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The distribution of the vacuum charge has been determined for supercritical (Ze2>1) nuclei. The 
calculation is carried out within the framework of the Thomas-Fed method generalized to the relativistic 
case. A characteristic parameter in this problem is Ze3z~/1600.  For Ze3- 1 the total charge of the 
vacuum cloud becomes comparable to the charge Z of the nucleus. The relativistic Thomas-Fermi 
equation for the vacuum shell of a supercritical atom has been solved analytically in the two limiting cases 
Ze3<l and Ze3>l, and numerically for the intermediate region Ze3-1. For Ze3 k 1 the electron shell 
penetrates inside the nucleus and almost completely screens its charge. For Ze3>l a supercharged nucleus 
represents an electrically neutral plasma with equal concentration of electrons, protons, and neutrons (for 
N = Z). Inside the nucleus the potential takes on a constant value equal to - V, 
= - (3~~n , ) "~ -u -  1.94m,c 2. Near the edge of the nucleus there is a transition layer with a width 
independent of Z in which the electric field and surface charge are concentrated. On account of the 
screening the Coulomb energy EQ, which prevents its stability, decreases sharply: the dependence 
EQm Z 5 ' 3  is replaced by a Z 2'3 dependence. We are also considering the Thomas-Fermi equation for a 
neutral atom (in which not only the vacuum shell but all external electron shells are filled completely), as 
well as the equation which takes into account the exchange and correlation corrections (the relativistic 
generalization of the Thomas-Fermi-Dirac equation). 

PACS numbers: 21.10.Ft. 21.60. -n 

1. INTRODUCTION 

The Dirac equation for the electron in the field of a 
point charge Ze loses i ts  meaning for Ze2> 1, since the 
ground state energy becomes imaginary 

If one takes into account the finite size of the nucleus 
one can remove this difficulty. ['I When a finite radius 
R i s  introduced the ground level is lowered to the 
boundary of the lower continuum c = - 1 'for Z = Z,, - 170 
(cf. [2*31). For Z = Z,, the total energy for the production 
of an e+e- pair vanishes, and the vacuum becomes un- 
stable with respect to the production of electron-posi- 
tron pairs. On account of the Pauli principle the num- 
ber  of produced pairs is determined by the number of 
discrete levels which have descended into the lower con- 
tinuum. Passing through the Coulomb barr ier  the posi- 
trons go off to in fin it^,'^] and the electrons remain near 
the nucleus, partially screening i ts  charge. Thus, a 
naked nucleus of supercritical charge Z >  Z,, will en- 
velop itself with an electron shell created out of the 
vacuum; in the sequel we shall call this shell the vacu- 
um shell. 

A correct description of the vacuum shell and of i t s  
physical properties was given inc5] (in the one-particle 
approximation, i. e. , taking into account the interaction 
between the electrons and the nucleus to order Ze2, but 
neglecting the interaction - e2 between the electrons and 
positrons). Numerical  calculation^^^^^ of the charge 
distribution of the vacuum shell, of i ts  mean radius, a 
and of other quantities confirm the conclusions ofc5]. 
Recently a systematic investigation of this problem was 
carried out in the framework of field theory, taking into 
account the electron-positron interaction. For  
Z >  Z,, the positron has a longlived quasistationary state 

with a wave function close to the wave function of the K 
electron. c51111 AS Z >  Z,, is reached there appear e'e- 
pairs consisting of an electron on the K shell and a posi- 
tron in this quasistationary state. After the e+e- inter- 
action is switched on the energies of the states with dif- 
ferent numbers of pairs (0, 1, 2 pairs) move apart by a 
distance of the order 10-30 keV. This has the conse- 
quence that the energy spectrum of the positrons emitted 
in the process of bringing two uranium nuclei together 
may have several maxima separated by 10-30 keV. [lo] 

We note that in these papers the case of not too large 
Z was considered (namely, Z - z,,S Z,,), when there 
a r e  still few electrons in the vacuum shell. In the pres- 
ent paper we consider the opposite case Z>> Z,,. An 
investigation of these questions was stimulated by the 
papers[21*'31 dedicated to the problem of vacuum stabili- 
ty and the production of Bose-particles in critical 
fields. In these papers i t  was shown that a phase tran- 
sition i s  possible with the formation of a pion condensate 
in ordinary nuclei, [12] a s  well a s  the existence of super- 
dense, neutronic and supercharged (Ze3 > 1) nuclei. C12*191 

It is interesting to consider the situation Ze2 >> 1 also 
for Fermi-particles. In this case the vacuum shell con- 
tains many electrons; as a consequence of this one may 
apply the relativistic Thomas-Fermi equation for the 
calculation of the electron density. This equation can 
be obtained from the following intuitive considerations. 

