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A theory is constructed of Doppler-shifted cyclotron resonance in compensated metals in the case of 
diffuse scattering of electrons for the surface. The distribution of the radio frequency field at large 
distances from the surface is d e t d e d ,  and the surface impedance of a plate is calculated. It is shown 
that in the case of diiuse reflection the doppleron and the Gantmakher-Kaner wave are excited much 
more strongly in the region of strong magnetic fields than in the case of specular reflection. The behavior 
of the surface resistance of cadmium plates in a magnetic field H 11 [001] was investigated. Besides the 
doppleron oscillations, Gantmakher-Kaner oscillations due to electrons and holes were observed. The 
conclusions of the theory for the case of diffuse carrier reflection are in good agreement with the 
experimental results. 

PACS numbers: 76.40. +b, 73.25.+i 

1. INTRODUCTION conductivity leads to the absence of Gantmakher-Kaner 

It was shown earlierc'"] that the character of the re- 
flection of the electrons from the surface of a metal can 
greatly influence the spatial distribution of the radio- 
frequency field in a plate, and consequently the imped- 
ance of the plate. Impedance oscillations due to Dopp- 
ler-shifted cyclotron resonance (DSCR) differ strongly 
in the case of diffuse and specular reflection of the elec- 
trons. This difference is  due to two circumstances. 
First, the doppleron waveLg1 whose penetration causes 
the oscillations is more strongly excited in the case of 
diffuse reflection. Second, when the transmitted wave 
is reflected from the second surface of the plate, in 
contrast to the specular case, in the diffuse case there 
is produced a skin layer whose electric field is  much 
stronger than the electric field of the transmitted dopp- 
leron. AS a result, the oscillations of the plate im- 
pedance as  functions of the constant magnetic field turn 
out to be much stronger than would be expected by start- 
i7g from the field amplitude in a semi-infinite metal. 
The experimental data offer evidence that in most cases 
the electrons in the metals are reflected diffusely and 
not specularly. Therefore the calculations of the im- 
pedance under the assumption of specular reflection of 
the electrons, which are quite simple, do not correspond 
to the real situation. At the same time, the analysis of 
DSCR in the case of diffuse reflection is a much more 
complicated task. The increase of the impedance os- 
cillations was demonstrated by using a compensated 
metal as a simple model, Us21 in which the electron Fer- 
mi surface takes the shape of a parabolic lens, and the 
whole Fermi surface takes the shape of a right cylinder 
parallel to the rotation axis of the lens. The constant 
magnetic field H and the normal to the surface of the 
plate are directed along the same axis. In this model 
there are no non-local effects in the hole part of the 
conductivity, the displacements of all the electrons 
during one cyclotron period are the same, and the elec- 
trons take part simultaneously in the DSCR. The reso- 
nance is therefore pronounced most strongly-the elec- 
tron part of the surface has a singularity of the pole 
type. The absence of branch points in the non-local 

"waves,"L41 whose existence is due to dispersion of the 
displacements of the resonant electrons, which always 
exist in real metals. In real metals, the DSCR i s  less 
strongly pronounced and the singularity of the conduc- 
tivity is either of the square-root or logarithmic type. 
The greater part of the electromagnetic energy is  
transferred to the Gantmakher-Kaner wave and is dis- 
sipated near the surface, while the doppleron excitation 
makes an additional small contribution to the impedance. 
The dependence of the amplitude of the doppleron oscil- 
lations on the magnetic field i s  in this case substantially 
different than for a parabolic lens. It is clear from the 
foregoing that it i s  of interest to consider more realistic 
Fermi surfaces, for which the resonant singularity is 
not of the pole but of the root or  logarithmic type. 

The present paper is devoted to a theoretical and ex- 
perimental study of Gantmakher-Kaner oscillations 
(GKO) and doppleron oscillations. In the theoretical 
part we consider two models of a compensated metal. 
In one of them the electron Fermi surface is  a corru- 
gated cylinder (model I), and in the other-the lens de- 
scribed earlierc5] (model 11). The hole Fermi surface 
has in both cases the shape of a*right cylinder parallel 
to the axis of rotation of the electron surface, The 
first model i s  quite general and reveals the main reg- 
ularities in the oscillating part of the impedance of 
such metals as  tungsten and molybdenum. The lens 
model, a s  shown inc5*'I, is true to the true electron 
Fermi surface of cadmium. 

