
where G@) =[w - [ + (i/27) s ign~]"  is the electron Green's 
function averaged over the impurity distribution. When 
solving (38), we confine ourselves to the region of the 
normal skin effect I kl v O r  << 1 and expand the quantities 
G(P*)G(p,) and n@+, p-) in powers of k accurate to terms 
-3 inclusive. Equating the coefficients of equal powers 
of k on the right and left-hand sides of (38), we obtain 
a system of three equations, from which we determine 
the coefficients of the expansion of the quantity ITa@, p-) 
in the form 

11, (p-. p-) =IIltII,Skj+II,PYkpk.). (39) 

The expressions for the coefficients llc, II: and IIa are  
too complicated to be presented here. Next, substitut- 
ing (39) in (37) and integrating, we obtain the suscepti- 
bility tensor Qae(k, u): 

Knowing the connection between the susceptibility tensor 
and the dielectric tensor 

we obtain the latter in the form 

It i s  now easy to determine the longitudinal and trans- 
verse dielectric constants: 

Here E~(u) ,  a,(w) and ff,(w) are defined by formulas (10) 
and (11). 
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We study the propagation of sound in superconductors for arbitrary electron mean free paths. We show 
that in the main approximation in terms of ( s / v ) ~  the usual BCS expression for the absorption of sound is 
valid. We study the effect of a current on the absorption of sound and collective oscillations in 
superconductors. 
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INTRODUCTION lation of the polarization operator for the phonon Green 
function, and the linear response method. The last ap- 

At the present time there are  a large number of pa- proach is, in fact, very close to the kinetic equation 
pers devoted to a study of sound oscillations in super- method, but it has the advantage that it is not connected 
conductors. We can distinguish three main methods of with any restriction on the oscillation frequency or  on 
calculation: the kinetic equation method, a direct calcu- the electron mean free path. Moreover, it is rather 
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cumbersome to detect several general relations in the 
kinetic equation method as the normal excitations and 
the superconducting part  in i t  are, in fact, separated. 
Gal'perin and ~ o z u b ~ "  obtained an expression for the 
polarization operator and showed that the effect of im- 
purities on the absorption of sound can be described by 
a single parameter kl. This last  statement is not alto- 
gether exact and there exists, even though weakly ex- 
pressed, a dispersion at frequencies w- Dk2, where D is 
the diffusion coefficient. In a recent paper, Vardanyan 
and LisitsynLa studied the absorption of sound by the 
linear response method. The expression for the darnp- 
ing of sound obtained by them has a strong dispersion 
for w- Dk2 and another number of unusual properties. 

We shall show below that allowance for the force due 
to the transfer of momentum from the electron system 
to the impurities removes these anomalies and we obtain 
for the sound absorption, in the main approximation, the 
usual BCS expression.c31 The dispersion a t  a frequency 
w- Dk2 is contained only in the next terms in k2. 

In a paper by ~ s u n e t o [ ~ ]  the change in phase was, in 
fact, not taken into account and at the same time he ne- 
glected the contribution to the absorption arising from 
the "friction" force. Taking the change of phase con- 
sistently into account, but neglecting the "friction" force 
in the equation for the motion of the ions would lead to 
the results in the paper by Vardanyan and ~ i s i t s ~ n . ' ~ ]  
In what follows we consider the effect of a current on 
the propagation of sound and collective oscillations in a 
superconductor. 

1. BASIC EQUATIONS 

To find the function w(k) when sound propagates we 
use the set  of equations for Green functions integrated 
over the energy variableOc5' If we linearize these equa- 
tions with respect to the external perturbation u, where 
u is the ion displacement vector, these equations a re  of 
the form 

The linear response Green function G' satisfies the nor- 
malization condition 

In Eq. (1) n is the impurity density; A, is the static 
vector potential; cp is the scalar potential; 7, is a Pauli 
matrix; A,, zl, and 2' are, respectively, the correc- 
tions to the vector potential, the order parameter, and 
the self-energy part; w+ = w + w,, and wo is the frequency 
of the external field. 

