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Cosmological solutions for a homogeneous Bianchi type I1 model are investigated with allowance for 
dissipative viscous processes. A number of general conclusions drawn by ~elinskii and Khalatnikov [Sov. 
Phys. JETP 42, 205 (1975)l from the study of a type I model is confirmed, and qualitatively new kinds 
of cosmological singularities, both initial and final, are found. The evolution of the universe for this case 
is described. It is shown how similar calculations can also be made for the Bianchi types VI, VII, VIII, 
and IX, but also why there is no point in doing this. 

PACS numbers: 98.80.B~ 

1. INTRODUCTION 

The evolution of the universe has been considered 
many times. But in the majority of cases no allowance 
has been made for processes that dissipate energy, the 
energy-momentum tensor being taken in the form cor- 
responding to  a perfect fluid. All the processes in the 
universe a r e  then, of course, reversible and the two 
types of cosmological singularity-creation and de- 
struction-differ only in the time direction. If viscous 
dissipative processes a r e  included by using the energy- 
momentum tensor of a viscous fluid in Einstein's equa- 
tions, the picture may be very different. For example, 
~ u r p h ~ ~ ' ~  has given an example of an exactly solvable 
flat Friedmann model with allowance for second vis- 
cosity, in which the singularity is in a certain sense 
eliminated. This effect is however characteristic only 
of isotropic models, a s  was shown by ~ e l i n s k i r  and 
~ a l a t n i k o v ~ ~ ~  in their calculation of anisotropic cosmo- 
logical models of Bianchi type I. They found that vis- 
cosity does not eliminate the singularity, though it does 
allow other possibilities. For example, there is a solu- 
tion for which the energy density and the Hubble con- 
stant a r e  constant. In this case, according toCz1, the 
standard development of the universe is a s  follows. Ini- 
tially, the energy density is negligibly small and the 
metric corresponds to the Kasner solution. The energy 
density then increases and subsequently varies in ac- 
cordance with the Friedmann laws, which govern the 
model during the later stages of expansion. Thus, in 
this case the gravitational field creates matter. The 
contraction begins and ends in the Friedmann solution, 
but in the middle the universe becomes anisotropic. 
Thus, viscosity has an isotropizing effect. 

In this paper we consider Bianchi type I1 m o d e l ~ . ~ T h e  
results confirm the general conclusions of Belinskii and 
Kalatnikov. Additional possibilities a r e  also found 
here. 

Models of the Bianchi types VI, VII, VIII, and M can 
also be considered by the method used here. However, 
the resulting systems of equations a r e  cumbersome and 
require the introduction of multidimensional phase 
spaces. Furt?ermore, the picture they give hardly dif- 
f e r s  qualitatively from the investigated ones. 

But how closely does this picture resemble the real 
universe? Our calculation shows that viscosity can sig- 
nificantly affect the evolution of the universe, but this 
by no means exhausts al l  dissipative processes. There- 
fore, our resuIts a r e  no more than a model of the true 
evolution. In addition, it i s  only justified to use just the 
two coefficients of viscosity when the terms with higher 
derivatives of the velocity a r e  small. It would seem 
that this is the case near the initial cosmological singu- . 
larity and, generally speaking, a t  not very high energy 
densities. With regard to the final stages of evolution, 
we may hope that the picture does not change qualitative- 
ly when the following dissipative terms a r e  taken into 
account. 

2. FROM EINSTEIN'S EQUATIONS TO A 
DYNAMICAL SYSTEM 

Our metric i s  of the form 

where the Greek indices take the values 1, 2, 3,  (We 
assume that the velocity of light and the Einstein gravi- 
tational contant a r e  equal to unity. ) The energy -mo- 
mentum tensor of a viscous fluid has the formc3] 

Here, E i s  the energy density, p i s  the pressure, 77 and 
5 a r e  the coefficients of f i rs t  and second viscosity, and 
u, a r e  the components of the four velocity. The indices 
i, k, I take the values 0, 1, 2, 3 .  