The experimental part is devoted to the oscillations 
of the impedance of a cadmium plate. The main purpose 
was to observe the GKO. The point is  that although os- 
cillations similar to GKO"] have been observed in many 
metals, C7"61 in most cases they turn out to be due to 
doppleron excitation. As applied to cadmium, U71 cop- 
per, C'81 silver, L'91 indium, "'] aluminum, "'] and tung- 
sten this was demonstrated by using circular polariza- 
tion of the exciting field. In anisotropic metals, dopp- 
leron oscillations should be much stronger than the 
GKO. Precision measurements are therefore necessary 
for the registration and identification of GKO. Our mea- 
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surements of the impedance of cadmium have revealed, 
besides the doppleron oscillations, also oscillations in 
polarizations opposite to those of the dopplerons. It is 
shown that these oscillations have all the properties of 
GKO. The dependence of their amplitude on the mag- 
netic field is  investigated and the results are compared 
with calculation. 

2. THEORY 

We are interested in the region of fields and fre- 
quencies defined by the inequalities o << v << ow where o 
i s  the frequency of the exciting field, v i s  the frequency 
of the collisions of the electrons with the phonons and 
impurities, and we is  the cyclotron frequency. The 
problem still remains quite complicated. We confine 
ourselves therefore to the study of a thick plate, with a 
thickness d satisfying the inequalities ImksVD d> 1, where 
k, and kD are the wave vectors of the skin-effect and 
doppleron components of the field. In addition, we as- 
sume the constant field H to be strong enough to be able 
to neglect the non-local interaction of the components 
propagating in opposite directions. In this case, to cal- 
culate the impedance of the plate under antisymmetrical 
excitation it suffices to know the impedance of the semi- 
infinite metal and the distribution of the field in it at 
large distances from the surface. "I This is  already a 
much simpler problem and reduces to a solution of an 
integral-differential equation of the Wiener-Hopf type. 

We shall obtain below the impedance of a semi-infinite 
metal and the distribution of the field at large distances 
for the described models, we calculate the impedance of 
the plate under antisymmetrical excitation, and show 
that the regularities obtained earlierE1 with the aid of 
qualitative reasoning is valid also for these models. 

a) Corrugated-cylinder model. The distribution of the 
field for circular polarizations E,(L;) = E, k iE, and the 
impedance 2," of a semi-infinite metal are defined by the 
expressions"31 

E*(L)  1 ds 
e , ( c )=  - = - exp[zsL (lkiy) + U ,  ( s )  1, E = ( o )  2xi JP . 

c 1  

1 dq D*(q)  
~ * ( s ) = ~ , j - l n -  

- . l l c z ,  q-s q' ' ' 

Here 

is the dispersion equation that determines the natural 
modes propagating in the indinite metal along a constant 
magnetic field H, and 

is the non-local conductivity for circular polarizations 
of the radio-frequency field. The integration contours 

FIG. 1. 

C, and the cuts in the complex plane are shown in Fig. 
1, the contours C: being shifted relative to C, down- 
ward by an infinitesimally small amount. In Eqs. (1)- 
(6) we use the following notation: k-wave vector, u- 
extremal displacement of the electrons during the cyclo- 
tron period 

where S(p,) is  the area of the intersection of the Fermi 
surface with the plane p, = const, p, is  the component 
of the electron momentum along the field H, Y = v/w,, 
n is  the electron or hole density, 5 = 2rz/u is  a dimen- 
sionless coordinate, L = 2rd/u, and qo = wu/2rc. 

We consider first the simpler model I. The area of 
the section of the electron Fermi surface is given byt7] 

where the dimensionPo of the Brillouin zone, the den- 
sity n, and the extremal shift u are parameters of the 
model, and the area of the section of the hole cylinder is 
constant and equal to 

In this model, the non-local conductivity (6) takes the 
form 

and the dispersion equation i s  

D, ( q )  -qZ* tt[ ( I -q z )  -"- ( l k i y )  1-0, 

where 

The position of the threshold of the doppleron wave 
that exists in the minus polarization is  determined by 
the condition [ = 2. In the region of strong fields, far 
from threshold, where 

Eq. (10) for minus polarization has two solutions, the 
reduced wave vectors of which are  equal to 
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and for the plus polarization it has one solution (12) we obtain 

Let us evaluate the integral (2). To this end we in- 
tegrate by parts and then deform the integration contour 
in the upper half-plane in such a way that i t  encircles 
the cut. As a result, Eq. (2) i s  determined by the con- 
tribution of the poles and by the integral along the edge 
of the cut 

