
gy density and infinite cuwature invariants. Then, by 
matter creation by the gravitational field, the matter 
density can increase. The universe can also be created 
a t  a singular point. In constrast to the singularities 
listed above, this singularity does not correspond to a 
finite proper time. Moreover, the energy density and 
the Hubble constant have from the very s tar t  nonzero 
positive values. 

The process ob: expansion ends either with the 
Novikov regime, or  with the Friedmann solution with 
constant energy density and Hubble constant correspond- 
ing to the node (zO, HO). In this case, second viscosity 
has an important influence until t =-, creating entropy 
per particle the whole time. 

Knowing the asymptotic dependence of second viscosity 
a t  high energy densities, we can also say something 
about the singular points. For  b, = $, B > 1 there will 
be an odd number d singular points, i. e., there will 
certainly be one. They will alternate in accordance 
with the rule saddle-node-. . . -saddle. In all  other 
cases there will be either none o r  an even number. The 
order d succession is: node-saddle-. . . -node. Com- 
pared with the Bianchi type I case investigated incz1, 
there a re  new possibilities for  destruction (see (38)) 
and creation (see (23), (24)) of the universe. Moreover, 
this last does not correspond to a finite proper time. 

The nature of the solution during the late stages d ex- 
pansion and early stages of contraction is changed. 
However, the cosmological singularity remains, a s  be- 
fore, an inescapable attribute d the evolution d the 
universe, both for  contraction and expansion. 

I should like to thank I. M. Khalatnikov for suggestingY 
this subject and valuable advice and also V. A. Belinskii 
and A. A. Starobinskii for  helpful discussions. 
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Spontaneous production of positrons by a Coulomb center 
in a homogeneous magnetic field. 
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It is shown that in a strong magnetic field HsZ 'x90e the threshold for spontaneous production of 
positrons by a Coulomb field of a bare nucleus decreases, i.e., the critical charge Z, becomes lower than 
Z,= 170 in the absence of a field. In particular, for Hz 5X 10" Oe the critical charge decreases to the 
charge of uranium (2,- 92). The threshold probability for positron production is calculated and is found 
to grow with increasing field and turns out to be larger than in the absence of the fieid. It is emphasized 
that the problem under consideration is quasi-one-dimensional as a result of smallness of the Coulomb 
interaction compared to the interaction of an electron with the magnetic field. This is confirmed by a 
calculation of the degree of compression of the critical atom in the direction perpendicular to the magnetic 
field. An estimate is made of the effect of vacuum polarization by strong Coulomb and magnetic fields on 
the magnitude of the critical charge. 

PACS numbers: 12.20.D~ 

1. lNTRODUCTiON than the Bohr radius r ,  the electron will experience a 
stronger attraction to the nucleus than in the absence of 

The process Of production of positrons the field. consequently, attainment of the lower limit 
the Coulomb field of bare nuclei (Z > 2,. 170) in the ab- of the discrete spectrum must occur for lighter nuclei 
sence of external fields when the lowest electron level with 2< 170, and the threshold for the spontaneous pro- 
reaches the lower limit of the discrete spectrum: & duction of positrons by the Coulomb field is lowered. " 
= - mc2, was investigated incGs1. It is qualitatively 
clear that in a strong magnetic field for  which the Lar- In the present paper we investigate the motion of a 
mor radius of the electron I = (fic/e~)"' is much smaller bound relativistic electron in the Coulomb field of a sta- 
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tionary nucleus and a constant homogeneous strong mag- 
netic field (t/r,<< 1). A discrete energy spectrum for 
the electron is obtained2' and values have been obtained 
of the critical charge Z,(H) and of the degree of deforma- 
tion of the K shell of the critical atom ( ~ e c s .  2, 3). 
Further, in Sec. 4 we have calculated the threshold 
probability fo r  the production of positrons W(H) and we 
have determined the behavior of the lowest electron lev- 
el near the lower limit of the discrete spectrum. In 
Sec. 5 we have estimated the effect of vacuum polariza- 
tion by strong Coulomb and magnetic fields on the value 
of the critical charge 2, and we discuss the question of 
the spatial localization of the polarization charge in the 
transition through 2,. 