If the Einstein equations based on the metric (1) a r e  
to be compatible, i t  i s  necessary to work in a comoving 
frame, in which u0 = 1, ua = 0. Then the energy -mo- 
mentum tensor takes the form 

T,O=E, TAo=O, Top=p'Gr@+q~DP, 

p'=p- (p -a /Jq )  (In 'f") '. 

Here, y is the determinant of the spatial tensor 

r a p = - g = ~  and % o ~ = Y a $ .  
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We resolve the spatial components of four-vectors 
and four-tensors with respect to a triplet d frame vec- 
tors of a Bianchi type 11 spacet4]: 

We obtain the following expressions for the frame com- 
ponents of the Ricci four-tensor: 

where d i s  the determinant of the tensor Y ( , , ( ~ , ,  and 
P!:: i s  the spatial curvature tensor, equal in our case 
to 

Indices a r e  raised and lowered by means of the tensor 

For the components TI:! we obtain 

We denote 

It i s  clear that n, + n2 + n, = 3H. We call H the Hubble 
constant. We form the system of Einstein equations. 
The components a and b of these equations give 

whence 

n2-n3=const.erld'", $=-2q; (11) 
az n,-n,=A = - ;. ( C O ~ S ~  + I  e-*doh d t )  . (12) 

Hence 

where a,, a2, ag a r e  constant and C a, = 0. Substituting 
(13) into Eqs. (91, we obtain 

where W is the enthalpy, W= & + p ,  and N denotes the 
ratio a2/b2c2. 

The 00 component of the Einstein equations gives 

It can be seen from this that the state of the system 
must satisfy the inequality 

Differentiating Eq. (15) and then substituting the value 
q2 eiu/d from it, we obtain 

We have thus obtained the hydrodynamic equation T :;, 
= 0, which is already contained in Eqs. (15) and (16). 
As i s  shown inc2], this last  equation is related to the 
law of increase of entropy. permitting here only evo- 
lutions corresponding to  growth of the proper time t. 

To complete the system, we need an equation for  I?. 
It can be obtained by differentiating the relation 

We get 

Thus, the system has been obtained. To use the 
qualitative theory of dynamicai systems, i t  i s  conve- 
nient to  introduce the variable P= I?/N. Then 

p=-2R- (2q+3H) (p+2H) -8 /3N,  (19) 
N=pN. (20) 

One can obtain similarly complete systems of equations 
for the Bianchi types VI, VII, VIII, and M. For this, 
i t  is necessary to obtain from the Einstein equations 
the expressions 

where A and B a r e  expressed in terms of integrals of 
the functions a, b, c. Thus, for Bianchi type VII 

e* b4-a' 
A = , e-*d'" a2b;~;. 

d d t ,  

ev ba-a' 
B = , e-*d'" dt. 

Then writing 
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we can readily obtain the expression 

However, in the expression for  2 there is no cancella- 
tion of A, B, and a,, in contrast to our case, in which 
the situation was made easier. Therefore, to  obtain 
the system, we must also differentiate the resulting 
equation and then eliminate A, B, and a,. Further - 
more, the equations analogous to (18) become much 
more complicated. As a result, the dynamical system 
requires not four variables, as in our case, but a t  least 
eight. Therefore, despite the possibility of calculating 
exactly four more types, we do not do this, especially 
in view of the fact that the more complicated calcula- 
tions give a result analogous to  the one we have investi- 
gated. 

3. INVESTIGATION OF THE SYSTEM 

It remains to  find the integral curves described by 
the equations (14), (171, (19), and (20). From physical 
considerations it i s  clear that N and c cannot be nega- 
tive. Therefore, the curves lie in a quarter of the c, 
H, N space, on the outside of the parabolic cylinder 
& = 3H - +N. The plane N = 0 i s  singular, since on i t  
either a = 0 o r  bc= m. If we consider formally the inte- 
gral curves for  N = 0, they coincide completely with 
the curves constructed inc2]. It is easy to  see  that over 
a finite interval of time an integral curve that comes 
out d a point within the quarter space can reach neither 
the plane N = 0 nor values N =a. Therefore, cosmo- 
logical singularities can occur only a t  singular points 
of the system of equations. 