*-q u+ ( 0 )  =-ln 2 
I - s  + V+ (4, (15) 

u- (s )  --ln ( s - q , )  ( S - ~ D )  
+ v- ( s ) ,  

l -s 

If the condition (12) is satisfied, the main contribution 
to the integral is made by the region of values of q close 
to unity l(q - 1 << 1). Taking this into account and in- 
troducing a new integration variable z = (q" 1)lr2, we 
can reduce (17) to the form 

This integral can be calculated, and we obtain as  a result 

Let us calculate the integral (1) with the aid of (15), 
(16), and (18). To this end we again represent it in the 
form of a sum of the contributions of the poles and of the 
integral along the edge of the cut 

Using (12) and the inequality L >> 1, we obtain 

Calculating this integral by the saddle-point method we 
obtain 

The integral in (3), which determines the impedance 
of a semi-infinite metal, can be calculated in analogy 
with (2). The only difference is that in the case of minus 
polarization, after integrating by parts, one more pole 
appears at the point q = - 1, which coincides with the 
start of the cut. For both polarizations, the main con- 
tribution is determined by the integral along the edges 
of the cut. In the field region defined by the condition 

The analogous quantities in the case of specular reflec- 
tion are  given byce1 

The integrals (24) and (25) can be evaluated for model 
I in the field region (12), and a s  a result we get 

We note that Eq. (4) of is satisfied in our model for 
the asymptotic expressions of both the doppleron and the 
GK components, namely 

Thus, it follows from (16), (20), (23), and (26) that 
in the case of diffuse reflection both the doppleron and 
the GKO are excited n/25 times more strongly than in 
the case of specular reflection. In accordance with 
formula (8) ofu1, the impedance of a thick plate under 
antisymmetrical excitation, in the field region (12), i s  
given by the expression 

where E(L)  i s  the field in the semi-infinite metal at a 
depth L. Using (23), (19), (20), and (28) we obtain the 
oscillating part of the impedance 

8nqo 4 A Z + =  -- 
c (q.+f/n)2 e ~ ~ ( L ) y  (29) 

8nqo i AZ-= -- [ e G i  ( L )  +E'e'QL]. 
c ( ~ . + E / X ) ~  

It was shown earlierc2] that the oscillating part of the 
impedance of the plate in the case of specular reflection 
of the electrons i s  determined by the formula 

It follows from (30) and (26c) that with increasing mag- 
netic field the amplitude of the doppleron oscillations of 
the impedance decreases like H'~.  On the other hand, 
the amplitude of the Gantmakher-Kaner oscillations 
varies nonmonotonically. According to (30), (26c), ard 
(22), i t  increases in proportion to HIr2, reaches a maxi- 
mum at t 2 ~ -  1, and then decreases like Ha/'. 

The oscillating part of the impedance, in the case of 
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diffuse reflection, differs from the correspollding quan- 
tity in the case of specular reflection by an additional 
factor 

the value of which i s  much larger than unity. In the 
field region where Y << 5, the first  term in the round 
brackets i s  small in comparison with the second, and the 
quantity (31) varies with the field like H6. In stronger 
fields f <<Y the situation i s  reversed and (31) increases 
in proportion to H4. Accordingly, the amplitude of the 
doppleron oscillations in the diffuse case decreases like 
H " in the region Y << f << 1, and then like H '3. On the 
other hand, the amplitude of the GKO in the strong-field 
region decreases in proportion to H "I2. 

b)  Lens model. We proceed now to the study of model 
11. The area of the interaction of the electron lens and 
the plane p ,  =const i s  given by the expressionc41 

and while the intersecti9n with the hole cylinder i s  give 
by (8). At p1 ti" = 0.28 A" and at a density n equal to 
the electron density is cadmium, formula (32) de- 
scribes very well the sections of the true lens in cadmi- 
um. By calculating the conductivity, we can write down 
the dispersion equation in the form 

In this model we still took into account the hole-collision 
frequency yh =vh/wo and J? =Y, +Y,. The doppleron 
threshold corresponds to the value f =30/11. The equa- 
tion for the plus polarization has only a skin-effect root, 
given in the field region (12) by 

The equation corresponding to minus polarization has 
two roots. 

