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We consider the interaction of a normal non-gyrotropic degenerate conductor with a small (1%) 
concentration of randomly distributed impurities in transverse electromagnetic radiation. It is assumed 
that the wave is incident at an arbitrary angle on the vacuum--conductor interface. The conductor is 
characterized by longitudinal and transverse dielectric constants r ,  and E , ,  calculated in the random-phase 
approximation and containing in the lowest order allowance for the spatial dispersion. The conductor 
reflection coefficient R (0,w) is calculated and approximate expressions are obtained for it as a function of 
the incidence angle 0 in the region of frequencies in which the normal skin effect is possible. A 
connection is established between R(0.w) and the relaxation times r,,, and r,,. This connection makes it 
possible to assess the corresponding electron-impurity scattering cross sections. A situation is indicated in 
which radiation incident on a conductor is transformed into a surface wave. The results are analyzed and 
means of verifying them experimentally are recommended. 

PACS numbers: 72.30. +q, 72.10.Fk 

1. INTRODUCTION 

A theoretical study and determination of the electronic 
properties of solids by optical methods is an interesting 
and timely problem of solid-state physics. This problem 
has been the subject of the reviewscll and of a number of 
original papers, "I in which it is shown how, by measur- 
ing the reflection coefficient R of the solid and the en- 
ergy-loss function I ~ E " ,  and by using the Kramers- 
Kronig dispersion relations, it i s  possible to recon- 
+struct the functional form of the real and imaginary parts 
of the dielectric constant E ,  and to determine the effec- 
tive mass of the electron m*, the plasma frequency w,,, 
the topology of the Fermi surface, and the structure of 
the energy bands of the investigated medium. 

The solution of the problem of the incidence of radia- 
tion on a solid (dielectric, conductor, etc. ) occupying a 
half-space can be found in many books (see, e. g., 13') 

and journal articles. In the treatment of isotropic media, 
use i s  made of only the transverse dielectric constant 
e,, which characterizes the propagation of transverse 
electromagnetic waves in the medium. However, if 
conduction electrons are  present in the solid, thenprop- 
agation of longitudinal waves becomes possible, and 
their interaction with the material i s  characterized by 
E,. Naturally, these waves can exist only inside the 
medium or in a narrow layer in the vicinity of the in- 
terface. It is obvious that excitation of longitudinal 
waves will occur if the wave i s  incident at a certain 
angle to the surface. 

Inasmuch as in the general case even an isotropic 
medium is characterized by two macroscopic parame- 
ters, ct and E,, the boundary conditions must be mod- 
ernized in comparison with the traditional ones and, as  
a consequence, a difference arises (substantial in some 
cases) between the reflection coefficients of these media. 
In addition, allowance for the spatial dispersion alters 
significantly the picture of the considered phenomena, 
and sometimes leads to new effects, hitherto not ob- 
served or  m t  explained. 

In a certain sense, the simplest situation in which the 
influence of these factors can be observed i s  the case 
of interaction of radiation with an isotropic conductor 
containing impurities. In addition to everything else, 
it is necessary also to solve correctly the problem of the 
boundary conditions (or of the supplementary boundary 
conditions), which is also necessitated by allowance for 
spatial dispersion and has been so f a r  the subject of 
numerous discussions and original papers. When 
considering the problems and tasks connected with the 
presence of a boundary between media, it i s  necessary 
to take into account, besides the short-wave normal 
volume oscillations, also the possible appearance of 
long-wave surface states, which are peculiar to spatially 
inhomogeneous systems. l6] In an ideal metal without al- 
lowance for spatial dispersion, E, and E ,  are  equal, so 
that when solving the problem there is no point in re- 
solving the total electric field into a longitudinal and a 
transverse component. By doping the metal with im- 
purities, we introduce microscopic inhomogeneities, 
which lead to the need for averaging all the macroscopic 
quantities over distances greatly exceeding the charac- 
teristic dimension of the inhomogeneity. 

We calculate in this paper the longitudinal and trans- 
verse dielectric constants of a normal nonmagnetic non- 
gyrotropic degenerate conductor with impurities, in the 
random-phase approximation and under normal skin- 
effect conditions, with allowance for the spatial dis- 
persion, accurate to terms proportional to inclusive. 
This increases the order of Maxwell's differential equa- 
tions and leads to the appearance of "new" solutions 
for the electromagnetic field. Introduction of boundary 
conditions in the form j n = 0 on the interface, where j 
i s  the conduction current-density vector in the metal and 
n i s  the normal to the surface of the conductor, makes it 
possible to determine uniquely the amplitudes of all the 
produced waves. Notice should be taken of the fact that 
the solutions of the field equations for the region oc- 
cupied by the conductor contain, besides the traditional 
transverse solution, also a longitudinal component that 
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can predominate in certain situations, and does not ap- 
pear at all without allowance for the spatial dispersion. 