Note that the trajectory of the system in the four-di- 
mensional phase space depends on four constants, for 
example, the initial values of &, H, N, and p. How- 
ever, we do not know the initial value of p. Thus, we 
can obtain only a family of curves, which depend on one 
parameter. However, near the singular points this de- 
pendence frequently disappears-the difference between 
the trajectories of the family becomes infinitesimally 
small. 

Let us  consider the singular points for  finite values 
of c and H. Equating 2, 2, and I? to zero, we obtain 
two groups of solutions. One of them has N <  0, i. e . ,  
it i s  unphysical. The other coincides completely with 
the singular points inc2]. These points a r e  situated 
where H 2 0, N = 0, c = 3H and a t  them [(c) 
= ~(&)(3c)" '~.  This last  condition i s  certainly satisfied 
for c = H = 0. Whether there a r e  other singular points 
is determined by the dependence [(&). 

Two separatrices lie in the plane N = 0. One d them 
is the parabola c = 3H '. Its characteristic number i s  

where the subscript zero is appended to  quantities taken 
.at a singular point. It can have either sign. At two 

neighboring singular points, the signs of XI a r e  neces- 
sarily opposite. If for  large c 

then X, = 0, and we obtain the singular line c = 3H '. 
However, this case does not lead to any interesting ef - 
fects. The characteristic number of the second sep- 
aratrix, which leads to the point c = N = 0,  H = a, 

A2 = - 6Ho - 4q0, i s  definitely negative. 

If we consider the system of equations near a singular 
point in the four -dimensional phase space, we find that 
to  the given values of N, c, and H there correspond two 
singular points with values Po = - 2Ho and Po = m. They 
have identical separatrices in the plane N = 0. We 
have already given them. It would be meaningless to 
speak of a third separatrix in the N, c, H space, or  of 
any other phase trajectory. We have already mentioned 
this above. However, one could speak of its behavior 
near a singular point, since all  lines of the family of 
trajectories have here the same asymptotic behavior. 
For  the point with Po = - 2Ho this is 

This straight line is tangent to the parabolic cylinder 
& = 3H - aN, the boundary of the admissible region. The 
characteristic number corresponding to it, A,= - 2Ho, 
is also always negative. Therefore, depending on the 
sign of A,,  the point i s  either an attracting node, or  a 
saddle. One can show that these kinds of points must 
alternate, i. e . ,  if we move along the parabola N= 0, 
E = 3H ', a saddle must follow a node, and vice versa. 

The solution of the equation near the singular point 
has the form (C,> 0) 

Moreover, for  a node, 

a s  t - m. This corresponds to the late stages of infinite 
isotropic expansion of the universe. This takes place 
in accordance with Friedmann, but the energy density 
does not tend to zero but some finite value. This is due 
to  the influence of second viscosity. The energy of the 
motion of the expanding matter i s  dissipated and goes 
over into internal energy of the matter. The entropy 
density satisfies 

and the energy-momentum tensor takes the asymptotic 
form T!= -so, T: = - ~06:. This is similar to a per- 
fect fluid with effective pressure P =  - &. 
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The entropy per particle in a distinguished volumem 
of space i s  proportional to / ud d3x, i. e., it in- 
creases with the time like d '12u- e3Hot as  t- a. Thus, 
the entropy per k r t i c l e  accumulates the whole time. 

In the case X1>O, i.e., for a saddle, all this is true 
for C2 = 0. The lines also end at a singular point. 
Here, the outgoing separatrix has no physical meaning, 
since it lies in the plane N= 0. However, for Bianchi 
type I it i s  this separatrix that gives the solutions found 
by Murphy. ['I 

Points with PO = 4) a re  completely different. For them 
X3 = +a, i. e., they correspond to a saddle in all cases. 
However, since I X3 I >> I X1 I , I X3 1 >> 1 A2 1 , and the case 
C, = O  corresponds to unphysical solutions, one of the 
separatrices suppresses the others. This i s  manifested 
in the fact that a system which for t =  -a is a t  the sin- 
gular point leaves it parallel to the N axis. Moreover, 
for t- -a 

where C is a negative constant. Having reached the 
maximal value of N, it returns, and either falls into 
the same singular point (corresponding to the same &, 

