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The nature of the superconducting transition temperature (and conductivity) oscillations that arise in a 
metal-nonmetal film system as the thickness of the nonmetallic film is increased is considered. It is shown 
that the phenomenon is connected with the oscillations of the electron density of states in the metal caused 
by the oscillations of the boundary condition for the wave function at the metal-nonmetal film interface. 
The latter is connected with the nature of the motion and reflection of an electron in a semiconducting, or 
a semimetallic, film. The question of the period and amplitude of the T, oscillations is analyzed in detail. 
The results obtained allow the explanation of all the distinctive features of the phenomenon, which was 
discovered by Mikheeva, Golyanov, et al. and Sixl. 

PACS numbers: 73.60.Ka, 73.40.Ns, 74.40. + k 

1. INTRODUCTION 

Recently, reports have been published of the experi- 
mental discovery of the interesting phenomenon of os- 
cillations in the superconducting transition temperature 
in metallic films with nonmetallic coatings as  a function 
of the coating thickness. This effect was discovered in 
experiments performed by Mikheeva, Golyanov, et 
al, C1-31 who investigated three different metals (Mo, Tc, 
and V) with carbon coating, and, in a very sharp form, 
in the precision experiment by Sixl, '*I who carefully in- 
vestigated a layered aluminum-silicon monoxide (SiO) 
system. It should, however, be noted that Naugle back 
in 1967'~' observed for the first  time a maximum in the 
curve of T, as  a function of the thickness of a germanium 
coating on a thallium film. Recently a report was pub- 
lished of the discovery of a similar phenomenon in lead 
covered with a germanium or silicon film. 

The results of the experiments, chiefly the experi- 
ments, allow us to formulate the general charac- 
teristics of the phenomenon, the main ones of which 
are  the following: 

ly with the same period, but out of phase with T,, and 
with a smaller amplitude. 

The totality of all these characteristics demonstrates 
a very peculiar interlacement in the phenomenon of the 
properties of metallic and nonmetallic films, thereby 
predetermining the necessity in  any analysis of a unified 
treatment for the system a s  a whole. 

In the present paper we develop ideas about the be- 
havior of the electron subsystem in such a layered 
structure that enable us to understand the nature of the 
resulting T, oscillations and explain virtually all the 
above-enumerated characteristic features of the phe- 
nomenon. These ideas are  based on the following. In 
an ideal metallic film of finite thickness d ,  the trans- 
verse  motion of the electrons is quantized, and the en- 
ergy density of states g(c) a s  a function of the energy 
undergoes oscillations. However, in a real  situation, 
when the electron wavelength is of the order of the in- 
teratomic distance, these oscillations get primarily 
averaged out, owing to the nature of electron reflection 
from the surface and, of course, of electron scattering 
in the volume if the mean free path is less  than the film 

1. The oscillations are  observed only in those cases  thickness. The resulting averaged density of states, 
when semiconductors (or, possibly, semimetals) a re  g(c), differs from the density of states, go(&), in the bulk 
used a s  the coating. metal, and the higher the ratio of the surface area  to 

2. The locations of the extrema in the T,(t) curve the volume, i. e . ,  the thinner the film, the more strong- 
(t is the coating thickness) do not depend on the thickness ly pronounced the difference Ag. But the value of ag(&) 
of the metallic film. itself and even i ts  sign depend on the boundary condi- 

tions at the surface (see, for example, Balian and 
3.  The amplitude of the oscillations increases with Bloch,s excellent paperc~~). The appearance of a second 

decreasing thickness, d, of the metallic film approxi- layer leads to a change in the boundary condition at the 
mately a s  l/d. metal-nonmetal interface. In a semimetal o r  a semi- 

4. Depending on the material of the coating, the 0s- conductor the wavelength of an electron with the same 
cillations can be close to being periodic, or,  conversely, total energy & turns out to be long compared to the in- 
it can have a marked aperiodic character with a period teratomic distance, and the reflection of electrons from 
that increases appreciably with thickness and, apparent- the boundary with vacuum has a coherent character. As 

ly, with a limited number of oscillations (seec4'). a result, the quantum coupling between the boundaries i s  
. . 