Let V(Y) be the self-consistent potential for an elec- 
tron, taking into account both the field of the nucleus and 
the average field created by the other electrons of the 
vacuum shell. If 22 >> 1 the quasiclassical approxima- 
tion is applicable and the spin effects a r e  inessential, 
since only large angular momenta play a role (cf. the 
Appendix). The quasiclassical momentum of the elec- 
tron is 
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defining three regions (cf. Fig. 1): I) & > &+ = V(r) + 1; 
11) c <E- = ~ ( r )  - 1; III) the classically forbidden region 
E, < c  <E+. In the regions I, I1 the square of the momen- 
tum i s  positive, p2(r)> 0; the region I corresponds to the 
upper continuum, the region 11 corresponds to the lower 
one. 

We make the following clarification. Let ~ ( r )  = const 
throughout the region of r values. Then the lower con- 
tinuum should be understood as the region between the 
curves E- = V - 1 and V- W, a s  W- .o. Similarly, i f  
~ ( r )  i s  a smooth function of r, one should understand by 
lower continuum the region between V(r) - 1 and V(r) 
- W (the dotted line in Fig. 1) with subsequent taking of 
the limit W- a. As i t  should be, the charge density in 
the lower continuum at each point r does not change on 
account of adding the potential V(r). 

When V(r) becomes smaller than - 2 the discrete lev- 
els go over into the lower continuum. If these levels 
were not occupied by electrons (naked nucleus) there 
appears the possibility of a tunneling transition from 
the lower continuum into the upper one. " The barr ier  
to be penetrated (corresponding to the classically for- 
bidden region 111 with p2(r) <0) has an exponentially 
small penetrability. The electrons of the vacuum shell 
represent a degenerate relativistic Fermi gas and fill 
all the cells of phase space with momenta p c p , ,  = ( v2 
+ 2 ~ ) " ~ .  This value of p,,, follows from (1) for c = c,, 
= - 1. The electron density n,(r) of the vacuum shell 
is related to the maximal momentum by the well known 
relation 

The spatial distribution of electrons is determined by 

FIG. 1. The deformation of the upper and lower continua in a 
strong external field (the boundaries of the continua are 
shaded). The electrons belonging to the vacuum shell of a 
supercritical atom fill the cross-hatched region. The states 
below the curve &,(r) = V(r)  - 1 form the unobservable Dirac 
sea. The quantity W has the meaning of a cutoff energy, the 
introduction of which i s  necessary in order to give meaning to 
the difference between two divergent integrals for the charge 
density. All energies are measured in unita of m&'. 

the relativistic Thomas-Fermi equation 

where p,(r) i s  the proton density. In the sequel we as- 
sume n,(r) = n,e(R - r ) ,  where n, = 3 2 / 4 ~ ~ ~  = Zn0/d - - 0. 25m3, z/A- 0.5; no is the usual nuclear density: 
no = 3/4aro3; R = r&'I3 is the nuclear radius yo = 1.1 F. 
As  can be seen from (2), ne(r) i s  nonzero only in the re- 
gion of space where V(r) < - 2. Therefore the vacuum 
shell has a finite radius r = r,. The boundary conditions 
for the equation (3) a r e  the following: 

The latter condition follows from the fact that V(r) 
= - Z1e2/r for r 2 r,; Z, = Z - N, is the atomic charge for 
an external observer. 

We note that retaining the term 2V together with V 2  in 
the expressions (2) and (3) is legitimate in all regions of 
r where i t  represents a correction larger than g-I rela- 
tive to V2 (cf. the Appendix for details). 

In the next section we describe a more detailed der- 
ivation of Eq. (3) which allows one to obtain the distribu- 
tion of the electrons of the shell with respect to angular 
momenta. In Sec. 3 i t  is shown that for Ze2 >> 1 the con- 
tribution of vacuum polarization does not change equa- 
tion (3). Further we consider the properties of solutions 
of this equation: in Sec. 4 for Ze3 << 1 (weak screening), 
in Sec. 5, for ze3 >> 1 (supercharged nucleus, extreme 
screening). This situation can be discussed analytically. 
In Sec. 6 we list the results of numerical calculations in 
the intermediate region Ze3- 1, which allows us to join 
the two limiting cases. Section 7 contains a generaliza- 
tion and refinement of the results. 

In this paper we use a system of units with A= c = me 
= 1, e2 = 1/137, and we introduce the notations: g = Ze2, 
where Z is the charge of the naked nucleus, A$ is the 
number of electrons in the vacuum shell, Z, = Z - AT, is 
the charge of the system at large ( r >  r,) distances, 2' 
denotes the total charge situated inside the nucleus. 