H, N but with po = - 2H0), or  into some other one, in- 
cluding infinity. As t - -a, 

d - e s p  ( ( iNot ) .  a'-exp[3Hot+'ltC exp ( -2qo-3Ho) t ] ,  

6 '~ ' -esp[3Hot- ' /?C e x p ( - 2 1 l ~ - 3 H ~ )  t ] ,  
(24) 

As we see, this singularity corresponds to t =  -a, 

which differs strongly from the singularities for Bianchi 
type I and the remaining singularities in our case. 
Physically, this is rapid isotropization of the universe, 
due basically to second viscosity, and i s  characteristic 
of type 11. It is logical to assume that for types VI, W, 
VIII, and M we must also obtain analogous solutions. 

Thus, we have considered singular points at finite 
values of & . They all lie on the parabola & = 3H ', N= 0. 
It is clear from the inequality (16) that one cannot have 
singular points with N= and finite H. 

We now consider the case of low and high energy den- 
sities. For this, we must particularize the equation of 
state of the matter and the asymptotic dependence of the 
coefficients of viscosity on the energy density. We set 

The analysis of the relativistic kinetic equations for 
simplified gas models mentioned incz1 shows that it is 
reasonable to assume at small & 

For high energy densities, we have 

For small E, we have singular points at & = H = N= 0 
and at & = 0, H = *a. The straight line & = 0 passing 
through them is also a solution of the system, which 
has the form 

1 2 P-= e=O, H - -  N = - - a z C -  
3t  ' 3 (C-P)' ' 

Near the singular points, it has the asymptotic behavior 

For the point & = H = N= 0 and 

forthepoints&=O, H=km. Forc=O, H=-a th i s so -  
lution (t- - 0) is unique since this point i s  a saddle and 
(30) describes the outgoing separatrix. 

We here see clearly how the general solution (28) 
ceases to depend on the one constant near the singulari- 
ties and takes on the Kasner form. Near the singular 
points, the coefficients a, b, and c have the form 

for the coordinate origin and 

for the points E = 0, H= *a. 

Besides this general solution, the Novikov solution 
also passes through the originc*']: 

for which 
aZ,tY?-l bZC2,tZ/;+l , d-t' '. (34) 

They both enter the node from the side of positive H and 
leave it in the direction of negative H. The ingoing 
curves (t-a) correspond to late stages of expansion; 
the outgoing curves (t- -a), to early stages of contrac- 
tion of the universe. 

Besides (30) the point & = 0, H = has an additional 
family of solutions. This point is a node, and integral 
curves begin at it. The coefficients of their asymptotic 
behaviors depend on which of the viscosities is dominant 
at low energy densities. Suppose, for example, T >  5 
(i. e., a l<az)  and in the limiting form of the system of 
equations 

we can ignore the last term on the right-hand side of the 
second equation. We then obtain the solution 
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with the same metric a s  in (32). But if a, = 1, then the 
expression (35) no longer holds. In it, we must set  

~ - t - '  exp ( - 4 q , / 3 ~ , t ) .  

If second viscosity i s  dominant, only the numerical 
coefficients a r e  changed in the equations. 

Thus, the point c = 0, H= * corresponds to  the start  
of cosmological expansion. And, because of the two 
viscosities, the singularity of the gravitational field 
creates matter. 

Let us now consider the behavior of the solutions a t  
high densities. The asymptotic behavior of the coeffi- 
cients of viscosity (27) leads to  three qualitatively dif - 
ferent cases. Let us  consider them successively. 

1) The case O-C b2<$, b , > $ .  It i s  easy to show that 
the integral curves cannot go off to infinity with respect 
to  c for H> 0. This is possible only in the lower half- 
plane H< 0. Here, one can have two solutions, which lie 
on the surface of the parabolic cylinder c = 3~~ - $N.  
One of them is the Friedmann solution; 

Here, tl is the finite instant of time corresponding to 
the cosmological singularity. The trajectories approach 
the Friedmann trajectory in accordance with the law 

where p is a function af vl, bl, y, and cl. It can be 
seen from this that the system's tending to the isotropic 
state in the final stages of contraction of the universe 
is a result of f i rs t  viscosity. 

