
Principle of symmetry of kinetic coefficients for systems 
with dragging 

L. g. Gurevich and E. T. Krylov 
A. F. Ioffe Physicotechnical Institute, USSR Academy of Sciences 
(Submitted July 14, 1976) 
Zh. Eksp. Teor. Fiz. 72, 692-698 (February 1977) 

We consider the kinetic-dcient symmetry derived from the system of kinetic equations for a 
multicomponent system in which the components can drag one another. The self-adjoint character of the 
collision operator is utilized. We indicate for a multicomponent system a variational principle that makes 
it possible to determine, the solution of the kinetic equations without any supplementary conditions. 

PACS numbers: 05.20.Dd 

1. INTRODUCTION nent i, the expression fo r  D, is 

The general derivation of the Onsager principle has 
aei 311 381 ah 

a number of shortcomings: f irst ,  in the existing deriva- D i  =----- 
$pi dr dr  dp, ' 

tionscl'21 
(2) 

no account is taken of the dragging phenomenon 
in multicomponent systems; second, different compo- L, ,  is the collision integral of the components i and j; s, 
nents can have unequal temperatures and non-equilibri- and pi a r e  the energy and momentum of particle of the 
um concentration, leading to energy exchange between ith component; raising the index j means summation 
the components and to creation and annihilation of quasi- over this index. In the linear approximation, to which 
particles (for example, photons); finally, third, these we confine ourselves henceforth, we put 
derivations encounter certain formal difficulties which 
can be circumvented by more o r  less artificial strata- 
gems. C31 

The main purpose of the present paper is to general- 
ize the Onsager symmetry relations to include systems 
with dragging. The stratagem employed by us makes i t  
possible to eliminate also the remaining indicated dif- 
ficulties. I t  makes use of a system of kinetic equations 
under the most general assumptions concerning the col- 
lision operator, based (just as the Onsager principle) 
on the reversibility of microscopic processes. This 
method leads, for example, to a relation between the 
electron thermal conductivity due to their dragging by 
phonons, and to the phonon thermal conductivity due to 
their dragging by electrons. Another example is the 
connection between the phonon heat flux due to the elec- 
tr ic field, and the electric current due to the flux of the 
electron-dragging phonons. 

All the kinetic coefficients a re  expressed explicitly in 
terms of the collision operator. Finally, we indicate 
in the article a variational principle for an arbitrary 
multicomponent system. This system has the advantage 
over the Kohler principle in that when the solutions of 
the kinetic equation a re  substituted, the variational 
functional assumes a minimum value without any addi- 
tional conditions. 

2. SYSTEM OF KINETIC EQUATIONS 
"THERMODYNAMIC FORCES." 

We consider a system consisting of several compo- 
nents, which we shall label by the symbol i. The ki- 
netic equation for the component i is of the form 

where f, (p3 is the distribution function of the compo- 

atoi el--pt 
ft=fo, +-cpt, qi =- 

all* Tt ' 

where f,, is a local-equilibrium Fermi or  Bose distribu- 
tions function, p i  =poi + ei@ is the electrochemical po- 
tential and the temperature of the component, e, is the 
charge of i t s  particle, and @ is the electric potential. 

We confine ourselves to an approximation linear in the 
deviation from equilibrium, in which the quantities 

I V@ I , I T i  - TjI , and the gradients a re  small quantities. 
The electrochemical potential pi will also be assumed 
to deviate little from its equilibrium value, and V p ,  may 
not be equal to zero. In this little approximation we 
have 

and the collision integral is 

The f i rs t  term on the right is connected with the differ- 
ence between the temperatures of the components and 
the deviation of the chemical potentials from their equi- 
librium values. The second term is the linearized col- 
lision integral. The f i rs t  index of L,, indicates the num- 
ber of the component in the equation in which this inte- 
gral  enters, while the second index shows which compo- 
nent in this expression is assumed to be in disequilibri- 
um. For  example, the diagonal element of the operator 
L,,, i f  i=j pertains to electrons, describes the scatter- 
ing of non-equilibrium electrons by the equilibrium part 
of the system (equilibrium electrons, phonons, defects, 
etc. ). If i pertains to electrons and j pertains to pho- 
nons, then L ,  jq j  describes the dragging of the electrons 
by the non-equilibrium phonons, while L,,(oi describes 

363 Sov. Phys. JETP 45(2), Feb. 1977 0038-5646/77/4502-0363$02.40 O 1975 American Institute of Physics 363 



the dragging of the phonons by the non-equilibrium elec- Simple calculations yield 
trons. 

1 v 
The system of kinetic equations (1) breaks up in this (Di l l r )  = -d i v  T ,  jrr - 2 d i v  Ti j ," ;  (13) 

approximation into two coupled s ys tems: 
By virtue of (7), the first  two terms in the right-hand 

G f U ,  Gofa, olli - -- L: I (?of, i",), (5) side of (9) add up to zero, s o  that 
g t  dtli ' j t  

Equations (5) constitute a system for the quasi-equilibri- 
um parameters Ti and pi ,  and the number of unknowns 
in this system is generally speaking larger than the num- 
ber of equations. We supplement them by taking into ac- 
count the energy and particle-number conservation laws. 
We confine ourselves to the case a/at=O, and then the 
usual procedure for integrating (1) yields 

where t i  = c i  - pi,  and the particle-number and energy 
flux densities a re  

The systems (6) and (7) now comprise a complete system 
of equations for the parameters Ti and pi and for the 
functions pi,  with Ti and pi  entering in the equations for 
p i  as parameters. 