We calculate next the reflection coefficient of a semi- 
infinite conductor R(0, w) as  a function of the incidence 
angle 0 and the frequency w of the incident radiation. 
The normal skin-effect regime imposes limitations on 
the modulus of the wave vector k in the metal in the 
form of the inequality 

where vo is the electron velocity on the Fermi surface, 
r is the time between the collisions of the electrons with 
the impurities. A connection is established between 
R(8, w) and the relaxation times r,,, and r,,, which are  
defined with the aid of the relations 

where &',(cose)) i s  a linear combination of Legendre 
polynomials, for example, 

n i s  the impurity concentration, m i s  the electron mass, 
Po i s  the Fermi momentum, and f (8) is the amplitude of 
the scattering of an electron by an impurity. The rea- 
son why R contains only the times r,,, and r,, i s  the al- 
lowance for the spatial dispersion accurate to terms of 
order k2. The next term of the expansion in k2 will con- 
tain the times rtr3 and rtT4. Thus, in the general case R 
depends on all the r,,, and as a result i t  becomes pos- 
sible in principle to reconstruct the modulus of the elec- 
tron scattering amplitude l f ( @ ) I  from optical experi- 
ments. In the case of almost parallel incidence of the 
radiation of the conducting medium, a situation is in- 
dicated, under which R(0, w) has a minimum, and the 
incident transverse wave i s  transformed into a surface 
wave. 

2. FORMULATION OF PROBLEM 

A plane electromagnetic wave is incident from vacuum 
at an angle 8 on a conductor occupying the half-space 
x> 0. The wave is polarized in the incidence plane xz 
and is given by 

where the real amplitude i s  Eo = (Eo sine; 0; - EocosB), 
the real wave vector i s  k = (wc" c o d ;  0; wc" sine), and 
w is the real frequency, so that k-Eo=O and ikl =w/c. 

Owing to the presence of the interface, a reflected and 
refracted wave are produced, likewise polarized in the 
incidence plane-P-type waves. We represent the field 
E as a sum of longitudinal and transverse parts 

which, as usual, are  distinguished by the relations 
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rot El=O, div E,=O. (5) 

Maxwell's equations for a conducting nonmagnetic (p  = 1) 
nongyrotropic medium, neglecting the inertial polariza- 
bility of the ions, are written for a monochromatic wave 
of frequency w, when account is taken of (4) and (5), in 
the form 

div El=4np, div H=O. 

These equations must be supplemented by the material 
relations that connect the current density j with E, and 
E ,: 

where et and 6, are the transverse and longitudinal con- 
ductivities, the calculation of which for the case of a 
spatially homogeneous medium i s  given in the Appendix. 
Eliminating the magnetic field from the equations in (6), 
we transform them into 

VzE,+oz~-ZD=O, div D=O, 

rot EI=O, divE,=O. 

where D = ~ , E , + ~ , E , ,  and the operators E,,, take the 
form 

The expansion coefficients a,,,(w) are  defined by the fol- 
lowing expressions (see the Appendix) 

where we have introduced the dimensionless quantities 
Q=m/o,, E=vo/c, 6=l /o,r , ,  ,, q=l/o,r:, 2. 

Without allowance for the spatial dispersion we have 

lim E I . , ( ~ ,  o )  = ~ l ( 0 ,  a )  = et(O, o )  = eo(o )  
I / - -0  

and we arrive at the usual expression for the dielectric 
constant co(i2) of a conductor: 

The longitudinal and transverse conductivities are con- 
nected with cl,, by the standard relation 

In view of the homogeneity of the space along the z axis, 
we seek the electric field for all waves in the form 

~ ( z ,  z, t )  --E(z) exp {ioc-'(z sin 0-ct)). (13) 

Before we proceed to the solution of Eqs. (8), let us 
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dwell on the assumptions that must be made in order to 
simplify the problem appreciably: 1) The macroscopic 
quantities are constant in the different regions and 
change jumpwise on going through the boundary. 2) The 
system (8) is valid in all of space, including directly on 
the interface. Unfortunately, at  the present time there 
is no sufficiently reliable procedure by which to esti- 
mate the accuracy of these assumptions. However, 
these simplifications are  practically always used in the 
solution of similar problems. The foregoing assumptions 
enable us to write down with the aid of (8) the boundary 
conditions in the form 

where I and I1 denote respectively the regions x> 0 and 
x<O. The boundary conditions El,@) =E1,@I) stem from 
the requirement that the normal component of the con- 
duction current be equal to zero on the interface, and 
are therefore a consequence of the continuity equation. 