There exists one further solution; 

Here, 6 is a quantity that depends irrationally on y. 
For all  permitted values of the argument we have 6 3 1, 
with equality achieved a t  y = 2. This solution is asymp- 
totic. Trajectories can separate from it, and we have 

However, this correction to the expression for  the ener- 
gy density increases more slowly than the energy den- 
sity itself, and actually decreases for  b1 > %, This so- 
lution owes its existence to first viscosity and is pe- 
culiar to type 11. It gives one further possibility for  
destruction of the universe in a non-Friedmann manner. 
Since allowance for  the higher dissipative terms can 
significantly affect the solution in this region, we shall 
not consider it in detail. 

2) For  b2=$, bl> 1 we cannot ignorethe terms with 
second viscosity in Eqs. (14) and (17). However, fo r  
H< 0 we obtain the same solutions, in which y is r e -  

Placed by 7'' = y ( l +  p),  where 

We note only that y' cannot be greater than 2. The so- 
lution (38) exists for y '<  y,- 2.5. 

For  /3> 1, the integral curves can go aff to infinity 
with respect to E when H>O a s  well, The solutions cor- 
responding to this process a re  obtained from (36) and 
(38) by the formal replacement of y by y(l  - 8) < 0. They 
correspond to a second viscosity which i s  so large that 
the energy of the motion of the matter dissipated through 
through it  suffices to increase the internal energy con- 
tinuously, i. e . ,  the supply of energy through dissipa- 
tion exceeds its loss through expansion of the universe. 

The case P= 1 corresponds to an infinite number of 
singular points on the parabola c = 3~ ', N =  0. We have 
already described them above. 

These solutions can however be changed significantly 
when allowance is made for  higher viscosities. It may 
even happen that there a r e  no solutions a t  all with 
E-m, H-+m. 

3) The case b2 = 0, b, =$ corresponds to the minimal 
possible viscosities. In this case, the trajectories in 
the half-space H> 0 cannot of course go off to infinity. . 
In the lower half-space, because of the insufficient 
isotropizing action of the f i rs t  viscosity, new solutions 
occur in this case, and they depend on the constant w: 

For  w> 1, the trajectories tend a s  before to (36), but 
more slowly: 

But if w< 1, the integral curves tend to 

H = { [ 3 - 3 o ' ( l - - y / 2 )  IT)-';  e=3w2H2, N.lTZ/[S~'lL-~/2)-Jl 

aZ,T?'[l-,l-~/Z,u', , b2c'-a', d-a'. 
' (43) 

At the same time 

With regard to the second solution, i t  takes the form 

with coefficients that cannot be calculated explicitly. 

4. CONCLUSIONS 

We can now consider the complete evolution of the 
universe. Its contraction begins with the Novikov re -  
gime and ends either with the isotropic Friedmann sin- 
gularity, or the nonisotropic solution (38). These both 
correspond to the case c =a, H = -a. Possibilities for  
expansion of the universe a r e  much greater. Expan- 
sion can s tar t  from a Kasner singularity with zero ener- 
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gy density and infinite cuwature invariants. Then, by 
matter creation by the gravitational field, the matter 
density can increase. The universe can also be created 
a t  a singular point. In constrast to the singularities 
listed above, this singularity does not correspond to a 
finite proper time. Moreover, the energy density and 
the Hubble constant have from the very s tar t  nonzero 
positive values. 

The process ob: expansion ends either with the 
Novikov regime, or  with the Friedmann solution with 
constant energy density and Hubble constant correspond- 
ing to the node (zO, HO). In this case, second viscosity 
has an important influence until t =-, creating entropy 
per particle the whole time. 