We shall assume that when there a re  sound oscilla- 
tions the impurities a re  completely dragged along by the 
lattice. The expression for the self-energy part C in 
that case takes in the Born approximation the form 

Zp (T, 7') =-2-'iv d 4 ,  opp. {Gl, (t, tr) 
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where up,, is the cross section for scattering by impuri- 
ties. Equation (3) differs from the corresponding ex- 
pression for C in the paper by Larkin and the authorc5' 
by the last  term which takes into account the dragging 
along of the impurities when there a re  sound oscilla- 
tions present. 

When there a re  sound oscillations present there ap- 
pears a scalar potential 9 and also a correction to the 
phase of the order parameter. When there is an exter- 
nal current present, the absolute magnitude of the order 
parameter changes. The corresponding changes a re  
connected with the Green function G' through the rela- 
tionsL5] 

ipv in 
- ku+e~  = - -TC (g,+g,), 
3 2 

where the (. . . ) sign indicates averaging over the angles 
of the vector p. We have chosen the Green functions Go 
and G' in the form 

The last  of Eqs. (4) and also Eq. (5) for the function GO 
are  written down, assuming that the order parameter 
Lo is  chosen to be real. 

The zeroth Green functions a, P satisfy the condition 

Substituting Eq. (5) for the function G' into Eq. (2) we 
get 

To obtain the function w(k) i t  is necessary to complete 
the se t  of Eqs. (I), (4) with the equation of motion of the 
ions. In the jelly model this equation has the form 

where M i s  the ion mass per unit charge. The force 
Fh9 in Eq. (8) is connected with the transfer of momen- 
tum from the electron system to the impurities. Using 
the expression for the total electron momentum 

and using the fact that the impurities occur in the elec- 
tron Hamiltonian in the form of the term 

V(r-r.)$*b, 

we get for the force Fh9 the expression 
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where N =ps/3r2 is the number of electrons per unit vol- 
ume. 

Using the se t  of Eqs. (1) we bring Eq. (10) for the 
force FbD to the form 

Taking the spatial derivative of the f i rs t  of Eqs. (4) we 
get 

We write the Green function (g l+g2)  in the form 

One easily finds expressions for the coefficients C1,2,3 
by averaging the f i r s t  of Eqs. (15), and we shall not 
write them down. Using Eq. (17) we get from Eqs. (4), 
(5) expressions for  A: -A: and the potential which for 
longitudinal oscillations is proportional to kg u: 

where 

The f i rs t  two terms in Eq. (11) for the force FbD are  
exactly equal to the right-hand side of Eq. (12) and they 
therefore cancel exactly in Eq. (8) for the motion of the 
ions. But i t  is just the right-hand side of Eq. (12) which 
in the paper by Vardanyan and ~ i s i t s ~ n ' ~ '  determined 
the sound absorption. The third term on the right-hand 
side of Eq. (11) leads for longitudinal sound oscillations 
to a renormalization of the ion mass. Multiplying Eq. 
(8) by k and using Eqs. (11) and (12) for  F"mD and E we 
get 

(13) 
To obtain the dispersion relation i t  is necessary to ana- 
lytically continue with respect to w, and make the sub- 
stitution wo- - i w  in the right-hand side of Eq. (13). 
The Green function g, +g2 can be expressed in terms of 
the displacement vector u by using Eqs. (I), (3), (4). 

2. SOUND OSCILLATIONS WHEN THERE IS NO 
CURRENT 

When there is no current the zeroth Green functions 
(Y and p equal 

To simplify the calculations we assume in what follows 
that the scattering by impurities is isotropic and we 
choose a special gauge in which A, = 0. One can easily 
solve the set  of Eqs. (I), (2), (3) and we find for the 
Green functions the expressions 

] (kv);) 2 0 0 ( a + - a )  - 5 ( A , L A Z 1 )  - - 
a+-a Br ' 

ikvB ikv ( a + - a )  B +B (15) 
gt-gz- -- (g,+g2)- - - [2 ieq  -- (A,'-A,') 1 

U ~ T W  W a+-a 

It is convenient to introduce instead of the scalar po- 
tential cp a new potential which is connected with cp 
through the relation 
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Substituting Eq. (15) for the Green function gl +g, into 
the dispersion Eq. (13) and expressing the scalar poten- 
tial and the quantity A: - A: in terms of k o  u through Eqs. 
(16) and (18) we find 