We shall use the system of units R=m = c  =1, where 
m is the electron res t  mass. With such a choice of the 
system of units, Y ~ = C - ' ,  Z=(H~/H)~'~,  where 5 =2/137, 
while Ho =m2c3/eR= 4.41x loi3 Oe is the quantizing mag- 
netic field. We also'take the magnetic field to be mea- 
sured in units of Ho. We note that the quantity 5" ap- 
pearing in the formulas that follow is only approximate- 
ly equal to the Bohr radius. The exact relationship of 
the average radius of the K shell of a relativistic atom 
to the quantity 5 has for 5 < 1 the form Y, = [l + 2(1 
- 52)1'2]/2g, [11 but this is not of any importance for  a 
qualitative interpretation of the results obtained. 

2. THE ENERGY SPECTRUM 

The Dirac equation for an electron in a Coulomb and 
a homogeneous magnetic field has the form 

where 

the z axis is chosen along the magnetic field, R is the 
nuclear radius, while the cutoff function f h )  depends on 
the distribution of the electric charge over the volume 
of the nucleus. In the presence of both a Coulomb and a 
magnetic field the component of the total angular mo- 
mentum $ong the direction of the magnetic field is con- 
served ([J,,%] = O), and this enables us to separate, in 
a cylindrical system of coordinates { p ,  z, 8) the angular 
dep_endence in (1). Substituting in (1) the eigenfunction 
of J,: 

we obtain 

where (f ), = af/az and (f ), = af/ap. 

For  a strong magnetic field ( I<< 5") the distance be- 
tween the Landau levels A&"- r1 greatly exceeds the 
separation between the discrete values of the Coulomb 

spectrum S 2, and therefore, just as in the nonrel- 
ativistic case, we can assume that the energy spectrum 
of the electron consists of Landau levels each of which 
has Coulomb sublevels. Therefore, in the zero order 
approximation with respect to the small parameter 15 
one can utilize the well-known solution of the Dirac 
equation for  an electron in a magnetic field and separate 
the wave functions for the transverse motion. We then 
have for  the -lowest Landau level; 

M=-'I,, b,=c,=O, 

c :=g ( z )  exp ( -p2/412) ,  b l= i f ( z ) exp  (-pZ/41=).  
(5) 

Substituting the functions (5) into the original system of 
equations (4) and averaging the two remaining equations 
over the transverse motion we obtain 

where 

1 " 
~ ( z )  = --; v ( l / W ) e s p  (-p'/212) p  dp. 

1- ,, 

(7) 

It follows from (7) that the effective potential V(z) is 
a function of z2, and therefore the system (6) remains 
invariant under the simultaneous replacement 

i. e., all the solutions can be classified according to 
their parity. An even solution g(z) corresponds to an 
oddflz) and conversely. Therefore, i t  is sufficient to 
obtain the solutions of (6) only in the region z >  0. 

It can be easily shown['' that for  z >> max(Z,R) the ef- 
fective potential (7) becomes a one dimensional Coulomb 
potential: 

and this on substitution into (6) yields 

Solutions of the system (10) decaying a s  z -rn are  linear 
combinations of the Whittaker functions 

g ( z )  =A ( I + E )  "z-'" [ (C/h) W.,. ( 2 h ~ )  + W,, it (2hz) I ,  (11) 

f (2) = A  (1-8)'"~-'"I (CIA) W.,, i r  ( 2h t )  -W, ,  (2hz) I ,  (12) 

where 

A is a normalization constant. 

In order to obtain the solutions in the interior region 
we make an estimate as to when it  is possible to neglect 
the terms & + 1 and & - 1 in comparison with the potential 
V(z) in the system (6). Since I & l < 1 in the region of the 
discrete spectrum, i t  is sufficient to require that the in- 
equality I V(z)l >> 2 should be satisfied. Taking into ac- 
count the fact that in accordance with (2) and (7) the po- 
tential I V(z)l decreases monotonically with increasing 
z, we can only strengthen the inequality by replacing in 
i t  F(z) by the Coulomb asymptotic value (g), and from 
this we obtain I V(z)l 2 5/z >> 2. This means that at dis- 
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tances z << p/2 the mequality I ?(z) l >> max{c - 1, c + 1) 
will certainly be satisfied. Consequently, in this region 
the system (6) takes on the approximate form 

and from this we have 

g ( 2 )  = B I  cos w ( z )  +Bz  sin w ( 2 )  , 
f (g) =B1 sin w ( z )  -Bz  cos w ( z ) ,  

where 

w ( z )  = J O ( z f ) d z l  
0 

while B,  and B, are  normalization constants. 

