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The lifetime of the electrons under non-equilibrium conditions, following photoexcitation of the carriers, is 
calculated for the case when the energy relaxation is determined by the interaction with the acoustic 
phonons. It is shown that at large concentration of the capture centers the lifetime is practically 
independent of the concentration and coincides with the time of energy relaxation to the percolation level. 
The case of impurity photoexcitation in a compensated semiconductor is discussed in detail. The cross 
section for capture by a dipole is calculated. Special consideration is given to the case of pure materials at 
low temperatures, when the interaction of the carriers with the acoustic phonons is essentially inelastic. 

PACS numbers: 71.38. + i ,  72.40. +w 

We have previously obtainedc1' the cross  section for the recombination process itself will influence substan- 
electron recombination on an attracting center under the tially the ca r r i e r  distribution with respect to energy. 
conditions that the conduction electrons have an equi- Understandably, in this case formula (2) does not hold. 
librium Maxwellian energy distribution. The analysis 
was carried out within the framework of the cascade 
capture model, ['I according to which the electron, emit- 
ting an acoustic phonon, i s  captured by highly excited 
levels of the impurity center. I t  turned out that the life- 
time of the ca r r i e r s  i s  determined mainly by the cap- 
ture of slow electrons with energy E"?I?s' ( m  is the ef- 
fective mass and s is  the speed of sound in the crystal). 
It follows therefore that the principal role in the cap- 
ture is played by processes of emission and absorption 
of low-energy phonons. This result contradicts Lax's 
conclusion that the lifetime is determined by the cap- 
ture of the thermal carr iers ,  wherein phonons with 
thermal energy a r e  emitted. AS shown inc", the 
reason for the contradiction is that  ax''' carried out 
an incorrect averaging of the transition probability over 
the electron orbit in the field of the center for electron 
collisions with acoustic phonons. 

If there a r e  N independent centers per  unit volume, 
then the lifetime i s  determined by the formula 

where v is the electron velocity, and o i s  the effective 
cross  section for i ts  recombination on one center. The 
averaging is carried out over a Maxwellian distribution. 
Using the results of'", we obtain the lifetime in the 
form 

Here 2. is the dielectric constant of the crystal, E, i s  
the constant of the deformation potential, and p is the 
density of the crystal. 

Formula (2) was derived under the assumption that 
the ca r r i e r s  a r e  in thermal equilibrium with the lat- 
tice. The recombination process, however, always 
manifests itself under non-equilibrium conditions, for 
example, in photoexcitation of the carriers.  The ca r -  
r i e r s  do not have time to become thermalized, and then 

In this paper we consider the question of the energy 
distribution under stationary photoexcitation and calcu- 
late the lifetime of the ca r r i e r s  under these conditions. 
I t  is assumed that the electrons a r e  produced at  an 
energy c i ,  which for simplicity will be assumed to be 
lower than the energy of the optical phonon, but much 
higher than the thermal energy KT. The recombination 
process proceeds in this case  in the following manner. 
Since capture of high-energy electrons, a s  shown in'" 
have low probability, the electrons, emitting acoustic 
phonons, drop down to near-zero energies, and a r e  then 
captured by high-excited levels of the charged centers 
and continue to lose energy via interaction with the 
acoustic lattice vibrations in the region of negative 
energies. The electron turns out to be practically cap- 
tured by the center when i t s  binding energy exceeds kT. 
Thus, the process of capture by a recombination center 
can be described a s  continuous diffusion in the space of 
total energy E a t  positive and negative values of the en- 
ergy. At high positive energies, the influence of the 
centers on the energy diffusion can be neglected, and 
in the region of high negative energies the centers can 
be regarded a s  isolated. There exists, however, a 
region of intermediate energies near E =0, in which the 
presence of the centers cannot be neglected (since the 
frequency of the collisions with the acoustic phonons 
vanishes at  zero kinetic energy of the electron), and a t  
the same time it is necessary to take into account the 
superposition of fields of many centers. Actually this 
means that account must be taken of large-scale fluc- 
tuations of the potential. As a result of the fluctuations, 
there exists at  all values of the total energy regions of 
space in which the kinetic energy is different from zero 
and emission of acoustic phonons is possible. 