preserved in a thin nonmetallic film, and the logarithmic 
5. If the metallic film is coated on both sides simul- derivative of the wave function at the boundary with a 

taneously, then the pattern of the T, oscillations is very metal depends on the thichess, t, of this film, and os- 
sensitive to the relation between the thicknesses of the two cillates with increasing t. As a result, the boundary 
coatings (see"'']). condition at the metallic boundary oscillates, giving r ise  

6. The longitudinal resistance oscillates simultaneous- to oscillations of the averaged density of electronic 
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states in the metal. These oscillations of &), which 
are  purely quantum in nature, explain, at least qualita- 
tively, the entire observed oscillatory pattern of be- 
havior of T, in a superconducting metallic film, where 
there occurs a specific sharp increase, connected with 
the exponential dependence of T, on the density of states, 
in the oscillation amplitude. 

The oscillatory nature of the density of states in the 
metallic film a s  the thickness of the nonmetallic coating 
is varied, should lead to the oscillation of a number of 
other physical quantities, although, a s  a rule, on a 
smaller scale in comparison with T,. This pertains, in 
particular, to the kinetic characteristics, such a s  the 
electrical conductivity. 

In all the cases in which the oscillatory behavior was 
observed, the nonmetallic film was a semiconductor (a 
semimetal), whereas an ordinary dielectric film does 
not lead to such effects, which, in particular, was 
specifically noted by Sixl. ''I This circumstance is not 
accidental, for in a dielectric with a wide forbidden 
band, if the chemical potential of the metal l ies within 
the limits of this band, the electron density falls off 
exponentially over a short distance into the dielectric. 
On account of this, a s  the thickness of the dielectric 
film increases, the logarithmic derivative of the electron 
wave function at the boundary with the metal does not 
undergo oscillations, which leads, naturally, to the ab- 
sence of oscillations in the density of states g ( c )  in the 
metal. The effect can actually arise only at a metal- 
semimetal o r  a metal-semiconductor interface. 

Having in mind to give a primarily qualitative de- 
scription of the phenomenon, we shall use below the 
simplest models for a metal and a semiconductor (semi- 
metal), assuming in all the cases intimate contact be- 
tween the metal and the nonmetal, which, from all ap- 
pearances, corresponds to the experimental situation. 

In analyzing the critical temperature of the transition 
into the superconducting state, we shall restrict  our- 
selves to the consideration of the effects connected with 
the variation of the electron density of states and the in- 
homogeneity of the gap (which effects seem to us to be 
the dominant effects in this problem), ignoring the pos- 
sible variation of the phonon spectrum and of the ef- 
fective electron-phonon coupling constant. The main 
attention here will be given to the T ,  oscillations in the 
layered system under consideration, although we shall 
briefly discuss also the classical question of the sign 
of the variation of T, with thickness in an isolated 
metallic film. 

2. THE ELECTRON DENSITY OF STATES I N  A 
METALLIC FILM 

Let us consider an ideal metallic film of thickness 
d,  and let the boundary conditions for the electron wave 
function at both surfaces have the form 

Let us, for simplicity, assume the square-law disper- 
sion for the electrons in the unbounded bulk of the metal. 

The longitudinal and transverse motions in the film a r e  
then separable, and in the second boundary condition we 
shall assume that n depends only on the energy, &, of the 
transverse motion. The self-consistent representation 
for the electron spectrum in the plate with allowance for 
(2.1) has the form 

The values of &, a re  then determined from the solu- 
tion of the dispersion relation 

ctg k 8 = - r . ( e ) / k , ,  e=fizk,'/2m,. (2.3) 

The density of electron states in the film per  unit volume 
is equal to 

After the trivial integration, we obtain 

where e ( x ) = l  for x>O and O(x)=O for x<O. We shall 
assume that n(E) changes relatively slightly when the 
energy is changed by a value of the order of the level 
spacing A&. Let us use the Poisson transformation. 
Then 

Here we have used the fact that, according to (2.3), 

After the integration in (2. 5) for the density of states, 
we find directly that 

g ( E )  = # ( E ) + g - ( E ) ,  

mr x ( E l  (2.6) 
L?(E) =go ( E l  - e a r c t g -  = go ( E )  +Ag, 

k  

where go@) is the density of states in the bulk metal. 
The oscillatory part  of the density of states is equal to 

where {. - .) denotes the fractional part  modulo 1. 