where we have introduced the new quantities a, = i t ,  and 
a = Q 5. The calculation of the integral (2) for the model 
I1 is carried out in analogy with the calculation for mod- 
el I. After calculating the integral by parts and deform- 
ing the contour, we obtain expressions (13) and (14), in 
which the function v,(s) is now defined by the formula 

At small values of 5 and a, the main contribution to 
this integral is made by the region of values of q close 
to unity. We can therefore introduce a new variable 
z = q  - 1 and expand the numerator and denominator of 

the integrand in powers of z, retaining only the princi- 
pal terms. In this case, however, the integral begins 
to diverge in the region z - *, which makes a negligible 
contribution to the initial integral. To eliminate this 
divergence, we divide the expression under the logarithm 
sign by (1 +z). The addition of this factor does not 
change the behavior of the integrand at z << 1 and at the 
same time ensures smallness of the contribution from 
the region z> 1. As a result, the expressions for V,(s) 
reduced to the form 

The expression for V,(s) can be obtained from V,(s) 
by subtracting ni and replacing a, by a, and s by - s. 
We therefore calculate V,(s). We calculate the integral 
by parts and assume henceforth that r - 0, 

and then change over to integration with respect to the 
variable t, which i s  connected with z by the relation 
z = exp(rt - l/a): 

The integral of each of the terms will be calculated by 
parts: 

A arctg t dt A nen(:O-:l dt 
J-=f@)-J f(t)  [i+ cq(to- ', 2 ; 
- = -m . I 

We have introduced here the function f(t) = t  tan'lt - ln(1 
+t2)'12 and have left out the exponentially small terms, 
recalling that A- For the first term, to i s  determined 
by the expression 

As a result we get 

We expand the function f (t) and integrate term by term. 
For all to ,  with the exception of I to 1 < 1, we can confine 
ourselves to a single term 

1 
V - ( s )  =x i  + -ln(l+s)+ l+a ln(l+s) arctg l+a In(l+s) 

2 na nu 

At the wint  to, expression (37) is equal to ri + 1 - ln~ra 
- l/a, whereas an accurate calculation yields ri +lnn 
- lnna - l/a. We shall not make expression (37) more 
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complicated, recalling that i t  must be readjusted in the 
vicinity of the point to=O, i. e. ,  near the doppleron pole. 
In accordance with the remark made above concerning 
V+(s), we obtain 

v + ( s ) = - ~  [ i - a ~ n  (1-8) 1. (38) 

The field distribution in a semi-infinite metal is ob- 
tained in the same manner a s  for model I: 

Calculating the integral in (39) by the saddle-point 
method, we obtain 

For the minus polarization we obtain analogous 

e- (f) =e'qSc -ec; (f) -Be-""e'qD'/a, (41) 

where the last term represents the contribution of the 
doppleron pole. The coefficient B in (41), which turns 
out to equal e/n when (37) is substituted in (I), must be 
set equal to unity when account is made of the remark 
that follows formula (37). 

According to (3), the impedance of a semi-infinite 
metal is defined by the expression 

where the first term i s  the sum of the roots of the dis- 
persion equation. In the field region (12), the expres- 
sion becomes simpler: 

Omitting the small term 1 + q ~  , we obtain 

In the case of specular reflection, the analogous quanti- 
ties can also be calculated: 

It is easily seen that relations (27) and the conclusions 
that follow from them are valid also for model 11. 

The oscillating part of the impedance of a thick plate 
takes in the diffusion case, in accordance with (28), the 
form 

where e,,(L) is defined by relations (39) and (40). 

These expressions differ from the corresponding 
formulas for the case of specular reflection by the large 
factor 

which i s  analogous to the factor (31) in model I. Rec- 
ognizing that 5" H ' ~  and q o - ~ " ,  we can express the 
impedance-oscillation amplitudes (45) as functions of 
x =H/HL, where HL i s  the magnetic field corresponding 
to the doppleron threshold ( 5  = 30/11). Thus, for ex- 
ample, the amplitude of the doppleron oscillations in 
(45b) takes the form 

where uL and rL are  the values of u and I7 at H =HL. 
The expression for the GKO amplitude can be similarly 
expressed in terms of x .  

3. EXPERIMENT 

One of the purposes of the present experimental in- 
vestigation was to observe GKO in cadmium and to study 
the dependence of their amplitude on the magnetic field. 
It follows from the theory that the amplitude of the GKO 
due to the electrons of the lens i s  much smaller than 
the maximum amplitude of the electron doppleron. The 
region of the magnetic field where the amplitude of the 
GK oscillations has a maximum lies inside the region 
where the electron doppleron exists. The GKO can be 
observed by investigating the surface impedance of a 
plate in a positive circular polarization, in which there 
is no electron doppleron. 