We denote the characteristic swing of the fluctuations 
of the potential by E,. Then the results  of the diffusion 
approximation considered in Sec. 1 can be formulated 
in the following manner. If kT >> E,, then the ca r r i e r s  
manage' to become thermalized, and formula (2) is valid 
for their lifetime. On the other hand, if E,, >> kT (but 
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FIG. 1. Schematic form of 
the temperature dependence 
of the lifetime. At kT >> E o  
the time is r - ~ ~ ' ~ ,  and kT 
< Eo the time T ceases to de- 

( , - pend on the temperature. 
4 h 1 

Eo<< c,), then the ca r r i e r  energy distribution differs 
strongly from the Boltzmann distribution, and their life- 
time i s  of the order of the energy relaxation time T, of 
the electrons on the acoustic phonons, taken a t  the en- 
ergy Eo, 

T = T ~  (Eo) = T ~ ) ~ ~ L S ~ / ~ E ~ ,  (3) 

where 

Usually we have E,= e2x'1~1'3, so  that in the latter case 
the lifetime does not depend on the temperature and is 
practically independent of the concentration N of the cap- 
ture centers. The lifetimes a s  functions of the tempera- 
ture and concentration, corresponding to the results  
above, a r e  shown schematically in Figs. 1 and 2. 

Formula (2) can be expressed in terms of the same 
time T, in the following manner: 

where we have introduced a parameter 4 proportional 
to the concentration of the capture centers 

Since E , - ( ~ ( m s ~ ) ~ ,  i t  follows that the results described 
above can be represented in the following manner. So 
long a s  kT> E,, the electron lifetime is longer than the 
time of their energy relaxation: T = T, (E, ) (~T/E,)~ '~ .  
On the other hand, if kT< E,, the lifetime i s  determined 
by the time of energy diffusion to the level E,. 

Thus, the lifetime cannot be shorter than the energy 
relaxation time. " Accordingly, the carr ier  energy dis- 
tribution is a monotonically decreasing function even at 
a large capture-center concentration, when it differs 
substantially from the Boltzmann distribution (see Sec. 
1 ). 

The case when the swing of the fluctuation is E, < ms2 
calls for a special analysis. This situation i s  possible 
if pure semiconductors with large effective ca r r i e r  
mass. For example, for holes in silicon the energy ms2 
corresponds to 3 OK and E,< ms2 a t  N< 1013 cmm3. In 
this case allowance for the fluctuations of the impurity 
potential cannot "save" the diffusion approach, so  that 
a t  low energies the diffusion approximation cannot be 
used. However, even here, so  long a s  kT  >>ms2, for- 
mula (2) for the lifetime remains valid, since it is pre- 

cisely kT which determines the scale of the variation of 
the distribution function in the total-energy space. On 
the other hand, if ms2> kT, then to find the distribution 
function and the lifetime it i s  necessary to solve an inte- 
gral  kinetic equation. This problem i s  considered in 
Sec. 2 of this paper. In the limit nzs2 >> kT (but ms2 
<< c i ) ,  the following result i s  obtained: 

1. DISTRIBUTION FUNCTION AND LIFETIME IN THE 
Dl FFUSlON APPROXIMATION 

The change of the electron energy when they interact 
with acoustic phonons takes place in small batches, -- ( E  is the electron kinetic energy). When de- 
scribing the energy relaxation process at c >> ms2 we can 
therefore use the diffusion approximation for the colli- 
sion integral 

where j is the particle flux in energy space, taken with 
a minus sign, 

Here T,(E) = 7,- is the energy relaxation time of 
electrons with energy c, and the state density is  

The distribution function is normalized by the condition 

where n is the electron density. 

