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The infrared-asymptotic form of the one-particle Green function of a one-dimensional model with four- 
fermion interaction is investigated in the approximation of a large number of fermion fields. It is shown 
that the ferrnions become massive as a result of the interaction. The Green function has a branch point at 
p ' = m 2 .  Spontaneous symmetry breaking does not occur and a mean field does not arise. 

PACS numbers: 11.1O.Jj 

INTRODUCTION 

It is usual to associate the appearance of a fermion 
mass as a result of spontaneous breaking of y5-invari- 
ance with the formation of a Bose condensate of pairs 
of fermions. ['*21 However, the existence of a mean field 
of this type leads to unpleasant cosmological conse- 
quences. [31 

Below we consider a y5-invariant model in which a 
condensate does not ar ise  but a fermion mass appears 
nevertheless. This is a one-dimensional model (one 
spatial coordinate) in which there a re  several Fermi 
fields. Such a model with two fields was proposed by 
~nsel 'm["  as an example of a model that has asymp- 
totic freedom at short distances and does not have zero 
charge at large distances. In the paperc51 by Vaks and 
one of the authors this model was used a s  an example 
in which a fermion mass arises as  a result of sponta- 
neous breaking of y5-invariance. However, the proof 
given in this paper was not rigorous. The point is that 
at momenta of the order of the mass the interaction be- 
comes strong and the parquet approximation, equivalent 
to the first order in the renormalization-group equa- 
tions, i s  not applicable. 

Gross and NeveuC6' considered an analogous model 
with a large number of fields (N>> 1). In this case the 
interaction always remains weak (of order N-') and quan- 
titative estimates a re  possible. In the leading approxi- 
mation in N" there arises a Bose condensate (mean 
field), and as  a consequence, a fermion mass. In the 
model in which only a discrete symmetry group exists 
(invariance under $ - y5$) the subsequent approximations 
in N-' do not alter the qualitative result. However, in a 
model with a continuous symmetry group (invariance 
under i j ,  - exp(iay5)+), taking the next approximation in 
N-' into account leads to the vanishing of the mean 
field. [71 

In the analogous nonrelativistic model[81 the pair cor- 
relation functions were calculated and decrease by a 
power law at large distances. An analogous situation is 
well known in the two-dimensional Bose gas. Is' This 
means that there is no long-range order in the system 
but massless excitations (the analog of Goldstone par- 
ticles) exist. These excitations lead to infrared singu- 
larities and destroy the long-range order. 

Below it is shown that, nevertheless, the fermion 
mass does not vanish. The infrared singularities, a s  in 
quantum electrodynamics, lead to the result that the 
one-particle Green function has a branch point at p2 = rn2 
instead of a pole. 

Four-ferrnion interaction and the nonlinear o-model 

We consider a model with Lagrangian density 

where $, is the fermion field, k = 1,. . . , N i s  the isoto- 
pic index, and 8 = y, a". Our choice of y-matrices i s  the 
following: 

This choice of y5-invariant interaction is convenient for 
the expansion in P-' and permits isotopic SU(N)  sym- 
metry. The interaction constant g is connected with the 
isoscalar and isovector SU(N) interaction constants in 

by the relation g 2  =g2 = 2Ng1. For N= 2 the connection 
with the notation of the paper of Vaks and ~ a r k i n [ ~ l  is 
a s  follows: 

Introducing the intermediate boson fields a and T ,  we 
can rewrite the Lagrangian (1) in the form 

or,  denoting o+ ilry, = p exp(iy58), in a form resembling 
the nonlinear o-model: 

Since in the two-dimensional model the continuous 
SU(N) symmetry is not broken the Green function has a 
simple structure: 
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x (I exp ( i  P ~ ~ ) ~ D J ~ D $ , D ~ D ~ )  - ' - 0 ( ~ ) 8 ~ ~  (4) 

In formula (41, e. g. , for GI,, we perform the averaging 
over N- 1 components of the multiplet: 

Here, 

plays the role of the effective action, and V(o, n) is the 
effective potential of the field $,, produced by the N- 1 
fermion fields: 

For  large N, the functional integration over ?r and a in 
formula (5) can be performed by the method of steepest 
descents. For  this we represent the field in the form 
p = ,ii+ p,, where 5 is the Fourier component of p with 
zero momentum, and expand the effective potential to 
second order in p, and 8: 

where, for << ( g a Z ,  we have 

In the integration over p, and 0 ,  values p, - (D,N)-'/~ and 
8 - (D,N)-'/~ a r e  important. Therefore, p, is small in 
N-' for all k and can be neglected. Inasmuch a s  Do- k2 
for small k, in the infrared region the fluctuations of 8 
a r e  not small and determine the character of the cor- 
relations at large distances. The integration over p by 
the method of steepest descents reduces to replacing p 
by its  value at the point of the minimum of V ( a .  Then 
for the effective action we have 

N r - j d z z [ @ ( i a - g p  e x p ( i y , 9 ) ) g ] +  - [ De 0% b k .  
2 * 

Denoting gp= m and replacing 8 by e8 with e = ( r /  
g 2 ~ ) ' l 2 ,  we arrive at the nonlinear ~-model[ '~ ' :  

$?-=$(ia^-rn exp 2iey50) $+'I* (sue)'. (9) 

In this model the field 0 varies in the interval (0, n/e) 
and the y, symmetry corresponds to the transformations 

with cu = const. 