( 
( k v )  'Tpf'u2/3 

3 
pv m'p ( k v )  '- k u 2 i 3  

+ - k u T  

a -a ( k v )  ( p u )  3 x { x  ( a + - a )  + L 
T' [ ( 7) p v ( k u )  

The analytical continuation of sums such as (21) is 
accomplished by standard methodsL6' and reduces to the 
substitution 

The contribution of the second term on the right-hand 
side of Eq. (21) to the damping of the sound becomes of 
the order of the contribution from the f i rs t  term only 
when kvr 2 1. For  such values of the momentum we can 
in the expression 

1 1  w,-1-L(B+--)  (E) 
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put w = 0 when integrating over the anomalous region 
(third term in Eq. (22)). The quantities n and r l , 2  are 
small when kvr 2 1 and in the anomalous region wo(a+ 
- a_) = 2B when I & I > A, w << A; using these remarks we 
can write the dispersion equation in the main approxima- 
tion in (s/v)' (S i s  the sound velocity) in the form 

where 

arctgz 3 -- 
Y N ( ~ )  = - arc+&, x' . 

It follows from Eq. (21) that the absorption depends 
only on the ratio w/Dk2 in the terms which are smaller 
than the terms retained in Eq. (23) by a factor ( s / ~ ) ~ .  
We note that the damping of the sound given by Eq. (23) 
is the same as the corresponding expression from the 
paper by ~suneto. '~ '  

3. INFLUENCE OF A CURRENT ON THE DAMPING 
OF SOUND OSCILLATIONS 

When there i s  a superconducting current the zeroth 
Green functions lose an important property-that they 
are even under the substitution v - - v. As a result of 
this there appears dispersion in the sound absorption 
when w r  or ( k v ~ ) ~  become of roder ( ~ V A / A ) ~ .  The scale 
of this dispersion is, generally speaking, of the order 
(j/j,)' (jc is the critical pair breaking current). We 
note that when there i s  no current the dispersion at w 
-Dk2 has the scale ( s / ~ ) ~ .  We restrict ourselves in 
what follows to the low-frequency, weak-current case: 

We assume also that there exists in the superconductor 
a uniform current state which i s  determined by the 
static vector potential A which is independent of the co- 
ordinates. The results obtained below are thus applica- 
ble for films with a thickness less than the penetration 
depth. When kX >> 1 (X i s  the penetration depth of a static 
magnetic field) they can be used for bulk samples. 

We consider first of all the very simple case of low 
temperatures and large electron mean free paths: 

When condition (26) i s  satisfied the main contribution to 
the absorption comes from a narrow energy region near 
threshold. From Eqs. (1) and (2) we have in the main 
approximation in this region of energies 

The zeroth Green function GO satisfies the equationc5' 

where CO is given by Eq. (3) for u=O, and [. . . , . . . I  is 
a commutator. 

Close to threshold we get from Eqs. (28) 

Substituting expression (27) for gl +g2 into the disper- 
sion Eq. (13) and using Eqs. (22) and (29) we get 

In pure superconductors the switching on of the cur- 
rent leads to a strong diminution of the gap in the excita- 
tion spectrum. At low temperatures sound absorption 
in regions small in size but with a small gap in the ex- 
citation spectrum (e. g., a layer of the order of the pen- 
etration depth in a bulk superconductor) may thus turn 
out to be important. We note that Eq. (30) is applicable 
up to values evA- A. 

For currents much below the critical the connection 
between the vector potential A and the current density j 
has the form 

Equations (29) and (30) are applicable for arbitrary film 
thickness if there is specular reflection at the walls. 
When the reflection i s  diffuse there appears an addition- 
al restriction on the film thickness d >  .( (.( i s  the corre- 
lation length of the superconductor). As d <  X both these 
conditions can be satisfied only for type I1 superconduc- 
tors. At low temperatures T << A and for a long mean 
free path r A  >> 1 we get from Eq. (31) 

where N =p3/3n2 is the total number of electrons per 
unit volume. 