We assume that the distribution function depends only 
on the total energy. We multiply Eq. (8) by 6(E - & 

- U(r)p(c) V" dc d3r ,  where U(Y)  is the potential energy 
of the electron in the field produced by the charge cen- 
ters,  and integrate over phase space. [3*11 The kinetic 
equation then takes the form 

The coefficient B(E) i s  proportional to the diffusion co- 
efficient in energy space: 

B(E)=V- '  S E T . - ~ ( E ) ~ ( ~ ) G ( E - E - U ( ~ ) ) ~ E  d'r, (12) 

Nu N 
FIG. 2. Schematic form-of the concentration dependence of 
the lifetime. At N<< No the time is r  -N- ' ,  and at N > No the 
time is T - N - " ~ ,  No = ( . % k ~ . / e ' ) ~ .  
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p ( ~ )  is the density of states in the total-energy space, 
and the crystal volume is designated V. 

Under stationary conditions, the right-hand side of 
(11) must be set  equal to zero. We then obtain 

where j is the numer of electrons excited by the light 
per unit time and per unit volume. We solve Eq. (13) 
in the region of energies E lower than the excitation en- 
ergy &,, with the boundary condition 

In the final formulas we can replace E, by infinity. 13*11 

The solution takes the form 

Knowing f (E), we can calculate the lifetime r by the 
usual formula 

where n is the particle concentration, determined in 
terms off (E) from a formula similar to (lo), but with 
P ( & )  replaced by ;(E). The coefficient B(E) canbe easily 
calculated in the region of large positive energies E, 
where the presence of the charged centers is insignifi- 
cant (we can put q r )  = O  in (12)). We obtain 

where 

In the region of large negative energies we can neglect 
the overlap of the charged centers and calculate B(E) 
for one isolated center ( q r )  = - e2w-'v') and multiply by 
the number of centers. We obtain 

FIG. 3. Schematic form of energy dependence of the coeffi- 
cient B(E). Eo is the characteristic swing of the large-scale 
fluctuations (see the text for an explanation). 

FIG. 4. Schematic form of the integrand y = 8 1 k T / ~ ( E )  (see 
formula (13), EO<< kT), The function reaches a maximum at 
E = - kT and a minimum at E =2kT, with a ratio y,/y,,,,, 
- (~T/Eo?.  The characteristic quantities are y, =y(- Eo), y2 
=y (+Eo), y1/y2 - 2E0/ms2. 

Formulas (17) and (19) a r e  not valid near zero energy 
in an interval of width E,, where E, is the character- 
istic swing of the large-scale fluctuations of the charged- 
center potential. The dependence of the coefficient 
B(E) on the total energy E is shown schematically in 
Fig. 3. In this figure, the solid sections of the curve 
corrrespond to formulas (17) and (19), while the dotted 
sections a r e  their continuations into the region I E I <  E,, 
where these formulas no longer hold. The section of 
the curve represented by the dashed line show schemati- 
cally the behavior of B(E) in the region of large-scale 
potential fluctuations. 

We consider f irst  the case E, << k T. A plot of the 
integrand of (15) is shown schematically for this case  
in Fig. 4. It is seen from the figure that a t  energies 
not exceeding several kT  (we call this the first  region) 
the integral in (15) is determined by negative energies 
and is practically independent of E. For values of the 
energy E from the second region (at E>> kT), the main 
contribution to the integral (15) i s  made by the vicinity 
of the upper limit, where the integrand is exponentially 
large. Thus, the distribution function f (E) defined by 
formula (15) has in the f i rs t  region the Maxwellian form 

In the calculation of the integral in (20) we can use 
formula (19) for B(E). In the second region (E>> kT) f (E) 
takes the form 

f (E) =j/B(E) -E-2. (21) 

The coefficient B(E) in (21) is determined by formula 
(17). The contribution made to the concentration by the 
first  region is decisive, so that the lifetime, according 
to (16), is equal to 

which agrees with formula (5). Thus, the result ofc1' 
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FIG. 5. Schematic form of the 
integrand y = e E f k T / ~ ( ~ )  (see 
formula (13), E o  >> kT). 