The actual character of electron reflection from the 
boundary, a s  well a s  of scattering in the volume, of the 
film leads to  the disappearance of the oscillating part  
g,(E), and the actual density of states in the metallic 
film of thickness d is determined by the function z ( E ) ,  
(2.6). Notice that z(E) depends on the boundary condi- 
tion defined for the maximum value, & =E,  of the energy 
of the transverse motion. 
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If the wave function vanishes at the second boundary 
as  well (H =a), then for the change in the averaged 
density of states we arrive at the well-known result 

(see, for example, '"'). This decrease in the density of 
states corresponds precisely to  the case when the me- 
tallic film has a free boundary. If the Neumann bound- 
ary  condition (x =0) is realized at the second boundary, 
then Ag = 0, and the density of states corresponding to 
the bulk metal is reestablished. For x <O the correc- 
tion to the density becomes positive. It should be noted 
that the result (2.6), i f  we assume that x does not de- 
pend on E, corresponds to the results of Balian and 
 loch's analysis. 'I1 

Thus the averaged density of states in a metallic film 
varies with the boundary conditions, the characteristic 
scale of these variations being determined by the quantity 
(2.7). It should be noted that this scale may be signifi- 
cantly larger in a real  metal, because of the special role 
of small electron clusters. Indeed, on account of the 
nondependence (or weak dependence) of Ag on energy, 
each small cluster will make a contribution similar to 
(2.7), whereas the correction to go(E) will be small. 
Physically, this is connected with the fact that the local 
variation of the density of states near a boundary occurs 
in a layer of thickness proportional to the particle wave- 
length. As a result, the electrons of a small cluster 
feel the distorting role of the boundary in a much greater 
volume than electrons of the main group with the same 
energy, and this compensates for their small number. 
Below we shall write the general expression for Ag in 
the form 

remembering only that in the general case the effective 
constant L can be greater than the constant figuring in 
(2.6). 

A change in the density of states entails a change in 
the chemical potential of the electrons. Under the as- 
sumption of constancy of the number of electrons in a 
unit volume of the metal, we have immediately 

The change in the density of states at the Fermi surface 
then turns out to be equal to 

3. THE METAL-NONMETAL BOUNDARY, 
OSCILLATIONS OF THE ELECTRON DENSITY OF 
STATES 

A. The metal-semimetal boundary. Let us consider 
the metal-semimetal layered structure, assuming inti- 
mate contact between the media. Let, for definiteness, 
the chemical potential of the metal be higher than the 

chemical potential of the semimetal, and let us assume, 
for simplicity, that the electronic spectrum of the latter 
has a square-law dispersion with effective mass mz . 
The flow of electrons from the metal into the semimetal 
creates near the boundary an inhomogeneous potential 
distribution that is described in the self-consistent ap- 
proximation by the equation 

d'a), ( x )  - = - y s 2 { ( l ~ - ~ ~ ; - ( ~ , ( x )  ( P s ~ - ~ 8 0 ) ; : j ,  

dx2  

Here the index s assumes the value 1 for the metal and 
2 for the semimetal; p: and V: a re  the chemical poten- 
tial and the bottom of the conduction band for isolated 
films; p is the total chemical potential of the sandwich, 
presupposing in the general case a self-consistent 
definition; cz denotes the part of the permittivity not 
connected with the free carr iers .  