We investigated the surface impedance of single-crys- 
tal plates of cadmium in the frequency interval 13-950 
kHz and at temperatures 1.3-4.2 "K in a constant mag- 
netic field perpendicular to the surface of the plate. The 
investigated sample was placed in crossed flat inductance 
coils, one of which was connected in a parallel resonant 
circuit of a simple amplitude bridge. The second (ex- 
ternal) coil was used to produce on the sample surface 
fields with circular polarization, in a manner described 
earlier. C173 The coil dimensions were 2-3 times larger 
than the sample dimensions, thus ensuring sufficient 
homogeneity of the exciting field. The constant magnetic 
field was produced either by a superconducting solenoid 
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FIG. 2. Dependence of the derivatives dR+/dH on the magnetic 
field for a cadmium sample d =O. 43 mm thick; H 11 [OOOl]; 
(./2r = 0.95 MHz; T =4.2 O K .  

or by an electromagnet. In either case, the field was 
determined with accuracy not worse than 0.5%. We 
used a traditional modulation procedure to obtain plots 
of the derivatives of the surface resistance dR/dH and 
d 2 ~ / d H 2  with an X-Y potentiometer. 

The cadmium plates were cut by the electric-spark 
method from a single crystal with resistivity ratio p3& 
P4 .2~~3 .  lo4. The hexagonal axis [0001] of the crystal 
was parallel to the normal to the plate. 

Figure 2 shows typical plots of the derivative dR/dH 
in minus polarization (curve 1) and in plus polarization 
(curve 2). Curve 2 was plotted with a gain 25 times 
larger than curve 1. The oscillations of dR/dH in minus 
polarization are due to excitation in the plate of an elec- 
tron doppleron, the properties of which were investigated 
in detail. C3sS*6*173 Characteristic features of doppleron 
oscillations are a strong dependence of their amplitude 
on the magnetic field and a dispersion of the period, 
which is  most noticeable in the region of weaker fields, 
as  well as  a fully defined circular polarization. In 
strong fields, the period of the oscillations of the elec- 
tron doppleron is determined by electrons with extremal 
value of aS/ap,. The change of the doppleron-oscilla- 
tion amplitude in a magnetic field depends substantially 
on the electron mean free path and on the sample thick- 
ness. Figure 3 shows a plot of dR,/dH for a sample 
0.6 mm thick. From a comparison of curve 1 on curve 
2 and the curve on Fig. 3 it is seen that the amplitude 
of the oscillations for a thick sample decreases more 
strongly than for a thin one. The dependence of the wave 
form of the envelope of the doppleron oscillations on the 
mean free path is observed from measurements of the 
amplitude at different temperatures. 

In plus polarization in a magnetic field H=4.45 kOe, 
there is a sharp maximum of dR/dH, due to the threshold 
of the hole doppleron. No oscillations connected with 
the passage of this doppleron were observed at T =4.2 K. 
Above the threshold, small oscillations are distinctly 
seen, with an amplitude that first increases, reaches 
a maximum in fields 9-11 kOe, and then decreases 
slowly. The position of the maximum of the amplitude 
relative to the magnetic field changes with frequency 
approximately like wlls. Similar oscillations in plus 
polarization were observed earlier. 'lE3 It was suggested 
inLl6] that these oscillations are due to the electron dopp- 
leron that cannot be fully suppressed a s  a result of the 

insufficient homogeneity of the RF field. A s  seen from 
a comparison of the curves in Fig. 1, the presence of 
oscillations inplus polarization cannot be attributed to the 
inaccuracy of the choice of the circular polarization of 
the exciting field. This i s  evidenced, for example, by 
the difference in the number of oscillations on curves 1 
and 2 in the field interval 6-14 kOe. 