Equating the logarithmic derivatives of solutions (11) 
and (15) at some point z0 which lies in the region where 
they overlap I << 2, << p/2 we obtain the equation for the 
determination of the energy spectrum; 

a) in the case of even levels (B, = 0) 

b) in the case of odd levels (B1 =0) i t  is necessary to 
replace in the left hand side of (18) tanw by - cotw. 

Since the ground energy level must be even due to the 
requirement that the wave function should have no nodes 
we shall below restrict ourselves to an investigation of 
Eq. (18). Since according to the condition on the choice 
of the point at which the solutions are  joined 2, > > I  we 
can utilize for the potential V(zo) the Coulomb asymptot- 
ic form (9) and, moreover, take into account the fact 
that 

(19) 
where C = 0.5772.. . is the Euler constant, while 

i s  a function which takes into account the finite nuclear 
size. On the other hand, 2, << p/2 51, and, therefore, 
one can replace the Whittaker functions appearing in the 
solution g(zo) by their expansion in the neighborhood of 
the origin 

When (Q), (19), and (21) a re  taken into account, Eq. 
(18) is simplified and is transformed to the final form 

where the argument of the gamma-function is deter- 
mined by the following expansion: 

It follows from (22) that in the zero-order approxima- 
tion with respect to the parameter If the Coulomb sub- 
levels of the lowest Landau level do not depend on the 
point at which the solutions a re  joined. By making the 
limiting transition to the nonrelativistic case (p << 1, 
1 - c << I), i t  can be easily verified that equation (22) 
yields the "one-dimensional" Coulomb spectrum ob- 
tained in the logarithmic approximation ( I  ln(1p)l >> 1) 
in[81. 

It also follows from (22) that3' 

Substituting into the denominator of formula (25) the fol- 
lowing representations for Im$(x +iy)[lll: - 

~m * ( X + ~ Y )  = y2+,t;+X) '. xso (for e>O) .  
A-0 

Y  Y 
(26) 

Im $ ( z + i y )  = arctg- + --- 
x 2 ( x 2 + y 2 )  

a 
t d t  

+4xy J ( t ~ + x z - y ~ ) z + h z y 2 ~  (eza l - i )  X > O  (for E < o ) ,  

one can easily verify that the derivative (25) is negative 
for all values of I c l s 1. Thus, the energy levels for a 
fixed p a re  lowered with increasing magnetic field, 
reaching the lower limit of the spectrum c = - 1 when the 
derivative h* the value 

Further in analogy with the derivation of (25) one can 
show that ac/ap< 0 and attains for c = - 1 for the ground 
level the value 

(28) 
i. e., the ground level passes into the lower continuum 
for p > C,. 

3. THE CRITICAL CHARGE 

We now consider the situation when the ground level 
of the electron falls on the limit of the lower continuum. 
Performing in this case the limiting transition & - - 1 in 
formula (22) we obtain the transcendental equation im- 
plicitly determining the critical charge as  a function of 
the magnetic field and of the nuclear radius: 

As should have been expected, Eq. (20) contains the ra- 
tios of the three characteristic parameters of the prob- 
lem; R, I, and rg. (We recall that in the units adopted 
here r, = 5") 

We make an estimate of the effect of the finite nuclear 
size. In order to do this we expand the function Fk) in 
a series (cf. (20)) and obtain: 
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a) in the case that the charge is distributed over a 
sphere ( fk )  = 1) 

b) for a homogeneous distribution (f(x) = (3 - x3/2) 

From (30) and (31) i t  follows that even for superstrong 
fields in which the Larmor radius for  the electron be- 
comes equal to the nuclear radius (I-R for H- lo4, or, 
in ordinary units, H -  10" Oe), the correction due to the 
finite nuclear size is negligibly small against the back- 
ground of the large logarithm lnlg,. Such a weak effect 
of nuclear size is associated with the fact that the strong 
magnetic field (1 s 1;/2) itself cuts off the one-dimension- 
al Coulomb potential making it finite a t  the origin. In- 
deed, substitution of the point Coulomb potmtial in (7) 
yields V(O) = - 1; (7r/2)L'2/1. 