3. SOLUTION OF THE BASIC EQUATIONS 

From the system (8) we obtain the following solutions: 

E,':' (3 ,  o )  - - iC, exp[oc-'z sin 01, 

E::' ( z ,  o )  = C ,  exp[oc-*z sin 01, 

Et1" (2,  o )  = C, exp[-  ioc-'z cos 0 ] +  iC, exp[oe-It  sin 01, 
(15) 

E:." (o, o)  = Cz ctg 0  exp[-  ioc-'z cos 01- C ,  e ~ p [ o c - ~ z s i n  01, 

where x <  0, vacuum, ~" ' (x)  is the reflected wave, and 

E ! : ' ( z , o ) = - & ~ , e x ~  i - y s  -Csexp - - z s i n 0  , 
sin 0  [ : I  1 1  1 

where x> 0, metal, ~ ' ~ ' ( x )  is the refracted wave, 

and it is necessary to choose those values of the roots for 
which ImP> 0 and ImY> 0. 

The complex wave amplitudes Ct (i = 1, 2, 3, 4, 5) are 
obtained from the system of the boundary conditions (14) 

c z - [  B(ecos0-y )+(e - l ) s inzO $ ( t c o s 0 + y ) - ( e - 1 ) s i n z 8  ] Eo sin 0, 

i c o s 0 s i n e ( e - 1 )  ( p + i s i n 0 )  
C, = 

p ( e w s e + y ) - ( e -  I)sinW Eo, 

2 cos 0  sin2 0  (e  - 1) 
C, = 

p(ecos0+y) - (e -1 ) s in20  Eo, 

28 cos 0  sin 0  c, - 
$ ( ~ c o s @ + ~ ) - ( e -  l)sinzO Eo, 

where E =co(w)/(l + a&)). 

We define the real reflection coefficient of the medium 

as  the ratio of the squares of the moduli of the amplitudes 
of the electric field of the reflected and incident waves: 

Using expressions (16) and (14), we obtain the reflection 
coefficient in the form 

Neglecting spatial dispersion, we obtain from (19) the 
usual expression for the reflection coefficientt3': 

where 

4. REFLECTION COEFFICIENT OF CONDUCTOR 
IN  LOW-FREQUENCY REGION 

According to Maxwell's equations, in the region oc- 
cupied by the conductor we obtain for the complex wave 
vector k two values: 

The normal skin-effect condition (1) should be satisfied 
for kl and kz simultaneously, defining by the same token 
the admissible frequency regions: 

1) case of comparatively pure metal 

2) case of sufficiently contaminated metal (6, 115 1) 

One more frequency region satisfies the foregoing 
requirements, namely a very highly contaminated metal: 

but this region i s  not investigated in the present paper. 

The properties of the conductor are characterized by 
the parameters 5, 6, and 11. In the calculation of the 
reflection coefficient, only two parameter ratios are 
significant: 6/5 and Q/6 or Q/q, inasmuch a s  we always 
have 6 -7. 

In the low-frequency regions, defined by inequalities 
(20) and (21), the quantities that figure in R(0, o )  can 
be written approximately for the entire range of varia- 
tion of 0 (0 0 -( n/2) in the form 

with << 1, I E ~ ~  >> 1, 161 >>I,  I Y I  >>I. We represent 
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here the expression for R(6, w) in the form 

(cos 0-xo sin2 0) '+ (cos 0-rpo) (cos 8-rpQ-lqo sin' 8) 
R(0,o)-  

(60s 0+x, ~ i n V ) ~ +  (cos 8+tpo) (cos 8+rpo+lqo sin2 8) ' 
(22) 

where 

The reflection coefficient in a wide range of variation of 
the incidence angle 6(0 Q 6 < r/2), a s  a function of this 
angle, can be expressed in the form 

~ ( e , O ) = i - L [ , + x ~ S i n ~ + -  COS 8 ( 31 . 

As a consequence of (22), for the particular case of 
small angles 6 << 1 and for a relatively pure metal, 
just a s  for a sufficiently contaminated metal, we ob- 
tain the well known Hagen-Rubens relationc73 with a cor- 
rection for the spatial dispersion 

It should be noted that in the angle region indicated 
above, the terms proportional to P in (19) a re  much 
larger than the terms proportional to sin26, so that the 
corrections that take into account the spatial dispersion 
are small and produce no singularities whatever in the 
behavior of the reflection coefficient. 