The boundary conditions have the following form (Fig. 1): 

where t and d are  the thicknesses of the semimetallic 
and metallic films. In (3. I), (3.2) we have virtually 
ignored the possible variation of the parameters in a 
narrow region near the boundary. It is easy to check 
that allowance for the lat ter  leaves all the qualitative 
results  obtained below unchanged. 

In the metallic film, 1 1 << p - v!, and Eq. (3.1) be- 
comes linearized: 

Here and below we assume V !  = O  (pi  = E ! ) .  

Setting a,(- d) = O  and assuming that, since Bl- l/al 
(a, is the interatomic distance in the metal), dBl>> 1, 
and we have with exponential accuracy the relation 

p=yl0. (3.4) 

In the second layer Eq. (3.1) cannot, in general, be 
linearized. But we can find directly i ts  general solu- 
tion, which, with allowance for (3.2), has the following 
form: 

The expression (3.5) with allowance for the boundary 
conditions (3.2) determines the dependence az(x) in the 
semimetal layer. For q2 t >> 1 the function @,(t) reaches 
a limit not depending on t and equal to 

Q, ( t )  = C L , ~ - ~ ~ ~ .  (3.6) 

The characteristic-for the semimetal-inequality 
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V2 << 1 predetermines a smooth behavior for the po- 
tential in the second layer. 

By considering the solution of the one-electron Schrz- 
dinger equation in the self-consistent field V :  +Q2(x ) ,  
we can find the wave function, Jlz(x), satisfyingthe bound- 
ary  condition 

It is significant that the small magnitude of the Fermi 
momentum in the semimetal allows us to assume a 
purely specular character for the reflection from the 
boundary with the vacuum: Therefore, in a thin semi- 
metallic layer, when the scattering in the volume plays 
a very slight role, the value of the wave function Jlz at 
the boundary with the metal will depend on the thick- 
ness t, the coupling between the boundaries being pre- 
served precisely at the wave-function level. 

The separation of the longitudinal and transverse mo- 
tions in the film leads to a situation in which the loga- 
rithmic derivative at the boundary with the metal 

depends oilly on the transverse energy. If the trans- 
verse energy is equal to the total energy, i. e . ,  if the 
longitudinal momentum is equal to zero, then the ex- 
pression (3.8) determines precisely the quantity n(E), 
which figures in the expression, (2.6), for the averaged 
density of states in the metallic film. 

If the chemical potentials in the metal and the semi- 
metal are nearly equal, and the flow of charge can be 
neglected, then we have for x(E) the simple relation 

r. ( E )  =k? c t g  k?t. kl= (2rn2(E-V,O))'"/A. (3.9) 

In the general case, when there is a flow of charge and, 
by the same token, distortion of the bottom of the con- 
duction band occurs, we find, using the quasi-classical 
approximation, 

where 

In the presence at the boundary of a transition layer 
with continuously varying parameters, the value of the 

FIG. 1. 

quasi-classical phase can be directly refined. (We ne- 
glect some distortion, determined by the function iP1(x) 
and extending over a distance of the order  of atomic 
distances, of the bottom of the conduction band in the 
metal. ) 

As the thickness t is varied, the value of x(E) (given 
by (3.10) and (3.9)) for fixed E oscillates, the oscilla- 
tions being, in the general case, aperiodic in character. 
For P:> P:, the period increases with the thickness, 
which is connected with the continuous decrease of the 
local quasi-classical value of the momentum (3.11) with 
increasing x (see Fig. 1) from its  maximum value at 
x = O  to the minimum value corresponding to the limit 
(3.6). For thicknesses t >  1/q2, the oscillations will 
already have a periodic character, so  long as  the co- 
herent coupling between the boundaries is preserved. 
If we substitute (3.10) o r  (3.9) into the relation (2.6), 
then we can easily verify that the density of states g(E) 
oscillates with increasing coating thickness, the posi- 
tions of the extrema being dependent only on the parame- 
t e r s  of the semimetal. The oscillation amplitude, on the 
other hand, depends only on the properties of the metallic 
film, and is inversely proportional to i ts  thickness d. 
It is interesting that the initial increase in the film 
thickness is accompanied by the growth of g(E). 