We turn now to a consideration of the second limiting 
case: 

When conditions (33) are  satisfied the zeroth Green func- 
tions CY and /3 can be expanded in powers of the vector 
potential 
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In what follows we restrict ourselves to the case of a 
sufficiently high current 

In the range of frequencies bounded by condition (35) 
the dispersion Eq. (13) can by means of straightforward 
transformations and using the set of Eqs. (1) and (2) be 
brought to the form 

The quantities C1,2,3(A) and l?1,2(A) are given by Eqs. 
(17) and (18). 

The change in the absolute magnitude of the order pa- 
rameter A turns out to be unimportant. The terms with 
l?, in Eq. (36) might give a renormalization of the sound 
velocity. However, calculations show that there does 
not occur a renormalization of the sound velocity and the 
terms of the form W'A' give zero. After simple calcu- 
lations we find for the coefficient C3 in the anomalous 
region under conditions (35) the expression 

Using what we have said above we get from Eqs. (341, 
(36), (37) 

The absolute magnitude of the order parameter A(A) 
is, when there i s  a current, given by the expression 

The integral in Eq. (38) diverges logarithmically at 
the lower limit and it  must be cut off at & - A - evA. For 
superconductors in which TA << 1 we can neglect the con- 
tribution from the integral in Eq. (38) and the dispersion 
law i s  given by Eq. (23) in which we must substitute 
A(A) for A. In the opposite limiting case r A  >> 1 the 
contribution from the integral term at not too low tem- 
peratures T >  A(TA)'~ becomes the main one and the ab- 

sorption decreases when the current is switched on. 
When the temperature i s  further lowered (in the range 
T <  A(TA)-~) the main feature is the narrowing of the gap 
in the excitation spectrum and the dispersion law is 
again given by Eq. (23). In that case the sound absorp- 
tion increases when the current i s  switched on. 

4. COLLECTIVE OSCILLATIONS I N  
SUPERCONDUCTORS 

Collective oscillations in superconductors were con- 
sidered in a paper by Schmid and ~chon"' and also in a 
paper by Artemenko and ~ o l k o v . ' ~ ~  However, in both 
those papers the damping was found insufficiently exact- 
ly. We study also the effect of a current on the propa- 
gation of collective oscillations. The spectrum of the 
collective oscillations i s  determined by the poles x (Eq. 
(14)). The change in the absolute magnitude of the order 
parameter turns out to be unimportant. After simple 
calculations the equation for the spectrum of the collec- 
tive oscillations i s  brought to the form 

where the functions (Y, P are given by Eq. (141, 

I 0 in normal regions 

Collective oscillations exist only close to T, in the 
frequency range w >> ~ k ~ .  It i s  clear from the answer 
that the sums in Eq. (40) can be expanded in terms of 
A2. Taking the above remarks into account we get for 
the spectrum of the collective oscillations the expres- 
sion 

where D =v27/3, 

t j  is the psi-function; 

In the limiting cases the integral Zl is equal to 

408 Sov. Phys. JETP 45421, Feb. 1977 Yu. N. Ovchinnikov 408 



It follows from Eq. (42) that when the current density 
increases the damping of the collective oscillations 
grows fast and for  a current density j/j,- (A/T)"~ in 
pure superconductors (TA >> 1) and for j/j,- 1 in dirty 
superconductors (Tr << 1) the oscillations disappear com- 
pletely. 