From the above statement it follows that in a strong 
magnetic field R 5 I <<. 1;6/ one can neglect the effect of 
finite nuclear size on g,, i. e., one can set  R = O  in (29). 
Then, taking into account the fact that the minimum val- 
ue of 5, corresponds to  the choice n = - 1 one can solve 
(29) with respect to the intensity of the magnetic field 
H =H(6,); 

n-2 arg F ( l L 2 i i , )  

be 

(32) 

The generalization of this formula to the case of excited 
states n s - 1, M c - $ leads to the following result: 

(2n+l)n+2 arg F(I+ZiC.) ) , (32~)  
~ = 2 c ? e q ~ { $ (  I M + ;  / + I )  - 5. 

Equations (32) and (32') were solved numerically. The 
results of the calculation a re  shown in Fig. 1. The con- 
dition R 5 1 << g/2 restricts the domain of applicability of 
these formulas to fields 1 << H 5 lo4. For  the ground 
state n = - 1, M = - 4 the critical charge decreases mono- 
tonically with increasing field from the value I ,  =O.  7 
(Zc=96) for H=IO' to 1;,=0.3 (Z,=41) for ~ = 2 . 4 ~ 1 0 ~ .  
For example, the uranium nucleus (2, = 92) becomes 
unstable with respect to the production of positrons in a 
field Hz  5 . 5 x  10" Oe. The next level for uranium, n 
= - 1, M = - $, reaches the limit of the spectrum & = - 1 
in a field which is larger than the indicated field by a 
factor of eB2.7 (cf. curve 2). 

FIG. 1. Dependence of the critical charge on the value of the 
magnetic field: curve 1 corresponds to the ground level n =  -1, 
M =  - 4; 2 corresponds to the level n =  -1. M =  - f; 3 corre- 
sponds to the level n=-2, M = - f .  

FIG. 2. Dependence of the ground energy level on the value of 
the magnetic field for different values of 5 ; the dotted line i s  
drawn according to ~ r a h o v ~ " '  for f = 0.3 .  

On the other hand, in the limit of weak magnetic fields 
H << 1 one can estimate the change in the critical charge 
using the results ofL3] (cf. formula (2.39)): 

where A = - 1nR. Setting the small correction to the lev- 
e l  & = - 1 equal to the Zeeman splitting: l Ac,l 
=pgl MI H/2, where in accordance with[lZ1 p = (85; - 3)/ 
(6~ ;+9)=  5, we obtain for 2,- 170 (A= 4.2) 

In the ground state IM I =$, the Land6 factor is g=2, 
and therefore even for fields H- 0.1 the decrease in the 
critical charge is insignificant, 2, - Z 5 1. In Fig. 1 
these fields correspond to the straight line in the initial 
segment of the dependence 5 , ( ~ )  (curve 1). In the inter- 
mediate region 0.1 < H< 10' which corresponds to the pa- 
rameter 11; - l no calculations were carried out. The 
qualitative form of the dependence g,(H) is this region 
is shown in the diagram by the dotted line. 

From expression (22), fixing 1; and neglecting, as 
above, the dimensions of the nucleus, one can obtain the 
dependence of the energy of the ground level n = - 1, M 
= - 4 on the value of the magnetic field. Within the 
range of magnetic fields under consideration lo2 S H  
510' this dependence is shown graphically in Fig. 2 
where for comparison we have also shown the analogous 
dependence &(H) for 5- =0."3 in accordance with the re- 
sults of the paper by ~ r a i n o v ~ ' ~ ~  (a discussion of the dif- 
ferences is given in the Appendix). 

It i s  also of interest to cbmpare the transverse dimen- 
sion of the atom I with its linear dimension along the z 
axis in the ground state & = - 1. The normalized one-di- 
mensional wave functions in this case a re  equal to 

where 

Here just a s  in the three-dimensional case in the ab- 
sence of a magnetic fieldc3' the transition to the level E 
= - 1 corresponds to the degeneration of the Whittaker 
functions (cf. ( l l ) ,  (12)) into the Macdonald functions 
K"k). 

A calculation of the root-mean-square longitudinal 
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size of the atom ( . ~ ~ ) " ~ / 2  yields From this the desired threshold probability for the 
emergence of the positron4) is equal to - 22 (9+46,1) (l+E.') 