- EB 

is valid a t  E,<< kT, which is natural, for in this case 
the photoelectrons have time to become thermalized. 
The contribution of the non-thermalized electrons 
(from the second region) to the concentration is small  
and constitutes a fraction - 7 (kT)/r- ( E , / ~ T ) ~  of the 
total concentration. 

When the temperature i s  lowered o r  when the capture- 
center concentration is increased, the characteristic 
swing of the large-scale fluctuations can exceed kT. 
We consider the limiting case E, >> kT. Now the inte- 
grand in (15) has no more extrema, and i t s  schematic 
form is shown in Fig. 5. The integrand in (15) is deter- 
mined by the region near the upper limit, and the dis- 
tribution function i s  f ( E )  = j/B(E). At E > E, we have 
f (E) - E'~. Thus, a t  large concentrations of the r e  - 
combination centers o r  a t  low temperatures (i. e . ,  when 
E, > kT) the distribution of the photoelectrons differs sub- 
stantially from Maxwellian, since the electrons have no 
time to become thermalized. However, even in this 
case the distribution function decreases monotonically 
with increasing energy. 

The lifetime at Eo>> kT can be estimated by calculat- 
ing the density of the electrons with energy E > E ,  and 
dividing i t  by the flux j. We then obtain formula (3), 
i. e., in this case the lifetime is of the order of the 
time of the energy relaxation of the electron to the en- 
ergy level E,. 

It should be noted that electrons having an energy 
lower than the percolation level (which is - E,) do not 
take part in the dc conductivity. 

2. DISTRIBUTION FUNCTION AND LIFETIME IN 
PURE CRYSTALS 

In very pure crystals the characteristic swing of the 
fluctuations of the impurity potential E, is small and 
may turn out to be the minimum kinetic energy ms2 a t  
which the electrons a r e  still capable of emitting acous- 
tic phonons. The energy region - ms2 then assumes a 
major role in the determination of the distribution func- 
tion. In this region, the interaction of the electrons 
with the acoustic phonons i s  essentially inelastic, and 
the distribution function must be obtained by solving an 
integral kinetic equation. However, if kT>> ms then 
an analysis similar to that of Sec. 1 for the case kT  
>> 4 shows that the result ofC1] is valid for the lifetime 
(formula (5) of the present paper). In this section we 
consider the inverse limiting case KT<< ms2. 

The kinetic equation in the total-energy space takes 
the form 

+- +- 
f (E)  1 w ( E ,  E')dE1- f (E')  w ( E f ,  E)dEf=jG(E-8, ) .  (23) 

The right-hand side describes here generation of photo- 
electrons with energy ci We consider f i rs t  the case T 
=O. Then the only significant processes a r e  those with 
emission of acoustic phonons, and the electron can only 
lose energy. Consequently, the probability w(E', E) = 0 
a t  E E. 

If we neglect the influence of the potential of the cen- 
t e r s  on the phonon emission process, then we can ob- 
tain for w(E', E) the expression 

b - - 
w ( E 1 , E ) = -  

4 (ms') ' (E'-E)" E<Er< (T'E+Y2msZ)? 

in the region ~ > m s ' / 2  and w(E1, E)  = 0 a t  other values 
of El. Changing over to the dimensionless variables 
x =  2E/nzs2 and denoting by f,(x) the distribution function 
of x> 1, we obtain the kinetic equation in the form 

- 
f f x ~ ? ) s  - 3 

f, ( x )  ( Y X - ~ ) ~ - ~  J ( x ' - x ) ~ ~ , ( x ' ) ~ z ~ = o .  (25) 

At x>> 1 we can use the Fokker-Planck approximation 
and obtain for fl(x) 

The constant in (26) is determined from the condition 
that the particle flux in energy space (see formula (13) 
with T=O) is equal to j. 