The plots on Fig. 2 were obtained at 4.2 " K. When 
the temperature is decreased to 1.3 K, the amplitude 
of the oscillations in plus polarization increases by 2-3 
times, i. e., by approximately the same factor as  the 
amplitude of the oscillations of the electron doppleron 
in strong fields. This, however, did not improve the 
conditions for the observation of the oscillations, for 
when the temperature is lowered the amplitude of the 
doppleron oscillations in minus polarization increases 
by more than one order of magnitude near the threshold. 
This imposes much more stringent requirements on the 
correct choice of the circular polarization. In addition, 
at temperatures lower than 3 OK in plus polarization, 
oscillations of a hole doppleron are observed and greatly 
complicate the general picture. With decreasing fre- 
quency, the number of the oscillations observed in plus 
polarization decreases. On the other hand, an increase 
of the frequency leads to a relatively stronger increase 
of the amplitude of the electron doppleron. Therefore 
the oscillations in plus polarizations are most distinctly 
seen in the frequency region 0.2-1.0 MHz. 

Analysis has shown that, within the limits of the ex- 
perimental error (3-5%), the observed oscillations are 
periodic, in the magnetic field with a period inversely 
proportional to the sample-thickness. The main source 
of the error in the determination of the period for two 
neighboring extrema is  connected with the strong change 
of the smooth part of the derivative dR/dH. Assuming 
the period to be constant over eleven sufficiently dis- 
tinct maxima, we determine the average value of the 
period of the oscillations for a sample (430 * 10) /J thick, 
namely 1.47 kOe. The obtained value of the period i s  
close to the limiting period of the oscillations of the 
electron doppleron in strong fields. 

Investigations have shown that in a wide frequency in- 
terval the position of the extrema of the oscillations 
relative to the magnetic field in plus polarization is in- 
dependent of frequency, within the limits of the mea- 
surement accuracy, and is  determined only by the sample 
thickness. Figure 4 shows the positions of the extrema 
of the oscillations in both polarizations at different fre- 

FIG. 3. Plot of the deriva- 
tive dR-/dH; d = 0.6 mm; 
HI1 [0001]; w/2*=0.95 MHz; 
T =4.2 OK. 
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FIG. 4 .  Frequency dependence of the positions of the extrema 
of the oscillations of dR,/dH with respect to the magnetic field. 
The upper part of the figure corresponds to minus polarization 
and the lower to plus polarization. Sample thickness d  = 0.43 
mm; T = 4 . 2 " K .  

quencies. From an examination of the upper part of 
Fig. 4, which pertains to the electron doppleron, it is 
seen that with increasing frequency the positions of the 
oscillation maxima shift noticeably towards stronger 
fields. The maxima of the oscillations in plus polariza- 
tion partly shift relative to the magnetic field in the in- 
vestigated frequency interval. 

When the magnetic field i s  inclined 3-5" to the [001] 
direction, the amplitude of the electron doppleron de- 
creases noticeably as  a result of the appearance of 
magnetic Landau damping. The picture of the oscilla- ' 

tions in plus polarization for an oblique field is practical 
ly the same, moreover, the amplitude of the extrema 
even increases somewhat in this case. 

We have attempted to observe these oscillations in 
minus polarization. We did not succeed, however, in 
establishing the presence of small oscillations against 
the background of the electron doppleron, and the ques- 
tion of the existence of such oscillations in minus po- 
larization remains open. 

The foregoing results of the experimental investiga- 
tion give grounds for stating that the observed oscilla- 
tions in plus polarization have all the properties of 
GKO and are due to excitation of GKO in the plate. 
From the period of the GK oscillations we determined 
the valve of (aS/ap,),,, for the lens electrons, namely 
A .  9.6 A", in good agreement with the earlier 

Besides the GKO connected with the lens electrons, 
oscillations were observed in weak fields, which were 
periodic in the magnetic field and also possessed GKO 
properties. Examples of plots of d 2 ~ / a 2  are  shown 
in Fig. 5. The oscillations are observed in a magnetic 
field both above and below the threshold of the hole 
doppleron that exists in plus polarization. As seen 
from the figure, the considered oscillations exist only 
in minus polarization, or  at least, have in this polariza- 
tion a much larger amplitude than in the opposite po- 
larization. The polarization of the oscillations i s  
strongly distinguishable in the region of fields below the 
threshold of the whole doppleron. It is difficult to draw 
any conclusion concerning the polarization in strong 
fields, inasmuch a s  the relatively large oscillations of 
the whole doppleron are  observed in plus polarization. 