~ r , s 2 ( r s ) z  jza d z [ ~ i < ~ ~  ( I S E L ) + - K ~ ~  I= 3511' 
E .  6f; .  sh 23%. 

0 (44) 

from which we obtain 

. - -- 
Calculations according to this formula show that as  the 
field is varied in the range lo2< H <  lo4 the longitudinal 
dimension grows insignificantly from 0.5 to 0.9 while 
the degree of deformation of the K-shell of the atom, 
(z2)lt2/21 grows sharply from 5 to 140. Therefore it is 
reasonable to speak not of an elongation of the K shell 
along the magnetic field but of its compression in the 
transverse plane. An analogous result is apparently 
valid also for excited states. 

4. THE THRESHOLD PROBABILITY OF POSITRON 
PRODUCTION. 

As is well known, [*I in order to determine the thresh- 
old probability for the emergence of a positron it is nec- 
essary to calculate the width r of the quasistationary 
level c = - 1 + i r  obtained by an analytic continuation of 
the function c(5) into the region f > t,. In order to carry 
this out we divide equation (22) by 5, (29) by f, and sub- 
tract the second from the first. As a result we obtain 

where 

1 1  1 
A ( ~ , E A = - ( - - - )  2  5 5. 

1  arg r(1+2iE.) - -arg r ( l + 2 i t )  . (39) 
6 1 

We consider the function f (c, f ). It follows from (38) 
that for t < - 1 it acquires an imaginary part 

which near t = - 1 is exponentially small: 

sh 2 4 .  
I m j ( e , L ) =  -- 2nt l e l  exp (- 

2nE. (41) 

As E - - 1, Eq. (37) assumes the form 

We seek its solution in the form c =c' +ic" with a small 
imaginary part t" << c'. Then we have 

where 

The dependence of the probability of creation of e* on 
the magnetic field calculated according to this formula 
is shown in Fig. 3. Greater values of the threshold 
probability compared with the analogous effect in the ab- 
sence of a field"' 5 '  can be easily explained by calculat- 
ing the transparency of the Coulomb barrier for posi- 
trons. Indeed, by combining the basic one-dimensional 
equations (6) we obtain the equation 

which by the replacement g(z) = (c + 1 - T)1'2X(z) reduces 
to an equation of the Schriidinger type; 

x.~+xzx=o, (45) 

where n 2  =2(E - U), E = (t2 - 1)/2, while the effective po- 
tential is 

Setting in (46) & = - 1 we find that in the region z >> 1 

A graph of the function (46') is shown in Fig. 4. For 
comparison we also show the value of the analogous po- 
tential from the review of Zel'dovich and Popov. [31 It 
can be easily seen that with increasing magnetic field 
the height of the barr ier  is lowered since the value of 
the critical charge is reduced. Therefore the transpar- 
ency of the one-dimensional barr ier  

which with an accuracy up to the expression in front of 
the exponential coincides with the probability (44), turns 
out to be greater when the field is switched on than in 
the well-known casecs' of free atoms. 

It is obvious that the state c = - 1 is a localized one 
(D =0). This can also be seen from the expression for 
the wave function for the ground state (cf. (34)) 

FIG. 3. Dependence of the probability of positron production 
on the intensity of the magnetic field (in units of mc2/A): curve 
1 represents the threshold probability for Z=Z,+ 1, 2-for Z 
=z,+ 2. 
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FIG. 4. The effective potential U: 1-in the absence of a field 
(50=1.25) and 2-for the field ~ = 2 . 4 x 1 0 ' ~  Oe (5,=0.5). The 
parameters are: 

5. VACUUM POLARIZATION, RADIATION 
CORRECTIONS AND THE CRITICAL CHARGE. 

The change in the Coulomb potential (2) associated 
with the deviation of the permittivity of vacuum from 
unity in strong fields will have only a small effect on the 
spectrum &(g) and on the value of the critical charge. 
In order to confirm this it is sufficient to examine the 
Heisenberg-Euler Lagrangian for constant and homoge- 
neous electric and magnetic fields. [I3] It was shown by 
~ i ~ d a l ' ~ ~ ]  that a sufficiently strong field can indeed be 
regarded as homogeneous even at small distances from 
the Coulomb center and this enables us in our case to 
obtain from the Lagrangian indicated above the permit- 
tivity of vacuum near an external charge of arbitrarily 
small radius. 