CONCLUSION 

We have studied sound propagation in superconductors 
for arbitrary electron mean f ree  paths. We have shown 
that taking into account the force connected with the 
transfer of momentum from the electron system to the 
impurities removes the anomaly in the absorption found 
in Vardanyan and Lisitsyn's paper12' and that as a result 
one obtains in the given approximation in (s/v)~ the usual 
BSC expressionc31 for the sound absorption. We studied 
the effect of a current on the propagation of sound waves. 
When there is a current present there occurs additional 
dispersion for kvr-j/j, with a scale ( j/j,)2 which can 
easily be made considerably larger than the small pa- 
rameter (s/v)~. For  relatively pure superconductors 
TA >> 1 at low temperatures and for sufficiently large 
current densities the sound absorption increases expo- 
nentially. This growth of the absorption is connected 
with the diminution of the gap. Turning on the current 
changes not only the gap in the excitation spectrum but 
also the form of the Green functions. 

As a result an interesting effect appears-in suffi- 
ciently pure superconductors (TA >> 1) turning on a cur- 
rent leads in a wide range of temperatures T >  A(TA) '~ 
to a decrease in the sound absorption. 

We studied the effect of the current on the collective 
oscillations in superconductors. The presence of a cur- 
rent leads to a fast growth of the damping and a t  current 
densities of the order of critical there are  no oscilla- 
tions. 

In conclusion I express my gratitude to A. I. Larkin 
and B. I. Ivlev for useful remarks. 

'YU. M. Gal'perin and V. I. Kozub, Fiz. Tverd. Tela (Lenin- 
grad) 15, 3354 (1973) [Sov. Phys. Solid State 15, 2230 (1974)l. 

'R. A. Vardanyan and S. G. Lisitsyn, Zh. Eksp. Teor. Fiz. 
69, 1267 (1975) [Sov. Phys. JETP  42, 648 (1976)l. 

3 ~ .  R. Schrieffer, Theory of Superconductivity, Benjamin, 
New York, 1964. 

4 ~ .  Tsuneto, Phys. Rev. 121, 402 (1962). 
5 ~ .  I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 
10, 407 (1973). 

6 ~ .  A. A b r i k o ~ o v , ~ L .  P. Gor'kov, and I. E. ~!~aloshinski:, 
Metody kvantovoi teorii  polya v statisticheskoi fizike (Quantum 
field theoretical methods in statist ical  physics) Nauka, 1962, 
Ch. VII [Translation published by Pergamon P r e s s ,  Oxford, 
19651. 

'A. Schmid and G. Schdn, Phys. Rev. Lett. 34, 941 (1975). 
's. N. Artemenko and A. F.  Volkov, Zh. Eksp. Teor. Fiz. 

69, 1764 (1975) [Sov. Phys. J E T P  42, 896 (1976)l. 

Translated by D. t e r  Haar 

Quantum electromagnetic processes in condensed media and 
natural decay in van der Waals crystals 

B. A. Grishanin 

Moscow State University 
(Submitted July 27, 1976) 
Zh. Eksp. Teor. Fiz. 72, 783-792 (February 1977) 

Quantum dynamical equations taking the variation of the populations and natural (radiative) decay into 
account are derived for an electromagnetic field in matter on the basis of the mean commutator 
approximation for the molecular transition operators. The magnitude of the decay and the corresponding 
natural absorption line in the crystal are calculated, and the possibility of explaining the experimental 
data on absorption in noble gas crystals on this basis is discussed. 
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In electrodynamical calculations, two basic approxi- 
mations a re  used to  simplify the exact system of equa- 
tions for the system of molecules (atoms) and electro- 
magnetic field: the semiclassical approximation widely 
applied in quantum electronics, ''I and the quantum ap- 
proximation of the theory of excitons, C2*31 which utilizes 
simplification of the commutation relations for the sec- 
ond-quantized operators of the medium under the as-  

sumption of constancy of the populations. The semi- 
classical approach naturally includes the dynamics of 
the populations and the nonlinear effects associated with 
it; however, a quantum description of the field is ade- 
quate for a description of spontaneous processes. Here 
a new approach to an approximate description of the 
medium's operators i s  developed, allowing us also to 
describe on a strict  quantum level the dynamics of the 
populations within the framework of equations which a re  
linear in a l l  operator variables. This approach has an 

409 Sov. Phys. JETP 45(2), Feb. 1977 0038-564617714502-0409$02.40 O 1978 American Institute of Physics 409 