2. DERIVATION OF THE RELATIVISTIC THOMAS- 
FERMl EQUATION FROM THE DlRAC EQUATION 

The Dirac equatidn for the radical functions G and F 

can be reduced by means of the substitution G = (1 + & 

- v ) ' ~ ~ ~ ~ ~ ~  to a form analogous to the Schrodinger equa- 
tion: 

xrf+2 (E-C) X=O. (6) 

Here E = (c2 - 1)/2, E is the electron energy, U =  U(r, &) 

is the effective 
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u = r ( j + + )  for states of angular momentum j = I  *$ and 
parity (- 1)'. The terms in (7) which contain the func- 
tion w a r e  due to the electron spin. For  I V(r)l >> 1 they 
a r e  small compared to the f i rs t  three terms,') therefore 
the expression for the effective potential simplifies and 
takes the same form as for a scalar particle (the Klein- 
Gordon-Fock equation): 

For c < - 1 and V(r) <O this potential exhibits a bar- 
r ier  (Fig. 2). For V(r) = - f /r the penetrability of the 
barrier is 

where yo is a constant of the order of unity. This for- 
mula the width of the positron quasista- 
tionary state for Z> Z,, a s  well as the width of the s 
smearing As  of the wave function of the electron in the 
vacuum shell over the functions of the lower continuum. 

For y << 1 the one-particle approximation can be used 
fo r  the description of the vacuum electrons. This is al- 
ways true for  the levels near the boundary of the lower 
continuum, where" 

In the case c >> 1 the exponential smallness of y is retained 
also for levels which have descended deeply into the 
lower continuum: 

~ ( e .  z)  =yo exp ( - n ( x 2 / ~ + ~ ! ~ 2 ) ) ,  (9") 

i f  I H I  << 5 and I c I >> 1. For  I U  I Lxo = ( ~ / n ) " ~  the expo- 
nential smallness of holds independently of the value of 
the energy E, 

The maximal angular momentum of levels which have 
descended into the lower continuum is x,,- 5. Since 
X, <<n ,,, the number of dangerous levels, for which the 
exponential in (9") is of the order of unity, and the level 
"melts" into the lower continuum, is for c >> 1 negligibly 
small compared to the total number of states in the vac- 
uum shell (for a quantitative estimate, cf. the Appendix). 
On account of this the electron density n,(r) can be ob- 
tained by direct summation over the one-particle states 
localized in the region r, < r  <r2 (cf. Fig. 2): 

Here we have made use of the Pauli principle and of the 
quasiclassical formulas (A. 4) for the solutions of the 
Dirac equation (with the rapidly oscillating functions 
sin2@ and sinZ(6+ v) replaced by $. 

The remaining calculations do not differ from the der- 
ivation of nonrelativistic Thomas-Fermi equation in[15]. 
Making use of the equation (A. 7) of the Appendix we pass 
from summation over n to integration over the energy in 
the interval. 

FIG. 2. The shape of the effective potential (8) for states with 
a definite value of the angular momentum j and energy E < - 1. 

For E = E+(Y) the point r coincides with the turning point 
rz. If c+(r), the point r is either in the subbarrier re-  
gion rz < r < r,, where the electron wave function decays 
exponentially, o r  in the region r > r ,  corresponding to 
the unobservable Dirac background (sea); such states 
do not contribute to n,(r). As a result we obtain the 
spatial distribution of electrons with angular momen- 
tum j: 

Summing over j we arrive at (2) from the Poisson equa- 
tion Acp = - 4ne(n, - n,) taking into account V =  - ecp (e > 0, 
cp is the electrostatic potential) we obtain the fundamen- 
tal equation (3). 

In addition to the vacuum shell, the electrons may fill 
also the external shells of a supercritical atom. The 
expression fo r  the density of electrons in the neutral 
atom follows from Eq. (1) for c,,= 1: 

fi, ( r )  = (V-2V)41/3n2. (12) 

In this case the electron density differs from zero for 
all V(r) <O, and in the limit IV(r) I << 1 Eq. (3) goes over 
into the usual Thomas-Fermi equation. The boundary 
condition for the neutral atom has the usual form 
limrV(r) =0 as r- m. 

As i s  well known,"51 the domain of applicability of the 
nonrelativistic Thomas-Fermi equation is restricted 
by the condition: Z-' << 7-6 1 (in atomic units). In dis- 
tinction from this, in the case c >> 1 there is no restric- 
tion on the side of small r (cf. the Appendix), and Eq. 
(3) with the density (12) is applicable for all 0 < r <  1. 

A relativistic Thomas-Fermi equation with the density 
(12) has been considered previously in the papers of 
Vallarta, Rosen and Jensen. c18"71 They have restricted 
their attention to the region g <  1, and this led only to 
the introduction of small corrections to the nonrelativ- 
istic Thomas-Fermi model, corrections which did not 
present essential interest. In those papers the region 
c 2 1 was not considered. 

3. AN ESTIMATE OF THE CONTRIBUTION OF 
VACUUM POLARIZATION 

We now discuss the role of vacuum polarization. The 
charge density induced by the nuclear charge in the vac- 
uum istl8] 
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where $,,, a r e  the exact solutions of the Dirac equation 
in the Coulomb field of the nucleus. Equation (13) is the 
starting point for the description of the K shell of a su- 
percritical atom, C51 as well a s  for numerical calcula- 
tions of the vacuum polarization and of the charge dis- 
tribution in the K shell for atoms with large 2. C819*191 

This density can be split into two parts: 

where p(r) = - en,(r) is the charge density in the vacuum 
shell, pl(r) is the contribution of the vacuum polariza- 
tion proper, which has not been taken into account above. 
Making use of the analogy with dielectrics, one may call 
p(r) the density of f ree  charges and pl(r) the density of 
bound charges: 

p, - - d i r  P, p,d3r=0. 