Along the z axis where the E and H fields a re  parallel 
we have with logarithmic accuracy for the induction Z e /  
4nr2 = a P / ~ E  and correspondingly for the intensity 

and the well known result due to Uehling 

In the plane perpendicular to the magnetic field and 
passing through the center of the nucleus we obtain with 
the same logarithmic accuracy 

From (47) and (48) i t  follows that the depth of potential 
(2) increases insignificantly by I AVI - at/r, and this 
leads to a small negative shift of the energy levels 
- amc2 and correspondingly to a small decrease in the 
critical charge (- aZ,< 1) in agreement with the asser- 
tion made at the beginning of this section. We note that 
the accuracy of these estimates which a re  valid, gener- 
ally speaking, in the Born approximation 5 << 1 improves 
with increasing field H due to a decrease in 5, (g,- 0.3 
for H- lo4). 

The interaction of an electron with the photon vacuum 
which leads to positive additions to the potential (2) due 

to the self-energy and vertex parts of the Lamb shift has 
not been investigated fo r  strong fields (C > 1) even in the 
absence of a magnetic field. In our case one can expect 
that the well-known estimates which a re  valid in the 
Born approximation will describe correctly the small 
increase in the critical charge by an amount aZ, 5 1 cor- 
responding to this interaction. 

The interaction of an electron with the photon vacuum 
in a superstrong magnetic field H >> 1 leads to a consid- 
erable change in the anomalous magnetic moment of the 
e le~ t ron"~] :  

and this enables u s  to remove the well-known limitation 
on the value of the magnetic field H 5 am' (- 10'' Oe) 
which follows from the solution of the Foldy equation if 
the standard value of the anomalous magnetic moment 
a,u/,uB =-  a/2s is  utilized. Indeed, from formula (49) 
it follows that in the range of fields under investigation 
1 <. H 5 lo4  the contribution to the energy is HAP << 1, 
i. e., it has only a small effect on the results obtained 
above. 

Finally, a few words on the distribution of the polar- 
ization charge and on its magnitude. Here the situation 
must be analogous to that discussed inc3]. As in the case 
of the absence of a field, the localization of the polariza- ' 
tion charge follows the density inside the barr ier  of the 
quasistationary state characterized by the energy (42). 
Therefore the cloud of the vacuum charge i s  compressed 
in the transverse direction (1 H). In passing through 2, 
the density of the vacuum charge p,,,(r) undergoes a dis- 
continuity associated with the distortion of the wave 
functions of the lower continuum by the discrete level 
approaching it: 

Ap ,,,(I.) = - e p L  ( r )  , pC ( r )  = h ' ( r )  + c z Z ( r )  

(cf. (51, (34), (35)). The total vacuum charge for g > 5, 
is equal to - e ,  i. e., i t  i s  smaller by a factor of two 
than in the case considered in1'] due to the lifting by the 
magnetic field of the degeneracy with respect to spin. 

6. CONCLUSION 

Thus, in a strong magnetic field H >> g2 the threshold 
for  the spontaneous production of positrons by a Coulomb 
center i s  appreciably lowered, and the threshold proba- 
bility of production turns out to be higher than in the ab- 
sence of the field. This effect is possible because of 
the exact compensation of the diamagnetic and paramag- 
netic contributions to the ground state for particles of 
spin s = i, since only for them is the Landau ground lev- 
el & = (m2 +pf)'I2 independent of the field. For  scalar 
particles (s = 0) in a strong magnetic field the Landau 
ground level r ises  a s  the intensity H increases, & = (m2 
+p:+ 2/l2)lI2, and this in the problem under considera- 
tion involving a Coulomb center would lead to an in- 
crease in the critical charge. 

Another possible electrodynamic process for  a Cou- 
lomb center in a strong constant electromagnetic field- 
the production of free relativistic electron-positron 
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pairs-was 9scussed in the Born approximation (5 << 1) 
by Narozhnyi and Nikishov. '''I As is shown in'161, up to 
fields H- 10' (in units of Ho) the approximation of a sta- 
tionary center for such light nuclei turns out to be justi- 
fied. In our problem in the same field H- lo2 the criti- 
cal charge is 2,- 90, s o  that the approximation of a sta- 
tionary center can be violated only for very large values 
of the field which would displace Zc in the direction of 
light elements. In the latter case there ar ises  not only 
the problem of finding bound states in a relativistic two- 
body problem in an external field, but also the necessity 
to take into account the change in the electromagnetic 
structure of the nucleus. 