An investigation of (25) near x =  1 shows that f ,(x)be- 
haves here in the following manner: 

f, ( x )  =cj /b  ( x - I )  3+', (27) 

where c is a numerical coefficient and v satisfies the 
equation 4v(v + 1) (v + 2) = 3 and is approximately equal 
to v -  0.26. The divergence of the distribution function 
near E = ms2/2 (i. e., x =  1) is due to the fact that the 
probability of emission of acoustic phonons tends to 
zero when the kinetic energy approaches ms2/2. The 
large-scale fluctuations of the potential of the impuri- 
ties smooth out this singularity, so that expression (27) 
i s  valid only a t  (x- 1 ) >  2 ~ , / m s ~ .  

We proceed now to the energy region E <  ms2/2. In 
this region, emission of acoustic phonons is  possible 
only in the presence of impurities. Therefore the de- 
parture term i s  determined entirely by the impurity 
centers 

4 b (El-E)' ms' 
w (E ,  E') = - 3 nrm3.V- . E r < E c  -, 

4 ( n u z )  ' 2 

where r,,, is how close an electron of energy E must 
come to the impurity center in order to become capable 
of emitting an acoustic phonon and go over into a state 
with energy E': 

r,,, =e3r.-'Ims2/2f (El-E)  2/8ms'- (E1+E) /2 ) - ' .  (29) 

We write out the kinetic equation in the region 0 < E 
< ms2/2 in the dimensionless variables x, denoting by 
f2(x) the distribution function in the interval 0 < x< 1: 
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In this equation, the first term in the curly brackets 
takes into account the electrons that go over into a 
bound state on centers, the second term takes into ac- 
count the arrival of electrons from the region x< x l <  1, 
which is possible only in the presence of impurity ten- 
ters. The last term in (30) describes the arrival at the 
level 0 < x< 1 as a result of transitions of electrons from 
the region x'? 1. The function f,(x) which enters in the 
last term is a solution of Eq. (25).  Equation (30) can 
be formally obtained i f  the integral kinetic equation for 
electrons emitting acoustic phonons is multiplied by 
6(E - E - U(r ) )  V" p ( & )  d& d 3r and then integrated over 
phase space, neglecting the overlap of the potentials of 
the individual capture centers. The parameter a! is 
then assumed to be small and all that is left in the equa- 
tion are the terms of zeroth order in a! (it must be borne 
in mind that f,(x) - a-I), 

The electron density is represented in the form n 
=n l+%,  where 

Let us show that n, << n,. The main contribution to the 
density n ,  is made by the region near x = l ,  in which 
f,(x) is given by formula (27) with x-  1 > 2~, / )?zs~.  Tak- 
.Ag this into account, and also recognizing that f ,(x)/ 
f,(x)- a ,  we obtain n,/n2 = a(2~, /ms~)"" .  Inasmuch as 
usually E, = e2ic-'~" 3 ,  we obtain n,/% = C Y ( ~ - " ) ' ~ =  aoez5. 
Thus, the lifetime i s  ~ = % / j .  

The dependence of T on the parameters of the prob- 
lem can be separated in explicit form by introducing 
the new functions cp,= ( b l j )  f , and cp, = (a! b/j)  f ,, which 
are satisfied by the following equation that i s  obtained 
from (25)  and (30): 

u,(x) (l/F- - 9(T2)' 64 - x)! (Pi @I) dzP = 0, 
X 

1 (32)  
- (PP ( x )  1 K ( x ,  x') d.1' + 5 (PZ (2') K (z'. x )  d z 1  

-m X 

()r.;+9!1 
+ 5 (5'- x)? (P, (xi) d x l =  0 

( vz-2)' 

with the boundary condition cp,(x) = x4 ,  x>>l. For the 
lifetime 7 we obtain 

where A is a numerical coefficient equal to 

An analysis of the equation for cp,(x) in (32)  shows 
that this distribution function has an integrable singular- 
ity cp, = - 0.48c/(l - x)OoZ6 ln(1 - x) as x- 1 and is finite 
in the entire remaining region all the way to x= 0. The 