We note that for Z<Z,,- 170 the density p(r)= 0, but 
p,(r) is different from zero. A numerical calcula- 
t i ~ n [ ~ * " ' ~  shows that for Z 2  Z,, the density p and p, a r e  
quantities of the same order of magnitude. We show 
that in the case 6 = 2e2 >> 1 which interests us, the den- 
sity p, becomes negligibly small compared to p, which 
justifies the neglect of the contribution of p,(r) in Eq. 
(3). 

We make use of the property of localization of the 
Green's function and of the polarization operator n(r, 
r', w )  in strong fields. As was shown inC2O1, the motion 
of particles in a strong electric field is characterized 
by the correlation radius Rc = ( e ~ ) - " ~ .  This assertion 
has a particularly intuitive meaning in the case of a 
magnetic field H when the orbital radius equals r = p c /  
eH (the Larmor radius). Since on account of the uncer- 
tainty relation pr-  1, the correlation radius i s  Rc 
- ( e ~ ) - ' / ~ .  When the distance over which the field 
changes substantially becomes much larger than R, the 
field may be considered a s  homogeneous. On this ac- 
count P and E a r e  related by the local re!ation 

which has been obtained beforecz1' for the case of the 
homogeneous field (here & is the dielectric constant of 
the vacuum). Hence 

and taking into account e ~ ( r )  = ~ ' ( r )  we obtain: 

(for ~ ( r )  = - ~ / r  and 6 >> 1). It can be seen from this that 
taking into account the density p,(r) in the case 6 >> 1 one 
exceeds the accuracy of the quasiclassical method used 
by us. 

We now solve Eq. (3). We first  consider the cases 
2e3<< 1 (weak screening), and 2e3>> 1, when the solu- 
tions can be obtained in analytic form. 

4. WEAK SCREENING: Ze3 4 I 

Going over in (3) to the function il, = - V - 1 (with il, 1) 
and setting x =  r/r,, p = 4e2ri/3n, we have for r >  R: 

It follows from (4) that the atomic radius is r, = 2,e2/2, 
where 2, = 2- N, is the external charge of the super- 
critical atom. Hence p = ( ~ , e ~ ) ~ / 3 r ,  and in (17) there 
appears the small parameter p << 1. On account of this 
Eq. (17) can be solved according to perturbation theory: 

For  $J, we obtain the chain of equations: 

where A# = #" + 2x-I$'. The first  two functions can be 
calculated explicitly: 

where 

We note that a t  the edge of the nucleus x =  2 ~ / 5  - 0. 04b-z13 << 1. 

In the region x<< 1 the function #(x ,  p) simplifies: 

c, = 2 ln2 - 11/3. Inside the nucleus, for ze3 << 1 the po- 
tential ~ ( r )  is still close to the potential of the naked 
nucleus; setting $J = E Y ( ( ) / R ,  5 = r / ~ ,  we obtain: 

where 

Considering the nonlinear term vy3 a s  a perturbation 
(v<< 1) we find 

Joining the solutions (19) and (20) at the edge of the nu- 
cleus determines the integration constant 

439 Sov. Phys. JETP 45/31, Mar. 1977 Migdal et a/. 439 



trated in a transition layer near r = R of thickness of the 
order X = 12- 15 F. In the region ze3  >> 1 the condition 
R >> X holdsg), hence one may neglect the curvature of 
the edge of the nucleus and the geometry reduces to flat 
geometry. In the variables x and x =  ( r  - R)/A we have 

and yields a relation between the charge 2 of the nucleus 
and the external charge Z,: 

I 

c, = In 2-8/, + J yo3 (x) 2 dx=-  1,38. 

The total number of electrons in the vacuum shell 
equals 

and we transform (3) into the one-dimensional equation: 

In the sequel we set: A = 22, np= 0. 5no= 0.25m?, 
where no is the usual nuclear density. For  these values 
of the parameters X = 9.2mi1" 13 F, which exceeds by an 
order  the diffuseness of the edge of the nucleus and jus- 
tifies the selection of n,(r) in the form of a step function. 
Equation (28) must be solved with the boundary condi- 
tions: 1) x - 1, - 0 a s  x - - m (corresponding to the 
center of the nucleus, since R>> X); 2) x and X' - 0 as 
x-m; 3) continuity of x and a t  the edge of the nucleus 
(x = 0). 