Knowing the asymptotic dependence of second viscosity 
a t  high energy densities, we can also say something 
about the singular points. For  b, = $, B > 1 there will 
be an odd number d singular points, i. e., there will 
certainly be one. They will alternate in accordance 
with the rule saddle-node-. . . -saddle. In all  other 
cases there will be either none o r  an even number. The 
order d succession is: node-saddle-. . . -node. Com- 
pared with the Bianchi type I case investigated incz1, 
there a re  new possibilities for  destruction (see (38)) 
and creation (see (23), (24)) of the universe. Moreover, 
this last does not correspond to a finite proper time. 

The nature of the solution during the late stages d ex- 
pansion and early stages of contraction is changed. 
However, the cosmological singularity remains, a s  be- 
fore, an inescapable attribute d the evolution d the 
universe, both for  contraction and expansion. 

I should like to thank I. M. Khalatnikov for suggestingY 
this subject and valuable advice and also V. A. Belinskii 
and A. A. Starobinskii for  helpful discussions. 

' G .  L. Murphy, Phys. Rev. D 8, 4231 (1973). 
'v. A. Belinskii and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 

69, 401 (1975) [Sov. Phys. J E T P  42, 205 (1975)]. 
3 ~ .  D. Landau and E. M. Lifshitz, Mekhanika Sploshnykh 

Sred (Mechanics of Continuous Media), Fizrnatgiz (1953) 
[Pergamon, 19581. 

'L. D. Landau and E. M. Lifshitz, Teoriya Polya, Nauka 
(1973), translated as: The Classical Theory of Fields, Per-  
gamon Press ,  Oxford (1975). 

'G.  F.  R. Ellis and M. A. H. MacCallum, Commun. Math. 
Phys. 12, 108 (1969). . 

6 ~ .  P .  Novikov, Preprint [in Russian], L. D. Landau Institute 
of Theoretical Physics, Chernogolovka, November 1971- 
April 1972. 

I. Bogoyavlenskii and S. P. Novikov, Zh. Eksp. Teor.  
Fiz. 64, 1475 (1973) [Sov. Phys. J E T P  37, 747 (1973)]. 

Translated by Julian B. Barbour 

Spontaneous production of positrons by a Coulomb center 
in a homogeneous magnetic field. 

V. N. Oraevski, A. I. Rex, and V. B. Semikoz 

"Energiya" Science and Production Association 
(Submitted March 16, 1976; resubmitted November 1, 1976) 
Zh. Eksp. Teor. 72, 820-833 (March 1977) 

It is shown that in a strong magnetic field HsZ 'x90e the threshold for spontaneous production of 
positrons by a Coulomb field of a bare nucleus decreases, i.e., the critical charge Z, becomes lower than 
Z,= 170 in the absence of a field. In particular, for Hz 5X 10" Oe the critical charge decreases to the 
charge of uranium (2,- 92). The threshold probability for positron production is calculated and is found 
to grow with increasing field and turns out to be larger than in the absence of the fieid. It is emphasized 
that the problem under consideration is quasi-one-dimensional as a result of smallness of the Coulomb 
interaction compared to the interaction of an electron with the magnetic field. This is confirmed by a 
calculation of the degree of compression of the critical atom in the direction perpendicular to the magnetic 
field. An estimate is made of the effect of vacuum polarization by strong Coulomb and magnetic fields on 
the magnitude of the critical charge. 

PACS numbers: 12.20.D~ 

1. lNTRODUCTiON than the Bohr radius r ,  the electron will experience a 
stronger attraction to the nucleus than in the absence of 

The process Of production of positrons the field. consequently, attainment of the lower limit 
the Coulomb field of bare nuclei (Z > 2,. 170) in the ab- of the discrete spectrum must occur for lighter nuclei 
sence of external fields when the lowest electron level with 2< 170, and the threshold for the spontaneous pro- 
reaches the lower limit of the discrete spectrum: & duction of positrons by the Coulomb field is lowered. " 
= - mc2, was investigated incGs1. It is qualitatively 
clear that in a strong magnetic field for  which the Lar- In the present paper we investigate the motion of a 
mor radius of the electron I = (fic/e~)"' is much smaller bound relativistic electron in the Coulomb field of a sta- 
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