system (32)  was solved with a computer, and it turned 
out that c = 4.7 and A = 0.34. Substituting in (33) the ob- 
tained value of A, as well as a! and b (formulas ( 6 )  and 
(18) ) ,  we can rewrite the formula for the lifetime in the 
form (7). The criterion for the applicability of this re- 
sult (derived under the assumption T= 0 )  can be obtained 
by adding to (30) a term corresponding to the departure 
of electrons to higher energies as a result of phonon 
absorption. By obtaining the corresponding correction 
to the function f,(x) and i ts  contribution to the density 
n,, we find that formula (7)  is valid i f  iq addition to the 
condition a << 1 the following inequality is satisfied 

where y = 2 k ~ / m s ' .  On the other hand, i f  the opposite 
inequality takes place (even though y << 1 as before), 
then there is time for a Maxwellian distribution to estab- 
lish itself, and the capture time can be calculated by 
counting the number of transitions per unit time from the 
region of positive energies into the region of negative 
energies (since KT<< m< the ejection of the electrons 
from the capture centers can be neglected). Using for 
the effective cross section of this transition formula (32)  
of ''I, under the condition that the sticking function is 
p = 1, we obtain for this case 

3. ELECTRON LIFETIME IN A COMPENSATED 
SEMICONDUCTOR 

As shown above, the electron lifetime depends on the 
ratio of the characteristic swing of the x fluctuations of  
the impurity potential E, to the thermal energy kT (or 
ms2) .  In turn, E, depends on the temperature and on 
the character of the doping. In addition, an essential 
role can be played by the photoexcitation method (im- 
purity or interband) and its intensity. In particular, 
the concentration of the capture centers N can depend 
on the intensity of the light, and when interband excita- 
tion takes place, cases are possible when the captures 
of the electrons and holes are not independent processes. 
Understandably, each individual case calls for a special 
analysis. By way of example of the application of the 
developed theory we consider one concrete situation. 

Assume that we have a compensated n-type semi- 
conductor. We denote the donor concentration by ND 
and the electron concentration b y  NA. We assume the 
degree of compensation to be small (k ,  = N,/N, << 1). In 
this case all the acceptors are negatively charged, and 
the number o f  positively charged donors is equal to the 
number of  acceptors. (We recall that our entire analy- 
sis pertains to the case when the temperature T is much 
lower than the ionization energy o f  the donors, and the 
doping i s  weak, so that the overlap of the wave functions 
of the donors is insignificant. ) 

We assume that the photoexcitation of the electrons 
proceeds via impurity absorption from neutral donors. 
The intensity of the light is assumed to be so small that 
the concentration and the disposition of the charged 
donors and acceptors remain in equilibrium and under 
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conditions of stationary illumination. Let us see  how 
the capture time varies in this case with decreasing tem 
temperature. Let at f i rs t  the temperature be relatively 
high, so that 

In this case the negatively charged acceptors a r e  
screened by the positively charged donors, which can 
be regarded as a gas of holes. In order of magnitude, 
Eo is equal in this case to Eo = ( e 2 / w r , m  where 
the Debye radius i s  Y, = ( k 7 ~ / 4 r k ~ , ) " ~ .  I t  is easy to 
verify that when the condition (36) is satisfied we have 
k T  > E,, and consequently the results  (2) and (5), where 
the concentration of the capture centers is the acceptor 
concentration (N= N*) and T-  T5I2, is valid. 

When the temperature is lowered, the inequality (36) 
no longer holds and the screening becomes nonlinear. 
The equilibrium distribution of the charged centers was 
considered in detail in this case inc4], where the ex- 
pression obtained for the r m s  potential of the large- 
scale fluctuations is 

T, is satisfied by formula (2) o r  (5), if N is taken to 
mean the total number of positively charged Coulomb 
centers, which in this case is equal to No. The capture 
time rd is calculated in the appendix (see A. 3)). For- 
mula (39) can be written in the form 

where a, is determined by formula (6), in which N is 
replaced by the acceptor concentration N,, and s, 
= [ ( 4 n / 3 ) ~ , ] ' ~ ~ e ~ u " .  When the temperature becomes 
lower than E,, the decrease of the lifetime with decreas- 
ing temperature slows down mainly a s  a result of the 
decrease in the effective number of the Coulomb capture 
centers, since an ever-increasing number of donors 
becomes h u n d  into dipoles. With further decrease of 
the temperature, the dipole concentration N, increases 
and their role in the capture processes can be decisive 
(the second term in the curly brackets of (40) can be- 
come larger than unity). Figure 6 shows the tempera- 
ture dependence of the relative contribution of the di- 