Let us consider the charge distribution in this shell. 
Let eQ(r) be the total charge situated inside a sphere of 
radius r; according to Gauss's theory ~ ' ( r )  = eE 
= ~(r)e ' /?.  The number of electrons of the vacuum 
shell inside a sphere of radius r equals 

(R < r < r,). For r<< r, the expression simplifies to: Taking the boundary conditions into account Eq. (28) 
has the first  integral: 

x 4 - 4 ~ + 3 =  (x-1) ' ( x 2 + 2 ~ + 3 )  for 2 x 0  
for x>0 Inside the nucleus is contained a small  fraction of the 

electron cloud 
It follows that a t  the edge of the nucleus 

In conclusion of this section we list formulas for the 
total charge Z' of the nucleus (taking into account that 
part  of the vacuum shell which is situated at r < ~ ) ,  of 
the potential V(0) at the center of the nucleus and of the 
electric field strength at the edge of the nucleus: 

Finally we obtain 

(cf. the curve 1 on Fig. 3). The integration constants 
a and b are: sinha = lla, a = 3.439; b = (4/3)JZ= 1.886; 
then ~ ( 0 )  = 3/4, ~ ' ( 0 )  = - 0.398. 

It is interesting to note that inside the nucleus one can 
indicate a simple approximate solution4) of Eq. (28): 

Here Vo = (3~'n,)"~ and Em, a r e  the limiting values of the 
potential and field strength in  the case 2e3 >> 1 (cf. the 
next section), and c, a r e  numerical constants: 

x ( x )  =I-C' exp(x)'g) for x<O, Cf=0.2374, (31) 

These expansions a r e  valid for 2e3<< 1. Corrections 
to the unit in the square brackets come from taking into 
account the screening effect of the potential of the bare  
nucleus by the vacuum shell. It can be seen directly that 
for 2e3 - 1 these corrections stop being small, i. e. , the 
screening changes the total potential V(r) substantially. FIG. 3. The variation of the potential, the electron density of 

the vacuum shell and of the electric field strength near the edge 
of the supercharged nucleus for z e 3  >> 1. The curve 1 repre- 
sents the function x = - v(T)/v,,; the curve 2 represents the ra- 
tio n , ( r ) / n e ( 0 ) ,  where ne(0)  i s  the electron density at the center 
of the nucleus; curve 3 represents the ratio E ( ~ ) / E - .  

5. THE CASE Ze3 > 1 (EXTREME SCREENING) 

In this case the electric field i s  pushed out from the 
volume of the nucleus onto i t s  surface and is concen- 
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which agrees with the exact solution to an accuracy of - 1.5%. The asymptotic behavior of the exact solution 
(30)  for x -  - m  also has the form ( 3 1 ) ,  but with differ- 
ent values of the constant in front of the exponential 
function: C" = 6 ( 9 6  - 22) = 0.2724.  

Let us discuss the physical meaning of the solution. 
Inside the nucleus the densities n, - ~ : / 3 $  and n,  a r e  
equal and the potential is practically constant: ~ ( r )  
= - VO for R - r>> X, where Vo = ( 3 ~ ~ n , ) " ~  - 1.94m,.  The 
quantities Vo and X do not depend on the nuclear charge 
Z and on i t s  radius R.  Near the edge of the nucleus 
there is a transition layer, the structure of which i s  ex- 
hibited in Fig. 3. The curve 2 represents the variation 
of the electron density. Here ne(R) = 0 .  42ne(0), and in 
the exterior region r >  R the density falls rapidly a s  one 
goes away from the edge of the nucleus. 

In the region R - r>> X the electric field is practically 
absent, i. e. , the charge of the protons is completely 
compensated by the electron cloud and the system is 
electrically neutral. The maximal electric field 
strength is attained at the edge of the nucleus: 

where k = ( 8 / 3 ) 3 / 2 ~ " .  
A plot of the function E(x) /E, ,  is shown in Fig. 3 

(curve 3) .  The energy density of the electric field 
equals 

A simple calculation shows that approximately 2 / 3  of the 
energy of the field is contained in the region r >  R, and 
1/3  is inside the nucleus. 

Allowance for screening leads to the result that the 
field at the edge of the nucleus remains bounded: E(R)  
-Em, for 2-  m. In ordinary units the limiting field 
Em, = 8 . 2 ~  1019~/cm, which exceeds by a factor of about 
6000 the characteristic field strength Eo = m:c3/e  = 1 .3  
x 1018 ~ / c m  in quantum electrodynamics (for E -  E,, non- 
linear effects of quantum electrodynamics become es- 

FIG. 4. The quantity ~ ( r )  in pion units as a function of 6 = r / R .  
The numbers near the curves indicate the charge of the nucleus 
2. The curves are the result of numerical integration of Eq. 
(35). 

FIG. 5. The potential at the center of the nucleus in pionic 
units. The curve 1 represents the solution of Eq. (35), the 
curve 2 is the potential for the naked nucleus (not taking into 
account the effect of screening). The dotted line indicates the 
limiting value of the potential Vo = ( 3 ~ ~ n & " ~ .  

sential: vacuum polarization and the production of e'e' 
pairs  in a homogeneous electric field). 