In Fig. 2 we show the nature of the dependence of 
Ag(E), (2.6), on the coating thickness. 

Let us emphasize one important circumstance. Since 
k2 a2 << 1, the possible inhomogeneity of the semimetallic 

'film on the atomic scale has a relatively slight effect on 
the value of n(E) and thereby on the oscillations of the 
electron density in the metal. If we average A g  over 
some finite thickness range, At, with allowance for the 
relation k2 / k l  << 1, then we obtain a dependence of the 
type shown in the same figure by the dashed curve. The 
initial growth of A g  with the thickness then turns out to 
be distinct. Notice in conclusion that the qualitatively 
found picture remains absolutely the same in the case of 
the inverse relation between the chemical potentials, 
i. e . ,  when P:< p i .  

B .  The metal-semicon&ctor boundary. Considering 
the metal-semiconductor layered structure, we en- 
counter different cases depending on the relative posi- 
tions of the chemical potentials in the two media and on 
the impurity concentration in the semiconductor. 

1. Let the chemical potential of the metal lie above 
the bottom, v;, of the conduction band of the semicon- 
ductor, and let  the temperature be close to zero, so  that 
there a re  virtually no intrinsic ca r r i e r s  in the semi- 
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FIG. 3. 

the metallic film. In Fig. 4, we show a characteristic 
form of such a dependence as  obtained in the direct 
evaluation of (3.5), (3. lo), and (2.6) with the semicon- 
ductor parameters m2 /mo =O.  2, c2 =4, and p - V! =O.  2 
eV. 

If the chemical potential of the metal l ies close to the 
bottom of the conduction band of the semiconductor, then 
the interaction of the ca r r i e r s  in the semiconductor with 

conductor. The electron liquid will then flow from the 
metal into the semiconductor, penetrating to a depth of 
the order of 1/q2 (see (3.3)), which in a semiconductor 
with a narrow forbidden band is quite large and may be 
tens of angstroms. Such a flow will be accompanied by 
a rise of the bottom of the conduction band, and can be 
found from the solution to the same Eqs. (3.5) and (3.3) 
if we se t  p!- V! =O.  NOW for E <  there ar ises  a limit- 
ing penetration depth xo(E) (Fig. 3) determined by the 
relation 

the polarization induced in the metal (i. e., with the 
"image" forces) becomes important. This interaction 
leads to an appreciable depression of the bottom of the 
band in the region immediately adjoining the boundary 
with the metal: 

Actually, the function Vz(x), (3.16), should figure in 
(3.5) and (3.11) instead of V! , which, obviously, is 
responsible for the growth of k2(x, E), as well as the 
growth of the phase x(E, t). For p! - v!= 0 the t depen- 
dence of x in a pure semiconductor is, in general, de- 
termined virtually by only the flowing in of electrons as 
a result of the lowering of the bottom of the band, (3.11). 

In the quasi-classical approximation the logarithmic 
derivative at the semiconductor-metal boundary is  de- If we neglect the quantity CP2(x), then in this case we 

termined by the expression (3. lo), where, for the de- immediately have 

termination of the phase X, the upper integration limit x (p, t )  ---- (2t/r8) ", 
is equal to minit, xo(E)}. For a semiconductor-film 
thickness t>  xo(E), to the argument of the cotangent i- 
(3.10) is added a phase 6, connected with the subbarrier where 

tail of the wave function: 
r ,= i i '~~ /m~e '  

% ( E ,  I) = ~ X , ( X )  &+12 (E, t )  =%+6.. 
0 

(3.13) is the Bohr radius in the semiconductor. 