(37) poles to the recombination-rC/s, =O. ~(N~~TIN,,,) for 

It turns out here that the charged donors a r e  constituents 
of 1- and 2-complexes. (A 1-complex is a dipole made 
up of a charged donors and an acceptor, which a r e  sepa- 
rated from each other by a distance - N;'", while 2- 
complexes a r e  formations consisting of two positively 
charged donors located a t  a distance - N:'~ from the 
negatively charged acceptor. ) It is shown inL4] that a t  
T = 0 the concentration of the 2-complexes is 1.5% and 
the concentration of the 1-complexes is 97% of the con- 
centration of the acceptors (the remaining 1.5% is made 
up of solitary acceptors-0-complexes). 

At finite temperatures, a fraction of the positively 
charged donors breaks away from the acceptors and is 
not contained in the 1- and 2-complexes. The behavior 
oP the chemical potential as a function of the tempera- 
ture was considered inLs1, where formulas were de- 
rived with which to calculate the concentrations N, of 
the 1-complexes, N, of the 2-complexes, and N of the 
solitary positively-charged donors. The electron 
neutrality condition yields N, +fi= No, where No is the 
concentration of the 0-complexes. 

An important factor in the c ross  section for the cap- 
ture by a complex is the value of the potential of the 
complex a t  the distance a t  which the potential energy 
of the electron is - kT. At 

this distance is much larger than N;"~, so  that the 
1-complex should be regarded a s  a point dipole and the 
2-complex a s  a singly-charged Coulomb center. 

The lifetime of the electrons is 'determined by two 
independent processes: by capture by the positively- 
charged Coulomb centers (2-complexes) and solitary 
charged donors (time 7,) and by capture by dipoles- 
1 -complexes (time 7,) 

two values of the degree of compensation. We &e here 
the formulas ofCS1. When the temperature drops below 
the level Eo (formula (37)) the capture time ceases to 
depend on the temperature and i ts  order of magnitude 
becomes rE(EO). We note that this pertains only to the 
capture time determined by measuring the dc conductiv- 
ity, in which only photoelectrons with energy above the 
percolation level take part. When the capture time is 
determined by measuring the high-frequency photocon- 
ductivity o r  by some method in which the time of a r -  
rival to the ground state at the donor is significant, the 
results for KT< Eo can be different. 

The authors thank B. I. ~hklovskir  and A. L. kfros  
for  a useful discussion and V. L. Ustinov for the com- 
puter calculations. 

APPENDIX: EFFECTIVE CROSS SECTION FOR 
CAPTURE BY DIPOLE 

In the calculation of the lifetime for  the capture by a 
dipole we use formula (22), in which the coefficient 

FIG. 6. Temperature dependence of the relative contribution 
of the dipoles to the recombination. 1-ko=O. 005, 2-ko 
= 0 . 0 8 .  
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B(E) is determined by formula (12). The potential U ( r )  
is given in this case by 

ex 
c(r.j = - - + e2 

z r  r. (r2+2rd cos €t+dZ) '' ' 

where d is the length of the dipole and 9 is the angle be- 
tween the radius vector r and the dipole axis. Calcula- 
tion for E < 0 and I E I << e2/x  d yields 

B ( E )  =21 (ln 4- i )Shd(~e ' /xms ' ) ' ,  (A21 

where N is the dipole concentration and b is  defined by 
formula (18). In this energy region, B does not depend 
on the energy. With the aid of (22) we obtain for the 
lifetime 

where ro and a a r e  defined by formulas (4) and (6), in 
which N is the dipole concentration. Accordingly we 
have for the effective cross  section for capture by a 
dipole 

u = [ ~ . ~ . . i ~ ~ ] - ~ = 2 ~ ( 2 i ~ 8 - 3 ) ~ ,  ($)'(?) = u. (s) , (A. 4) 

where 

For the dipole length d we can use the average distance 
to the nearest donor, d =O. 55~"'~. 