The total charge Z' situated inside the nucleus is eas- 
ily determined in terms of X'(0)  by means of the Gauss 
theorem. We obtain 

A comparison of this formula with (24)  shows how im- 
portant screening becomes in the case 2 e 3  >> 1. In this 
case an electrically neutral plasma is formed inside the 
supercharged nucleus. The uncompensated charge is 
situated in a layer of finite thickness - X near the edge 
of the nucleus. 

6. RESULTS O f  NUMERICAL CALCULATIONS 

We have considered above the limiting cases Ze3 << 1 
and 2e3>> 1. In order to join these two regions, Eq. ( 3 )  
has been solved numerically for Z = 500- 10 000. We 
make some remarks on the numerical analysis. 

It is convenient to pass to the variable 5 = r / ~  and to 
se t  ~ ( r )  = - v / R .  Neglecting in ( 3 )  the term 2V com- 
pared to v', which is valid for a wide range of r ,  ex- 
cept the edge of the atom5), we obtain the equation 

which does not involve the radius R of the nucleus. 
Therefore v = u(5, 2 ) .  

The results of the numerical calculation a r e  repre- 
sented in Figs. 4 and 5 .  The dependence of I V(r)l on 
l, for several values of Z is shown in Fig. 4 (for n, 
= 0.25m:) .  The corresponding curves for a nucleus with 
a different value of n, can be obtained from Fig. 4 by 
multiplication by (n, /0 .  25m,9)'I3. Figure 5 shows the 
dependence of the potential a t  the center of the nucleus, 
V(0)  on Z (curve 1). The initial portion of this curve is 
described by Eq. (25) .  For  comparison the same pic- 
ture shows the function I v(O)$= 3Ze2/2R = c3 v ~ ( z ~ ~ ) ~ / ~  
for  the naked nucleus (curve 2) .  The influence of 
screening of the nuclear potential by the vacuum shell 
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begins to show for 2- 1000. With further growth of Z 
the potential a t  the center of the nucleus takes on the 
constant value: V(0) = - Vo = - 1. Q4mr. 

7. CONCLUSION 

We conclude with several remarks. 

1. In Eq. (3) only the Coulomb interaction between the 
electrons has been taken into account. In order to im- 
prove the accuracy of the statistical method one should 
take into account the exchange interaction of the elec- 
trons with parallel spins as well a s  the repulsion be- 
tween electrons with antiparallel spins (the correlation 
effect). This problem is discussed in the Appendix, 
where i t  is shown that in the region 2e2>> 1 the intro- 
duction of exchange and correlation corrections does not 
lead to a substantial change of Eq. (3); cf. the equations 
(A. 13) and (A. 14). 

2. The formation of an electrically neutral plasma in- 
side the nucleus for ze3 >> 1 strongly diminishes the 
Coulomb energy of the nucleus: 

3 (Ze) ' 
E,  = - - 0,61 (ZeS)v8Zm., 

5R 

which impedes the stability of supercharged nuclei. 
Since the electric field is concentrated in the transition 
region near the edge of the nucleus, the electrostatic 
energy reduces to surface energy: 

Thus, on account of the screening effect, the Coulomb 
energy of the nucleus for Ze3>> 1 is reduced by a factor 
of 1. 7Ze3. There remains however the kinetic energy 
of the degenerate electron gas: 

3. At 2 2  lo3 the depth of the potential in the center of 
the nucleus, I V(O)I exceeds the value mu, where m, is 
the muon mass. In this region of 2 the filling of nega- 
tive muon levels with energies c <O is possible on ac- 
count of the process n-p+ p-+ EW, as a result of which 
there appears a supplementary charge density n,(r), 
due to negative muons. The condition for equilibrium of 
this process with the usual beta-process n - p +  em+ 5 is 
the equality of the chemical potentials p, = p,-, hence 

(for I VI - m, << mu). For 2- 5 x lo3 the depth I ~ ( 0 )  I of 
the well reaches the value 2mu after which the muonic 
vacuum shell begins to fill up. ') Denoting the corre- 
sponding charge density by n,(r), we obtain 

In this case inside the nucleus we have I ~ ( r )  l = V, - 2mr, 
hence the screening by negative vacuum muons leads 
only to an insignificant change of the results obtained 

above: 

4. Without taking into account the possibility of for- 
mation of a pion condensate the supercharged nuclei a r e  
unstable. Since Vo < 2m the df condensation does not 
yet set  in apparently, but for 2e3> 1 the formation of a 
f condensate is possible. C231 The presence of a T- con- 
densate changes the distribution of electrons in the nu- 
cleus substantially. The problem of stability of super- 
charged nuclei with consideration of the f condensate 
requires the solution of a self-consistent problem of the 
distribution of the electronic, muonic and pionic charges 
inside the nucleus and will be considered in the sequel. 

The authors would like to thank S. S. ~ e r s h t e h ,  V. 
N. Gribov, V. L. ~ l e t s k i i ,  G. E. ~ a s e t s k i i ,  A. A. 
Migdal, M. V. Terent'ev and A. I. Cernautan for use- 
ful discussions during this work. 