The integral operator L,, is self-adjoint in the sense 
that 

In the stationary case, when asi/at=O, we can write 

The expression (D,cp,) reduces to a form analogous to 
(13): 

The expressions VG' and qlvk assume the role of 
"thermodynamic forces," which we shall designate by 
the symbols Xi, (i denotes the number of the component 
on which the force acts, and a, is used to distinguish be- 
tween the forces acting on one component). The number 
and form of the thermodynamic forces is determined by 
the macroscopic parameters on which the equilibrium 
o r  local-equilibrium distribution function depends. The 
forces that enter in (16) a re  a result of the fact that we 
have immediately specified the form of the local-equi- 
librium distribution functions. Were they to contain be- 
sides T and p some other macroscopic parameters, then 
the number of the thermodynamic forces could increase. 

3. SYMMETRY OF KINETIC COEFFICIENTS 
(qiLrjqj)=(cp&fi,); The solutions cp, of Eqs. (6) can be formally written 

in the form 
the angle brackets denote here integration over the mo- 
menta of the component whose number coincides with the c p t = ~ ; " ~ j .  
f i rs t  index. The self-adjoint character of the operator 

(17) 

L was considered in detail inc5] for cases of interest. It The flux densities are then 
is obvious that if L,, is an Hermitian operator, then the 
operator L;: is also Hermitian. ated 

j i n  = j ( ~ P , ) V , ~ L ; " D ~ ,  
If the distribution function takes the form (3), then the 'li 

dfo, 
rate of change of the entropy of the component i is equal j,'= J (dpijv,' , ,-L-" , 0,. 
to 

Substituting here the expressions for D,, we obtain 
dst/at = J ( d ~ i )  { - q c ~ P  (fo,, fw) + D6qc+cptLi1qj-D,~J,).  (9) 

We introduce the entropy flux density of the component 
i: (19) 

j j s  = J (dp i ) v ,o , ,  

o.=fi In f , * ( l f f , ) l n  ( I T f , ) ,  
(10) 

If we write the expressions for the fluxes in the form 
where the minus and plus signs correspond to Fermi and 
Bose statistics; then, a s  can be easily established, i."=al'Vp,+b,'VT,, (20) 

j.E.-yilv k+6?VTj, (21) 

div jiB=-<D,qO+(D,cpi), then, a s  seen from (l9), (20), and (21), the following 
symmetry relations hold: 

and we obtain an equation for the change of the entropy in 
the following form: a.jT,=aj,Ti, (224 

B,~T?&~,T, ,  (22b) 
as, - as 

'&vjfS = (2) .,=I ( ~ P J  { n ~ : ' ( f ~ , , f ~ ) +  ipd jcp j ) .  (12) 6,T,Z-6,,T,'. 
at 

(224 
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If i = j  and this symbol pertains to electrons, then (22b) 
leads to the well-known relation between the thermoelec- 
tr ic coefficients. The coefficients cui, can be called the 
mutual-diffusion coefficients. Finally, the symmetry 
properties of the matrix 6,, denote that, for example, 
the thermal conductivity of the electrons, due to their 
dragging by phonons (at identical subsystem tempera- 
tures), is equal to the phonon thermal conductivity due 
to their dragging by the electrons. (Of course, i t  is as- 
sumed here that the dragging flux of the latter is deter- 
mined only by T, and the thermoelectric field produced 
thereby is disregarded; this situation is realized in pure 
form in superconductors. ['I) 

Comparing (26), (25), and (24), we obtain 

We note a circumstance of importance in what follows: 
From the fact that D,,, FO, i t  follows in the case j zi ,  
by virtue of the kinetic equations, that 

In the foregoing derivation we have assumed the sub- 
system temperatures to be different. Under these con- 
ditions, energy should be exchanged between them. If 
an experimental situation is possible in which the sub- 
system temperatures and the temperature gradients a re  
maintained constant, then the presence of this exchange 
does not change our derivations in any way. However, 
after having established relations (22) we can go to the 
limit of identical temperatures. A situation is also pos- 
sible in which the temperature differences a re  s o  small 
that energy exchange between the subsystems is negli- 
gibly small, and the nonstationary behavior of the sys- 
tem, due to this exchange, can be neglected. 