We note possible applications of the problem consid- 
ered in this paper. According to the available calcula- 
tions of the equilibrium nuclear composition of the crust 
of a pulsar one can expect an increase in the charge Z 
and the mass number A as  the center of the s tar  i s  ap- 
proached, where the neutron-rich bare nuclei decay 
adding to the f ree  neutron liquid. On the other hand, 
the frozen-in magnetic field grows as the density of 
matter increases according to the law H = ~ , ( p / ~ ~ ) ' ' ~ ,  
where pp- 10"cm3 and Hp- lo1' 0 e  a re  the density and 
the magnetic field at the surface of the pulsar. There- 
fore, for a certain heavy nucleus Z one can expect that 
the magnetic field will exceed the critical field H, (cf. 
formula (32)) needed for the switching on of the process 
of spontaneous production of positrons considered in 
this paper. Indeed, according to the estimates of 
~ i r z h n i t s ~ ' ~ '  without taking the magnetic field into ac- 
count we have within the inner crust of the pulsar p- 4 
X 1013 g/cm3, which corresponds to a field H- 10" Oe, 
while the average charge is Z -  74, i. e., greater than 
Zc(H). Moreover, in the above magnetic field the inter- 
action p,H- 1 MeV, i. e., i t  is necessary to modify the 
Bethe-Weizsacker formula, and it is desirable to take 
this as well a s  the spontaneous production of positrons 
into account in calculating the equilibrium nuclear com- 
position of a pulsar crust. 

Another possible application of the asymptotic solu- 
tion of the Dirac equation for a Coulomb center in a 
strong magnetic field obtained here can be in the inves- 
tigation of the problem of magnetic freezing-out in 
semiconductors with a narrow forbidden where 
the characteristic strong magnetic fields a re  consider- 
ably lower than astrophysical ones. 

In conclusion the authors express their gratitude to 
L. A. Klebanov for  carrying out the numerical calcula- 
tions, to D. A. Kirzhnits, V. S. Popov and Ya. A. 
~morodinskii for useful discussions of the results of 
this paper. 

APPENDIX 

Here we shall carry out a comparison of the results 
obtajned above with the conclusions of the paper by 
~ra inov[ '~ l  in which he also considered a relativistic 
atom in a strong magnetic field. It was asserted inc"] 
that within the framework of a single-particle problem 
the level E = - 1 cannot be reached a s  a result of the ap- 
pearance of a characteristic bending of the curve &(H) 
at a certain "critical" field Hc similar to the manner in 
which this happens, for example, for scalar particles 

in a short range potential. C39'41 This result is not valid 
for a Coulomb field due to the presence of a barr ier  in 
the one-dimensional potential (46') which prevents the 
delocalization of the single-particle wave function of the 
ground state (Cf. Sec. 4). Let us  examine this question 
in greater detail. 

1: In solving the one-dimensional equations (6) 
~rainov~' ' ]  utilized the phenomenological Coulomb po- 
tential 

V(z)=-Lf( I z \ + z ) ,  (A- 1) 

which differs at small distances from the effective po- 
tential (7). Although such a cutting-off of the potential 
at small distances should not qualitatively affect the 
principal results, i t  is more difficult in this scheme to 
give a correct estimate of the effect of finite nuclear 
size. 

2. Because the potential of (A. 1) is finite at the ori- 
gen the solutions of the system (6) in the region z > 0 
have the form ( l l ) ,  (12) with the shifted argument z - z 
+ 1. The joining of the even solutions at the origin leads 
in this case to the quantization condition (cf. L1al) 

W,,, ,:(Wl) =hS-'W', ,,(2hl), (A. 2) 

which f o r  fields H >: 1 reduces by expanding the Whitta- 
ker functions in series in terms of Xl<< 1 to 

h 
( :  ) 5 In 2hl+ arctg- + arg r - - + ic - arg r(1+2iL) - ?+ nn. 

l - e  2 
(A* 3) 

This expression differs from (22) only by the absence of 
the last  two terms in the left hand side which originate 
in different definitions of the one-dimensional potential 
but which a re  not significant for the differentiation with 
respect to 1nH (cf. the footnote following formula (25)). 
The result of such a differentiation of (A. 3) coincides 
with (25), and consequently also in the model considered 
inC''] the derivative a & / a ( l n ~ )  is everywhere negative 
and finite, i. e., the energy levels must be monotonical- 
ly lowered in value with increasing magnetic field. 