In the infrared region the original model with four- 
fermion interaction is equivalent to the a-model (9). In 
the region kZ m these models a r e  different. However, 

the interaction in this region leads only to a renormal- 
ization of the mass and Green function. These renor- 
malizations a r e  small in e2. Below, being interested 
in the behavior of the one-particle Green function (4) at 
large distances, we consider the nonlinear o-model in 
the entire range of momenta. 

In zeroth order in e (the spherical model) we have free 
massive fermions: 

In the coordinate representation, 

where the K,, are  cylindrical functions of imaginary ar-  
gument. In this approximation the continuous y5 sym- 
metry i s  broken, corresponding to the appearance of the 
nonzero vacuum average (0 I $?I 0) calculated by Gross 
and ~ e v e u ~ ' '  in the leading approximation in N'. The 
subsequent approximations in e2 substantially alter the 
form of the Green function. 

First order of perturbation theory 

The Green function of the o-model (9) is related to the 
mass operator E by the Dyson equation 

In first  order in e2 the mass operator has the form 

The integrals in (13) diverge at both large and small 
momenta. Introducing the ultraviolet and infrared cut- 
offs A and X, we obtain 

(15) 
The last term in this expression does not depend on the 
momentum and designates the renormalization of the 
mass. Hereafter, by the symbol m we shall mean the 
renormalized mass. Thus, in first  order in eZ, for the 
Green function we have 

The correction to the diagonal element of the Green 
function diverges logarithmically a s  X - 0. Therefore, 
i t  is necessary to sum the whole perturbation-theory in 
e2. As will be seen below, the summation leads to the 
vanishing of the diagonal element of the Green function 
a s  X-0. The Green function (16) has no singularities 
at @ = 0. This implies the absence of massless fermions 
in the model under consideration. The corrections to 
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FIG. 1. 

the Green function a re  large only in the region lp2 - m2 1 
<< nz2. As in quantum electrodynamics, summing the 
series of leading logarithms leads to the result that the 
pole at p2 = m2 in formula (10)  for the Green function is 
replaced by a branch point: 

The Green function in the infrared region 

The derivation of formula ( 1 7 )  is conveniently carried 
out in the coordinate representation. For  this we trans- 
form the fermion operators: 

$ ( I )  +exp (iey,e(x) )$ (+) ,  

$ ( x )  - t$ (x )  exp (ier5e ( x )  ) . 

In the new variables, 

where (. . . ) denotes averaging with the Lagrangian 

L=$(x)  [ia^-m-ey5%3(x) 11p(x)+lh(a,8)~, (20 )  
-1 

( . 4 ) = ( J . l ~ ~ P ( i J ~ d 2 ~ ) ~ ~ ~ ~ e ) ( J ~ ~ P ( i ~ ~ ~ ~ ) ~ I P ~ ~ d e )  . 

(21)  
Formula (19)  is conveniently rewritten in the form 

The first term is a product of averages. Examples of 
the diagrams appearing in it a re  shown in Fig. 1. The 
second term represents the set  of all diagrams in which 
a t  least one boson line links an end of a fermion line 
with a point in the middle of i t  ( ~ i g .  2). 

In the first  term the average g ( x  - x' )  = - i (+(x)$(xl))  
can be expressed in terms of the Green function of the 
massive Thirring (MT) model: 

For  this we replace the four-fermion interaction of the 
Thirring model by an interaction of the fermions with 
intermediate boson fields cp and 6 :  

It is easy to convince oneself that such a replacement 
is correct: averaging over cp and in formula (23 )  
leads us to a four-fermion interaction, since, in two- 
dimensional space, 

The averaging over cp can be performed making the 
gauge transformation Z)J - Z)Jdie'. As a result we obtain 

Perturbation theory for the Green function of the mas- 
sive Thirring model has no infrared singularities, and a 
small interaction leads only to a mass renormalization, 
equal to the last term in formula (15). Therefore, 

i  2 
g (z) = - - n~ (-xz1l2) -e')ta [ K ~  ( m  (-x2)  'I.) + i  - (-xz) % K ,  ( m  (-I*)"') 1. 2rr 

(26) 

Now we can calculate 

The latter averaging is performed with the Lagrangian 
(20) .  The interaction of the 8-bosons through virtual 
fermions i s  small a t  small momenta. It is proportional 
to the momenta of the bosons taking part  in the interac- 
tion. Therefore, in formula (27 )  the averaging can be 
performed over the free @-field with the Green function 

D-' ( k )  =k'-e2n ( k )  (28 )  

where n ( k )  i s  the polarization operator, which is pro- 
portional to k2. 