We shall now prove the symmetry properties of the ki- 
netic coefficients written in this new form. (We note 
that the kinetic coefficients n introduced here differ 
somewhat from the conventional ones [(4) and (6)], since 
they represent the coefficients of the linear coupling 
of the fluxes with the thermodynamic forces, and not 
with quantities of the type V T  and Vp. ) 

The proof of the symmetry of the kinetic coefficients, 
based on the property (28) and on the self-adjoint char- 
acter of the operator L, is obtained in the following 
manner: 

Relations (22) a re  based on the self-adjoint property 
of the operator L with respect to the functions cp. It is 
obvious that this self-adjoint property is closely con- 
nected with the invariance of the microscopic equations 
of motion relative to time reversal. The actual calcula- 
tion of the kinetic coefficients by means of formulas (22) 
is made difficult by the presence in them of a reversible 
operator L-'. However, the expressions for the kinetic 
coefficients can be easily reduced to a form in which 
they no longer contain this operator. 

whence i t  follows by virtue of (24) that 

By virtue of the linearity of the kinetic equations 
indeed, 

(D,. sc~,, ~r)"(qj. rpLli(p2, i a ) = ) . ~ ~ .  LI, 

(Dh, I P ( P ~ ,  p)=<(p~. jaLai~,, u)=~rr .  ,z. 

To avoid misunderstandings, we note that the kinetic 
coefficients expressed by formula (27) do not satisfy 
formally the symmetry principle, but they can be easily 
reduced to the required form with the aid of the condi- 
tions (28). We demonstrate this using as the simplest 
example a two-component system, with each component 
acted upon by a single force, XI and X, respectively 
(the meaning of the simplified symbols i s  obvious); then 

the function cpi can be represented a s  a linear combina- 
tion of terms proportional to the corresponding forces 
(since all the components interact with one another, i t  
follows that cpi depends on all the forces, and not only 
on the forces acting on the component i): 

Since the forces a re  arbitrary and the theory is linear, 
the stationarity condition (16) takes in this case the 
form 

But by virtue of (28) we have 

In analogy with (17) we can write in general form: 

whence 

where j,, has the meaning of the flux corresponding to 
the force Xi,. In turn, j,, depends linear on the forces: 

Taking the last equations into account we get 
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When the symmetry of the operator L,, is taken into ac- 
count, the symmetry of the coefficients x becomes ob- 
vious. A similar procedure can be employed also in 
more complicated cases. 

The explicit expressions obtained by us for the kinetic 
coefficients a re  convenient for the use of the variational 
method with a variable functional 

The solution of the kinetic equations (6) corresponds to 
a minimum of this functional without any additional con- 
ditions. Indeed, let cp, be the solutions of Eqs. (6), and 
let (cp = J I ) ,  be a certain trial function. Then 

By virtue of the self-adjoint character of L 

and consequently the functional is minimal a t  J ,  = 0. The 
absence of any additional conditions when this functional 

is used constitutes i t s  substantial advantage over the 
functional proposed by Kohler. 

The connection of the functional I with the Kohler func- 
tional -3 = (cp, ~"cp,), which was introduced by him for the 
case of a single-component system, lies in the fact that 
variation of the latter subject to the additional condition 
(~,cp'  ) =(cp, LUcp j ) ,  which is taken into account with the 
aid of Lagrange method, leads precisely to the function- 
a l  I. 
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Magneto-optical spectra of 3d ions in spinel ferrites and 
weak ferromagnets 
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The equatorial Kerr effect method was used to investigate the magneto-optical reflection spectra (S(o) in 
weak ferromagnets-orthofemtes and hematite-and ferrimagnets-spinel femtes and chromite 
femtes-in the range from 1 to 5.4 eV. It is shown that the threshold of intense absorption in 
magnetically ordered crystals occurs in the region of the first two-exciton transition 2X TI, .  As a result of 
measurements of the chromite ferrites CoCr,Fe,-,04 and NiCr,Fe,-,O,, in which the ~ e ' +  ions were 
located either in octahedral or tetrahedral positions, it is revealed that the decisive role is played by 
optical transitions with participation of ions from both sublattices. In spinel femtes, optical transitions 
were observed in the divalent ions Ni2+ and Co2+. In the region of the transition 4A2(4F)+4Tl(4P) in the 
C02+ ions, values - 10% were obtained for the equatorial Kerr effect at room temperature. 

PACS numbers: 78.20.L~ 

INTRODUCTION 

The magneto-optical properties of spinel ferrites, 
garnet ferrites, and certain weak ferromagnets in the 
infrared and visible regions of the spectrum a re  deter- 
mined mainly by the character of the optical transitions, 
the frequencies of which lie in the near ultraviolet re-  
gion. The reason is that the first  intense optical transi- 
tions in the ~ e "  ions Lie in this band, whereas the visi- 
ble and infrared regions of the spectrum contain spin- 
forbidden, and frequently additionally parity-forbidden 

transitions between the levels of the 3d ions in the in- 
ternal crystal field (crystalline transitions). Ultraviolet 
optical and magneto-optical spectra of iron garnets have 
been under intensive study in recent years because new 
crystals with high magneto-optical quality factors were 
found, containing bismuth, praseodymium, and neo- 
dymium. It was established that in the region 2.8- 
3 .3  eV, a s  well a s  weak crystalline transitions, there 
a r e  two or  three intense transitions, the origin of which 
was not finally determined, although it  is precisely their 
enhancement under the influence of bismuth which causes 
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