Particular interest attaches to a situation of almost 
parallel incidence of the radiation on the interface. In 
this case the terms containing P as  a factor in (19) be- 
come comparable with the terms containing sin26, which 
drop out in the absence of spatial dispersion. The re- 
flection coefficient has therefore substantial anomalies 
in this region of angles. 

For the case of a relatively clean metal we obtain from 
(22) 

where 9 =r/2 - x (X << 1). The value x =xo characterizes 
that angle at which the reflection coefficient R(x, w) 
becomes minimal and equal to 

From the expression for the field in a conductor (16), 
taking into account the values of the coefficients (17), 
we see that at x =xo the following amplitude relations are 
satisfied on the interface: 

The total field in the conductor is a superposition of two 
waves, one of which makes a contribution to the longi- 
tudinal field component E,, and the other to the trans- 

verse component E,, with the different characteristic 
penetration depths; we designate them 61 = cxo / w  and 
6, = c$, /w, respectively. In the considered limiting 
case of a relatively pure metal 6, /6, - 6/5 << 1, so that 
at distances comparable with 6, the total field can be 
regarded a s  predominantly longitudinal with a penetra- 
tion depth 

It should be noted that 6, coincides with the depth of the 
ordinary skin layer 

In the situation described above, at 6 =r/2 - xo, the 
transverse electromagnetic radiation incident on the 
conductor i s  transformed predominantly into a longitu- 
dinal surface wave. 

A similar analysis for a sufficiently contaminated 
metal leads to the following expression for the reflec- 
tion coefficient: 

The minimum value of the reflection coefficient, which 
is equal to 

i s  reached at x =qO. The relations for the field ampli- 
tudes in the conductor on the interface, as follows from 
(16) and (17), are 

However, in contrast to the preceding case, for a suf- 
ficiently contaminated metal the ratio 6, /6, - 6/5 >> 1. 
Therefore at distances on the order of 6, the total field 
in the conductor can be regarded as  transverse with a 
penetration depth 6, = bo. In this situation, at  6 = r/2 
- q0 the external transverse radiation will generate 
predominantely a transverse surface wave. The qualita- 
tive change of the reflection coefficient a s  a function of 
the incidence angle is shown in Fig. 1. 

In both considered cases, the electromagnetic radia- 
tion incident on the surface of the conductor is trans- 
formed, under certain conditions, into surface oscil- 
lations of the system comprising the interface between 
the vacuum and the metal. Owing to the presence of 
impurities near the interface, the incident radiation be- 
comes randomized, followed by separation of the natural 
surface oscillations of the indicated resonant system 
from this radiation. The amplitude E"' of the reflected 
wave then becomes minimal. The dispersion equation 
relating the frequency w = w,, with the surface wave vec- 
tor Q, of these surface waves i s  
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In both cases there exists therefore a finite angle xo or 
a t  which the conditions become most favorable for 

the excitation of a surface mode by external radiation. 

FIG. 1. Dependence of the reflection coefficient on the inci- 
dence angle. The minimum corresponds to excitation of su r -  
face waves. 

where in the general case both w and Q, can be complex, 
Qr = (w2/c2 - Q:)'/~, while 0 and Y have the same meaning 
as before. On the other hand, in particular cases one 
can obtain the complex function w,, of the real argu- 
ment Q, (the initial-value problem) or, conversely, 
seek the surface complex wave vector Q, as  a function 
of a real frequency w,,, (boundary-value problem). In 
the latter case, since the incident-photon energy and 
the momentum component tangential to the interface are 
'conserved, we write down the conservation laws in the 
form 

In an ideal metal without impurities, the surface os- 
cillations with non-zero electric field cannot be excited 
by an external electromagnetic field, since the con- 
servation laws (31) cannot be satisfied simultaneously. 
For example, at a fixed frequency w = wo the tangential 
components of the momentum are always subject to the 
inequality 

sin 0 
Re[Q.(oo) 1 > ~ @ 0 .  

Such waves, however, can be excited by fast charged 
particles or by electromagnetic radiation if the conduc- 
tor contains defects, impurities, etc., which alter the 
conservation laws (31). Therefore, when impurities are 
introduced into the metal, the surface mode becomes 
subject to some uncertainty with respect to frequency, 
and conseqyently also with respect to momentum, this 
uncertainty being due to the finite relaxation time T. 