The renormalization of the Green function reduces to a 
renormalization of the charge in the o-model. In the 
original model with four-fermion interaction allowance 
for the vacuum polarization in formula ( 2 8 )  would imply 
an excess of accuracy in N-'. Thus, in the expression 
(27 )  the averaging can be performed over the free fields: 

The diagonal part of GI tends to zero as a power as 
X - 0 .  The vanishing of the diagonal elements has oc- 
curred in conformity with the general theorem on the im- 
possibility of spontaneous breaking of a continuous sym- 
metry in a two-dimensional theory. 

Thus, 

FIG. 2. 
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The Fourier transform of G,(x) has the form 

where F is the hypergeometric function. In the region 
I p2 - m2 1 << m2 this expression goes over into formula 
(17). 

We now estimate G,. In first  order of perturbation 
theory in e2 (Fig. 2a), 

e' p ma 1 m G. =-[-in---- I.- ] . 
n 2pZ mz-p2 p-nz .I (33) 

The second term in this expression leads to a renormal- 
ization of the Green function, so  that in formula (31) A 
is replaced by m.  As regards the first  term, at p2= m2 
it has only a logarithmic singularity and at large dis- 
tances i t  falls off faster than G,(x). Diagrams of higher 
order, e. g. , (b) and (c) in Fig. 2, lead either to a re- 
normalization of the Green function o r  to terms having 
a weaker singularity at p2 = m2 than that of G,. Figure 
2d depicts the diagram (a) dressed by the boson lines 
shown in Fig. 1. As a result of this dressing, a s  in the 
calculation of G ,  the diagonal elements of G, vanish, and 
the nondiagonal elements acquire a factor ( x ~ A ~ ) - ~ ~ / ~ ~ .  
The same applies to the diagrams (b) and (c). The most 
singular part in G, i s  therefore proportional to GI. The 
coefficient of proportionality is small for small e2. 
Thus, taking G, into account leads to a change of the 
coefficient of G, and the Green function has the form 
(17). An essential point is that all the diagrams that ap- 
pear in both G, and G, contain a fermion line joining the 
points 0 and x, and, therefore, at large space-like in- 
tervals they fall off exponentially with increase of x. 

The exponential decrease of the Green function means 
that ~ ( p )  does not have a singularity at f12 = 0 in momen- 
tum space. The singularity at the point p2 = m2 has the 
power form (17) with exponent less than zero but greater 
than - 1. The imaginary part of the Green function i s  
nonzero only for p2 > nz2. This implies that fermion 
states with energy less than m2 do not exist. 

The branch point of the Green function points to the 
existence of a continuous spectrum that begins at an en- 
ergy equal to m2. The states of this continuous spec- 
trum a re  a superposition of a massive fermion and a 
certain number of massless bosons. These bosons a re  
bound states of an even number of fermions. They a re  
the analog of Goldstone particles. 

CONCLUSION 

Thus, in the model considered a fermion mass has 
arisen as a result of the mutual interaction of the fer-  

mions. Spontaneous symmetry breaking does not occur 
in this case. The Green function (17) can be represented 
in the form 

This implies that the spectrum of fermion states is de- 
generate with respect to parity. 

We note that massive fermions do not arise in any 
order  of perturbation theory in the four-fermion inter- 
action constant for the original model. 

The pre-exponential factors and the power exponent in 
the Green function (31) were represented in the form of 
ser ies  in N-' - h. Terms exponentially small in h were 
omitted. These terms arise, firstly, because we treat 
the field e simply as a boson field whereas it i s  an an- 
gular variable and varies from 0 to 2a, and, secondly, 
because, in performing the integration in (5) by the 
method of steepest descents, we take into account only 
the one stationary point corresponding to the uniform 
solution of the equation. It is possible to believe that 
these terms do not affect the qualitative solutions in the 
model under consideration. The exact solutions of non- 
relativistic one-dimensional models with four-fermion 
interaction["' can serve a s  a justification for this. In 
these models i t  is found that the spectrum of the fer- 
mion excitations has a gap. 

In conclusion we thank A. M. ~ inke l ' sh teh ,  V. M. 
Filev, A. M. Polyakov, A. B. Zamolodchikov, I. T. 
Dyatlov and A. A. Ansel'm for useful discussions. 
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