APPENDIX 

Here we obtain formulas for the quasiclassical ap- 
proximation to the solutions of the Dirac equation and 
we introduce the exchange correction to the relativistic 
Thomas-Fermi equation. Limiting ourselves to the 
class of potentials with central symmetry we set in (5) 

G=aets, F=be's, (A. 1) 

where a(r) and b(r) a r e  functions which vary slowly com- 
pared to the exponential function. Neglecting the deriva- 
tives a' and b' compared to S we obtain (cf. alsoc221): 

S = j p  dr, I>=[ (e-V(r))'-I-xZ/r']"', 
b(r)  - iSf+xlr - - - =Ne'q 
a ( r )  I+€-V 

(A. 2) 

(A. 3) 

where p =p(r) is the radial momentum, 

In the classically allowed region r, < r < r 2  (cf. Fig. 2) 
we have p2(r) >> 0, c - V -  1 > 0, on account of which the 
quantities N and 7) a r e  real. Since x = (1 + c - V)-'/~G 
satisfies Eq. (6), the quasiclassical asymptotic behavior 
for X(r) has the usual form. Taking (A. 3) into account 
we obtain the quasiclassical formulas for the radial 
functions G and F: 

where 

The normalization condition to one particle localized in 
the region r1 < r  <r2 

dG. 5) 
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determines the normalization constant A: 

(A. 6) 

Here E,, is the energy of the level with quantum num- 
bers n and H (n = 0, 1, . . . is the radial quantum number). 

If the barrier penetrability y is exponentially small 
(cf. (9)) E,, is determined by the Bohr-Sommerfield 
quantization condition: 

Differentiating this with respect to n, we obtain 

(A. 7) 

which differs only by the factor JZ from the correspond- 
ing expression for the nonrelativistic case. [lS1 The 
equations (A. 4)-(A. 7) have been used in Sec. 2 for the 
derivation of the relativistic Thomas-Fermi equation. 

Let us discuss the accuracy of this approximation. In 
the derivation of Eq. (3) we have made a ser ies  of ap- 
proximations, the accuracy of which is discussed below. 

1) The quasiclassical approximation stops being ap- 
plicable at the boundary of the vacuum shell. The con- 
tribution to n,(r) for r-r, come from states with E = - 1 
and I H I << 5 for which p( r )  = [- ~ U ( Y ) ] ' / ~  = ~ r - ' ( l  - ~ / r , ) ' / ~ .  
The condition of applicability of the quasiclassical ap- 
proximation 

(A. 8) 

reduces to the inequality ra - r>> r , ( 2 ~ ) - ~ / ~  and is veri- 
fied the better the larger 6 = 2e2 is. We note that here 
there a re  no restrictions on the side of small r, in dis- 
tinction from the nonrelativistic Coulomb problem. c's' 

2) In the derivation of the quasiclassical formulas we 
omit the term 

A " / ~ ~ A -  (pr) -2-~-2(~-r/r.) -', (A. 9) 

where A is the pre-exponential factor (cf. , C'S1 p. 131). 
Therefore the quasiclassical approximation for the wave 
function of the electron contained in the vacuum shell 
has an accuracy of the order c". 

3) Let us estimate the number of electrons in the vac- 
uum shell for which the one-particle approximation of 
Sec. 2 is incorrect. For this we determine the fraction 
of the levels with energy E < - 1 for which the width y is 
not exponentially small. 

Integrating (11) over the volume we find the number of 
electrons in the vacuum shell which have the angular 
momentum j: 

(A. 10) 

Let 1 <<u <<urn,,. Summing (A. 10) with respect to j we 
determine the fraction of electrons with j G L( - 4: 

here c = 31,/21, 

I,= (VZ+2V)'"dr, I%= (V2+2lr)"'rZ dr. 

(A. 11) 

In particular, for ~ ( r )  = - g / r  we have to logarithmic ac- 
curacy7): 

For  l>> 1 and no = (5/n)lt2 (cf. Eq. (9") we obtain 

6 (2 , )  =3!2nc< 1. (A. 12) 

Thus, the results of the one-particle approximation have 
an accuracy of the order 5"'. This refers, in particular, 
to Eqs. (2) and (11) for the electron density. 

4) In the expressions (2) and (3) we have retained, to- 
gether with V2, the correction term 2V. Retaining this 
term in the density n,(r) is legitimate only in those re- 
gions of r where i t s  ratio to v2 exceeds i". Thus, in 
the case 2e3 << 1 we have 2V/v2- r/5 and the radius of 
the vacuum shell is r,-5/2. Therefore in a wide re- 
gion 1 << r < ra the corrections which we have not calcu- 
lated, and which a r e  related to the incertitude of the one- 
particle approximation for the electrons with small an- 
gular momenta j <(5/n)'", i s  definitely smaller than the 
term 2V(r). On the other hand, at small distances r< 1 
this term should be omitted and one should use the for- 
mula n,(r) = I V(r)I 3/3$, a s  we did in Secs. 5 and 6. 