' '~ndeed, assume that the electron has an  energy E>> ms '. 
We compare the probabilities of two processes:  1) the elec- 
t ron  in the field of the center emi ts  an acoustic phonon of 
high energy and i s  immediately captured by the center; 2) the 
electron "diffuses" f rom the energy E t o  the energy Eo.  The 
electron lifetime T I  in the f i rs t  process i s  

This expression was obtained f rom formula (21) of "'. Here 
U is  the binding energy, and the capture takes place when U 
>W. Since a - ( ~ ~ l r n s ~ ) ~ ,  and E >E,, we see  that the f i rs t  
process is  less  probable than the second (rt > r,(E0)). 

'v. N. Abakumov and I. N. Yassievich, Zh. Eksp. Teor. Fiz. 
71, 657 (1976) [Sov. Phys. JETP  44, 345 (1976)l. 

'M. Lax, Phys. Rev. 119, 5, 1502 (1960). 
3 ~ .  P. Pitaevskii, Zh. Eksp. Teor. Fiz. 42, 1326 (1962) [Sov. 

Phys. JETP  16, 919 (1962)]. 
4 ~ .  L. Efros,  B. I. Shklovsky, and I. J. Janchev, Phys. 

Status Solidi [bj 60, 45 (1972). 
5 ~ .  I. Shklovskii and I. Ya. Yanchev, Fiz. Tekh. Poluprovodn. 

8, 1616 (1972). [Sov. Phys. Semicond. 8, 1395 (1973)j. 

Translated by J.  G. Adashko 

Resonance of a substrate surface polariton with a 
longitudinal phonon of a thin lithium-fluoride film 

G. N. Zhizhin, M. A. Moskaleva, V. G. Nazin, and V. A. Yakovlev 

Spectroscopy Institute. USSR Academy of Sciences 
(Submitted July 13, 1976) 
Zh. Eksp. Teor. Fiz. 72, 687-691 (February 1977) 

We have investigated the spectra and the angular dependences of attenuated total internal reflection 
(ATIR) of surface polaritons of sapphire, rutile, and yttrium iron garnets with lithium-fluoride films 
100-800 A thick. The dispersion curves obtained at fixed incidence angles and at fixed frequencies are 
compared with the calculation. The thickness dependence obtained for the splitting in the ATIR spectrum 
agrees with the theoretical predictions. 

PACS numbers: 71.36. +c, 73.90. + f  

The extensive use of thin films in optics and electron- 
ics calls for knowledge of their properties, which in 
many cases differ from the properties of the bulk mate- 
rial from which these films are  made. To investigate 
thin films deposited on a crystal it is possible to use, 
besides the traditional spectroscopic methods, also the 
surface polaritons of the crystal. '" The dependence of 
the frequency w of a surface polariton on the wave vec- 
tor k% is given for the interface between two isotropic 
media with dielectric constants c,(w) and &,(w) by the 
formula. 

( EI (W)EZ(U)  ) I 2 .  

c E L ( W )  f EZ(O)  
(1) 

Surface polaritons can exist at frequencies for which 
the dielectric constants of the media in contact have op- 
posite signs. The field of a surface polariton is con- 
centrated mainly near the surface, and decreases expo- 
nentially with increasing distance from the interface, s o  
that surface polaritons are  very sensitive to the proper- 
ties of films on this interface. Consequently, the spec- 
troscopy of surface polaritons can be a valuable source 
of information on thin films on crystal surfaces. If the 
frequency of the transverse o r  longitudinal oscillation of 
the dielectric film falls in the region of the existence of 
the substrate surface polariton, then a gap should be ob- 
served at this frequency in the dispersion curve of the 

360 Sov. Phys. JETP 45(2), Feb. 1977 0038-5646/77/4502-0360$02.40 O 1978 American Institute of Physics 360 