When the conservation laws (31) are satisfied, the left- 
hand side of (30) cannot vanish exactly, and only a mini- 
mum of the modulus of this expression can be obtained. 
Then the modulus of the electric-field amplitude of the 
reflected wave I E"'! also becomes minimal, and with it 
the reflection coefficient R. The solutions of Eq. (30) 
for the real part of Q,(o) can be represented in the fol- 
lowing forms: 

1) for the case of a relatively pure metal 

2) for the case of a sufficiently contaminated metal 

To determine the quantities T , ,~  and T,, from optical 
measurements we can use the frequency and angular de- 
pendences of R(8, w) in the region of small angles (see 
expression (24)). At 8 =0, it is easy to obtain T,,, from 
the Hagen-Rubens formula. If 8 + 0, an additional fre- 
quency dependence w3l2 arises, from which it is  easy 
to determine T,,. The same quantity can be obtained 
also by investigating the behavior of R in the vicinity 
of the minimal value R,,, (see relations (26) and (29)). 
Let us estimate the angle at which the reflection coef- 
ficient reaches the minimum connected with the con- 
version of the incident-wave into a surface wave. For 
the case of a relatively pure metal, this angle is of the 
order of xo- 10'~ rad. By way of estimates of the quanti- 
ties that enter in the expression for xo, we chose the 
following values, which agree with inequality (20): 

For the case of a sufficiently contaminated metal, the 
critical angle qo is - lo4 rad. The quantities that enter 
in the expression for qo were estimated from the in- 
equality (21): 

I-fO-'5 sec , o-lOIJ Hz . 

For the velocity of the electrons on the Fermi surface 
and for the electron plasma frequency we used the typical 
values for good conductors such as  Cu and Ag, namely 
vow 10' cm/sec and w,- 1.5.10" Hz. 

The authors thank K. B. Tolpygo for interesting dis- 
cussions and useful remarks. 

APPENDIX 

We present a calculation of the longitudinal and trans- 
verse conductivities for a normal degenerate conductor 
with impurities (for the calculation details seeLs1, 
Sec. 39). 

We define the conductivity tensor ua8(k, W)  and the 
susceptibility tensor QaB(k, W) by the following relation: 

i a ( k  a) ='J.=p(k, w)ffp(k, a) --Q,p(k, a) Ap (k, a), (35) 

from which it follows that 

The kernel QaB i s  defined by the expression 

Nez 2e' dp' do' 
Qas (k, o) = -6.p-i7 IP='IIP(P+'~ P-') - 

m ( 2 d '  ' (37) 

The integral equation for II(p+, p,) is of the form 
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where G@) =[w - [ + (i/27) s ign~]"  is the electron Green's 
function averaged over the impurity distribution. When 
solving (38), we confine ourselves to the region of the 
normal skin effect I kl v O r  << 1 and expand the quantities 
G(P*)G(p,) and n@+, p-) in powers of k accurate to terms 
-3 inclusive. Equating the coefficients of equal powers 
of k on the right and left-hand sides of (38), we obtain 
a system of three equations, from which we determine 
the coefficients of the expansion of the quantity ITa@, p-) 
in the form 

11, (p-. p-) =IIltII,Skj+II,PYkpk.). (39) 

The expressions for the coefficients llc, II: and IIa are  
too complicated to be presented here. Next, substitut- 
ing (39) in (37) and integrating, we obtain the suscepti- 
bility tensor Qae(k, u): 

Knowing the connection between the susceptibility tensor 
and the dielectric tensor 

we obtain the latter in the form 

It i s  now easy to determine the longitudinal and trans- 
verse dielectric constants: 

Here E~(u) ,  a,(w) and ff,(w) are defined by formulas (10) 
and (11). 
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We study the propagation of sound in superconductors for arbitrary electron mean free paths. We show 
that in the main approximation in terms of ( s / v ) ~  the usual BCS expression for the absorption of sound is 
valid. We study the effect of a current on the absorption of sound and collective oscillations in 
superconductors. 

PACS numbers: 74.20.Fg 

INTRODUCTION lation of the polarization operator for the phonon Green 
function, and the linear response method. The last ap- 

At the present time there are  a large number of pa- proach is, in fact, very close to the kinetic equation 
pers devoted to a study of sound oscillations in super- method, but it has the advantage that it is not connected 
conductors. We can distinguish three main methods of with any restriction on the oscillation frequency or  on 
calculation: the kinetic equation method, a direct calcu- the electron mean free path. Moreover, it is rather 
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