3. For  the ground state (n = - 1) equation (A. 3) can be 
brought to the form 

H 
E =cos f ln-+2argr(1+2it)-2argr  --+it . (A. 4) [ *AZ ( : "  )I 

In the Born approximation 3 <. 1 this expression re-  
duces to formula (1) fromc101: 

(A. 5) 

From (A. 5) i t  follows that the derivative a&/alnH be- 
comes infinite for a value of the energy & = - 1 + 23' in a 
magnetic field HC= expi- 2 + n/b + 2 ln25) in contradiction 
with what was proved above. Such a discrepancy is ex- 
plained by the use of the Born result (A. 5) instead of the 
formula (A. 4) which is asymptotically exact for H >> 1 
and valid for any 5> 0.3. Indeed, substitution into (A. 4) 
of the indicated values of E and H for  the minimum val- 
ue of 5 - 0.3 considered by us shows that the second and 
the third terms in the argument of the cosine in (A.4) 
a re  comparable in order of magnitude with the first  one, 
i. e., the Born result (A. 5) would have been valid for 
considerably smaller 5. But in this case the approxima- 

434 Sov. Phys. JETP 45(3), Mar. 1977 Oraevskii et a/. 434 



tion of a point nucleus no longer has sense, since in the 
field H c -  erIC, 5 <' 0.3, the Larmor radius is much 
smaller than the nuclear radius. 

Thus, the assertion of ~ r & o v " ~ l  that the level E = - 1 
is unattainable within the framework of a single-particle 
problem is erroneous. Graphically, the discrepancy i s  
illustrated in Fig. 2, where the dotted line shows the de- 
pendence E (H) obtained in accordance with the formula 
(A. 5) for g = 0.3. We also note that use of the approxi- 
mate potential (A. 1) would lead to a value of the magnet- 
ic field, a t  which the lower limit of the discrete spec- 
trum is attained, which is by a factor of 2eC= 3. 5 greater 
compared to the value obtained above (cf. Fig. 1). 

 he question of the existence of such strong magnetic fields 
(1 -fi/mc for  H - loi3 Oe) has been recently discussed in con- 
nection with the theory of  pulsar^.'^' In some of the esti-  
m a t e ~ ' ~ '  a possibility i s  indicated that fields up to H - 10" Oe 
exist inside a pulsar. 

2'1n the nonrelativistic case the analogous problem fo r  a hydro- 
gen-like atom o r  a n  exciton was solved in the paper by 
Hasegawa and Howard. 1 6 '  Gor'kov and ~ z ~ a l o s h i n s k i r  ''I took 
into account the motion of the exciton in this case. Kadomtsev 
and ~ u d r ~ a v t s e v ' ~ * ~ '  have made a nonrelativistic investigation 
of a many-eltctron atom in a strong magnetic field. In the 
paper by ~ r a i n o v ' ' ~ '  devoted t o  a relativistic investigation of 
a hydrogen-like atom in a strong field the spontaneous pro- 
duction of positrons was not investigated a s  a result  of an  e r -  
roneous assert ion that within the framework of a single-par- 
ticle problem the level E =-mc2  could not be reached (for de- 
tails see  the Appendix). 

3 ' ~ o r e  accurately, the numerator of (25) must in place of A3 
contain A3(l +xF;ISRlr). But the contribution due to  finite 
nuclear s ize  i s  smal l  compared to unity within the range of 
magnetic fields under discussion (cf. below (30) and (31)). 

4 ' ~ n  units of mc2/Fi=9 xlo2' Hz. 
"with the same displacement f rom threshold Z  - Zc = 1 which 

enables us to  utilize the single particle approximation. 

6 ' ~ e  a r e  grateful to V. M. fde1:hte;n for  bringing to our  at- 
tention this work of Fal'kovskii. 
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