We now take into account the exchange'and correlation 
corrections in the relativistic Thomas-Fermi equation. 
This is conveniently done by means of a variational 
method analogous to the derivation of the nonrelativistic 
Thomas-Fermi-Dirac equation. ["I The difference con- 
s is ts  in the fact that one must vary the relativistic ex- 
pression for the kinetic energy of the electron gas. 

As a result of this we obtain in place of (2) 

1 (v+2v+v2)'"-v(V+1) l [ ( v+2V)" -V(V+I ) ]a ,  
n.(r)= -y [ 

3x l-vZ I ha 
(A. 13) 

where v = e2/n. As long a s  2e3 << 1 one may neglect the 
exchange correlation (compared to the correction 2V in 
the term (V2+ 2 ~ ) ~ ~ ~ ) .  If however 2e2? 1 and I V(7)l >> 1, 
then (v2+ 2 ~ ) ~ ~ ~ ;  - (v+ 1) with accuracy ['2 and (A. 13) 
reduces to 

Therefore we again obtain Eq. (3) with the renormalized 
constant: 

e ~ - t e 2 ( l + v ) ~ e 2 ( l + 3 e 2 / n ) .  

The electron density of the neutral atom (E,= 1) has 
a similar form: 
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1 (V2-2V+v2) "+v (I-V) 
i i E ( r ) = - [  3nZ 1-v2 1 .  (A. 14) 

T h e  corresponding equation i n  the nonrelativistic case 
2e2<< 1, I ~(r ) l<<  1 coincides (af ter  a transi t ion of atom- 
ic units) with the Thomas-Fermi-Dirac equation[241: 

bn=x[ ( J ~ / x ) ' ~ + $ ~ ] ~ ,  (A. 15) 

where  

Taking account of the correlat ion reduces  i n  s o m e  ap- 
proximation, cz41 to replacing the constant p,, = 0.2 1182213 
i n  the Thomas-Fermi-Dirac equation by 6 
= 0 . 2 3 9 4 ~ - ~ / ~ .  T h e  appropriate  change i n  (A. 13) h a s  the  
form: v-  v'= 1. 13ez/n. It c a n  b e  s e e n  f r o m  this  that 
the consideration of the exchange and correlat ion cor- 
rect ions i n  the region 5 = 2eZ >> 1 does not lead to a sub- 
s tant ial  change of Eq. (3). 

In conclusion we note that Eqs. (2) and (12) fo r  the  
electron density and the  equation (3) r e m a i n  valid a l so  
i n  the case of a noncentral potential V(Y)  which is suf-  
ficiently smooth so that the  quasiclassical  approximation 
b e  applicable. A s  a possible  application of th i s  equa- 
tion we indicate the problem of calculation of the critical 
dis tance R,, f o r  the collision of two heavy ions, account 
being taken of the  screening influence of the  electron 
she l l  (the account of screening for  the model problem of 
a spherical  superheavy nucleus was  c a r r i e d  out incz5'). 
A rough es t imate  shows that account of screening is im- 
portant  fo r  a comparison of the theory of spontaneous 
posi t ron production with experiment. 

"From the analogous idea of tunneling of the electron through 
the gap between the continua is derived the classical method 
of calculation of the probability of formation of an e'e- pair 
in variable electric fields, the so-called imaginary-time 
method. [I4' 

2 ' ~ h u s ,  for the case of a Coulomb field V(r) = - 5/r we have 
I u?/v2 1 - cq2r << 1 for 5 >> 1 and r 5.1. 

3 ' ~ e  note that R > h for Ze3 >+ (71/3)'/~ = 0.51 (this number does 
not depend on the adopted value of the proton density 3). 

4 ' ~ h i s  solution is obtained if x = 1 - 9 is substituted into (281, 
which is then linearized with respect to 9 and the constant 
C' determined from the boundary condition (29). 

5 ' ~ e  note that 12V(r) I << v2(r) for r<<r,.  A numerical cal- 
culation was carried out in the region r - R << r,, in which 
this equality is definitely valid. 

6 '~ince R >> m;', the nucleus represents a wide well for muons. 
Therefore the critical value of the potential for which spon- 
taneous creation of p*p--pairs starts is only somewhat above 
2m,: V, =2m, +n2/2m,~'  (cf. [4*221). 

 he divergence of the integrals Il and I2 for R - 0 is related 
to the fact that in the case of the Coulomb field the spatial 
distribution of electrons with angular momentum j is of the 
form 

where g=(52-x2)112, ro=g2/25. For r < < r o  the density is n, 
-i3. In such an increase of the electron density would re-  
main in force up to r = 0, the number of electrons N, would 
become infinite. Therefore the point-nucleus app~oximation 
becomes inapplicable here, and a physically acceptable solu- 
tion of Eq. (3) exists only for a finite radius R of the nucleus. 
The connection of this result with the "falling into the center" 
of an individual electron in the Coulomb field of a point- 
charge Ze for 5 > j + $  should be obvious. 
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