be obtained from the condition that the 
difference Aw between the zeroth-approximation eigen- 
frequencies is of the order of the real  frequency correc- 
tion necessitated by the coupling of the modes. Using 
for Aw the estimate Aw - and for Re wC2' the 
estimate (see (3.14)) 

we obtain 

In the derivation of (3.35) we have put b, - k2,~$/4~.  AC- 
cording to (3.34), this value of k, corresponds to the 
growth rate 

Thus, the upper limit of the growth rate (damping) of 
the odd modes coincides with the growth rate (decre- 
ment) of the even modes. To obtain an estimate of y,,, 
we recall  that in our case 

Putting also k, - k,, we get 

From a comparison of (3.37) with (2.53) it is seen 
that the odd-mode growth rate obtained by us and due to 
the coupling of these modes with the even ones via the 
compressibility effect is large in comparison with the 
growth rate of the uncoupled-mode approximation when 

Since, according toc"], the ratio w,,/k, is bounded from 
above by the Alfven velocity c, = ~ , / ( 4 r ~ ~ n ~ ) " ~ ,  

i t  follows that (3.38) is satisfied for all the permissible 
w,, if 

For  the example of the thermonuclear reactor, consid- 
ered inc151, when no = 3 . loi4 cm", Te = Ti = 15 keV, Bo 
= 4 lo4 G, R = lo3 cm, & = *, and q = 2, the left-hand 
side of the inequality (3.40) i s  of the order of lo-' as 
against lo-' on the right side. This means that the 
growth rate obtained by us is much larger than the one 
that follows from the uncoupled-mode approximation. 

4. ROLE OF DISSIPATION ON THE TRAPPED 
ELECTRON IN THE PROBLEM OF EXCITATION OF 
0DD"DRI FT" MODES BY FAST IONS 

Coppi and ~ h a d r a " ]  have found that a group of fast 
electron ("beamJ') of density n, and temperature T, ex- 
cites odd "drift" modes with a growth rate on the order 
of 

It was assumed inc" that this instability can have a 
bearing on the problem of the two-component tokamak.'" 
Coppi and ~hadra '"  applied their results to an example 
with a two-component tokamak having the parameters 

If we take by way of an estimate c =a, then we obtain 
from (4.1) and (4.2) 

We compare the beam growth rate (4.1) with the 
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growth rate (or decrement (3.37)) obtained in Sec. 3. 
At 1 %  I = 1 we get from (3.37) the estimate 

Recognizing that according to Coppi and ~hadra ' "  the 
characteristic wave numbers k ,  of the perturbations ex- 
cited by the beam are  of the order of the reciprocal Lar- 
mor radius of the fast ions, 

and putting k,  z k,, we obtain from (4.4) 

~ o l l o w i n ~ ' ~ ' ~ ,  we put T, = 5 keV, n = loi4 cm9. Here v, 
= lo4 sec" and c,= 5 x 10' cm/sec. Putting also a = 10' 
cm, we obtain from (4.6) 

In the example considered by us, the growth rate of 
the odd mode, due to collisional dissipation by trapped 
electrons, is comparable with the beam growth rate, 
and even exceeds it. 

5. CONCLUSION 

It follows from the foregoing analysis that, in con- 
t ras t  to the previously held concepts, cb23 odd drift 
modes in a tokamak a re  sensitive to collisional dissipa- 
tion by trapped electrons. This i s  attributed to cou- 
pling of the odd and even modes, a coupling not accountec 
for inc1*". This coupling is due to the compressibility 
of the plasma, and also to the fact that the number of 
wavelengths spanned by the length of the torus i s  in gen- 
era l  not an integer. 

The growth rates calculated by us for the odd modes 
a re  quadrating in the coupling parameters. They a r e  

therefore smaller than the growth ra tes  of the even 
modes. These growth rates (or decrements) can, how- 
ever, be significant in problems involving the buildup of 
odd modes by a group of fast ions, since the growth 
rates of such a buildup a r e  also small. The estimates 
given above show that this is precisely the situation in 
the case considered by Coppi and Bhadra. ''I This 
means that the theory of collective processes developed 
by them needs, generally speaking, to  be revised. 
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