4. DISCUSSION 

We begin with a comparison of the threshold and ex- 
perimental results concerning the amplitude of the 

doppleron oscillations. Let us compare the dependence 
of the amplitude of the electron doppleron on the field 
H with the results of the calculation for the case of 
specular and diffuse reflection. In Fig. 3 the doppleron 
oscillations have a maximum at H =8.5 kOe. This field 
corresponds to x =H/HL = 1.5, where HL = 5.7 kOe i s  the 
calculated value of the threshold field at o/2n = O .  95 
MHz. With increasing field, the amplitude of the oscilla- 
tions d R , / a  falls off and decreases by a factor 25 at 
H= 14 kOe (x =2.4). The theory constructed by us for the 
case of diffuse reflection i s  valid, strictly speaking, 
only in the region of fields corresponding to small a. 
At values x = 1.5, however, we have a =O. 5. Nonethe- 
less  one should expect the theory to describe the be- 
havior of the doppleron amplitude approximately in this 
region, too. From (47) it  is seen that in the theory the 
doppleron amplitude also has a maximum. Calculation 
shows that both the magnitude and the position of this 
maximum depend strongly on the carrier mean free 
paths. At an electron mean free path 1 =O. 5 mm and 
Y,, = 2Y,, the maximum is  located approximately in the 
same place as  on the experimental curve. In this case, 
when x changes from 1.5 to 2.4, the amplitude of the 
oscillations of dR,/dH decreases by a factor of 30, in 
agreement with experiment. On the other hand, in the 
case of specular reflection the amplitude of the oscil- 
lations should decrease by an approximate factor of 
300. 

We proceed now to discuss the GKO observed in plus 
polarization. On curve 2 of Fig. 2, the maximum of 
the oscillations i s  located at H= 10 kOe ( x z  1.75). When 
the field is increased to 14 kOe, the amplitude of the 
oscillations decreases by approximately 30%. Calcula- 
tion shows that in the case of diffuse reflection the GKO 
amplitude has a rather broad maximum situited at 
x =  1.85. When x is increased to 2.4, the amplitude de- 
creases by 100/0. In the case of specular reflection, 
when x changes from 1.8 to 2.4, the GKO amplitude de- 
creases by a factor of 4. Thus, the theory with diffuse 
reflection i s  in much better agreement with experiment 
than the theory with specular reflection. 

Finally, let u s  compare the GKO amplitude with the 
amplitude of the doppleron oscillations. Measurements 
show that the ratio of the amplitudes of the oscillations 

FIG. 5. Plots of d 2 ~ , / a X 2  against 
H at identical gains: d  =O. 60 mm, 
w / 2 n = 0 . 2 4  MHz; T = l .  6°K. 
Curve 1-minus polarization, 2- 
plus polarization. 
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on curves 1 and 2 of Fig. 2 in a field 11 kOe (v= 2) is 
equal to 14. The theoretical ratio of the amplitude of 
the doppleron oscillations to the GKO amplitude in the 
same field is 9. We do not compare the results on the 
GKO in minus polarization and due to holes. The rea- 
son i s  that the theory constructed abwe does not take 
into account non-local effects connected with the holes. 
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Cross relaxation between the Zeeman and spin-spin degrees 
of freedom in a solid 
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Zh. Eksp. Teor. Fiz. 72, 750-755 (February 1977) 

A theory is presented of the establishment of a single spin temperature under the influence of a nonsecular 
dipole-dipole interaction X",, in higher orders of perturbation theory. It is shown that when the cross 
relaxation processes are considered it is necessary to exclude in each succeeding approximation the secular 
contribution from the perturbation X", and to redefine correspondingly both the Zeeman subsystem and 
the subsystem of the spin-spin interactions. It is pointed out that the ideas presently advanced in the 
literature, concerning the unification of the Zeeman subsystem with %",, are inconsistent. 

PACS numbers: 75.10.Jm, 71.70.Ej 

The dipole-pool concept, advanced by ~ r o v o t o r o v , ~ ~ ~  tem by the secular part 26; of the dd interaction are  de- 
has permitted considerable progress to be made in re- termined by a temperature P;;' that i s  in general differ- 
search on magnetic resonance.c21 The gist of this con- ent from the Zeeman temperature P;.  It i s  the interac- 
cept i s  that in strong constant magnetic fields H, >> H, tion regarded as a thermodynamic subsystem with 
(H, is the field due to the dipole-dipole (dd) interaction temperature p i ' ,  which is in fact called the dipole pool. 
of the given spin with the environment) the populations of 
the aggregates of the levels which result from the lifting The ~rovotorov two-temperature model has a clear 
of the degeneracy of the Zeeman levels of the spin sys- physical foundation. 26; conserves the Zeeman energy 
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