In the case when the chemical potential of the metal 
The quantity 6, reaches i ts  limiting value close to ?r/4 f d l s  within the forbidden band of the semiconductor 
with the growth of t -xo(E). The value of the phase XO(E, (CLy< v!), the limiting penetration depth xo(E) is deter- 
t )  depends on the dimensionless parameter (see (3.3), mined from the condition 
(3.11)) 

V? (xO) =E 
(3.14) 

and, correspondingly, 

For large thicknesses the numerical integration of (3.5) ~ , ~ ( p ) = ' / ~ n [ E a / ( V ~ - p )  1':. 
leads to a limiting value for the phase (the electron (3.19) 

density drops to zero: see Fig. 3) equal to 
The electron density flowing into the semiconductor 

r.(p, t)05.5k2(0, p)lqt.  (3.15) actually screens off the field produced by the image 
forces. It is not difficult to  show that the characteristic 

It follows from (3.15) and (3.14) that, a s  t is increased, radius is 'lose y~ - (For thicknesses Or 

a large change in the argument of the cotangent in (3.10) xo greater than r~ , it is already necessary to take in- 

is attained in semiconductors with a narrow forbidden 
to account the increasing potential aZ(x).)  Therefore, 

band, which are  characterized by a small value of the a s  t increases, the phase x attains a limiting value, 

Bohr energy Eo. For such semiconductors, the substi- 
tution of (3.10) into (2.6) leads to the appearance, a s  the 
semiconductor-film thickness is increased, of some 
limited number of aperiodic oscillations in the electron 
density of states (E), followed by the attainment of 
some constant value. In this case, because of the drop FIG. 4. 
in density, the period sharply increases with thickness, 
and, in particular, the function may be so  drawn out that 
it reaches a constant value. The oscillation amplitude -5 
is, as before, inversely proportional to the thickness of 
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which is characterized by the expression (3.17) with 
t - r B .  

If now we return to the expressions (3. lo), (3.13), 
and (2.6), then we can infer from the obtained results 
that the inevitable "semimetallization" of the semi- 
conductor near the boundary with the metal leads, even 
when p! - v!< 0, to the growth of g (p )  with the thick- 
ness t, it being possible for the density of states to vary 
through a complete amplitude characteristic of the given 
d and even pass through a maximum before z ( p )  reaches 
a constant value. 

Upon further decrease of the chemical potential of the 
metal right down to the value corresponding to the mid- 
dle of the forbidden band of the semiconductor, the 
maximum value, (3.19), of the phase becomes small. 
If p! l ies below the middle of the forbidden band, the 
entire picture turns out to be inverted, the electron flow 
now being from the semiconductor into the metal. We 
shall not expressly dwell on this situation. 

2. The above-performed analysis pertains, strictly 
speaking, to pure semiconductors. In the real  situation 
the semiconducting film will, in many cases, contain 
an appreciable impurity concentration. Semiconductors 
with a narrow forbidden band then turn out again to be 
especially distinct. Indeed, the large value of the Bohr 
radius (3.18) in this case leads to a situation in which 
such semiconductors turn out to be already "highly 
doped" at relatively low impurity concentrations. The 
semiconducting film will then be virtually a semimetal 
at T =0, and the sandwich system will behave, as  the 
thickness of the coating is varied, just a s  described in 
Subsec. A, exhibiting oscillations in the electron den- 
sity of states. The fact that the transition into the semi- 
metallic state occurs at a sufficiently low impurity con- 
centration allows us to assume the lat ter  to be so  low 
that electron scattering in the volume does not play an 
important role and does not lead to the destruction of 
the coherent coupling between the boundaries with the 
vacuum and the metal. 

If the impurity concentration is not sufficient for the 
transition into the semimetallic state to occur in the 
semiconductor with a narrow forbidden band near the 
boundary with the metal, then the effect of impurity auto- 
ionization begins to play an important role (seeCB1). The 
point here is  that, owing to the polarization of the metal 
and, accordingly, the "image" forces in a layer of thick- 
ness -rg, the transition of the electrons from the im- 
purity levels (having a binding energy -Eo) into the con- 
tinuous spectrum turns out to be energetically advanta- 
geous. This leads to the formation of a region of free 
carr iers  near the boundary with the metal, and the 
logarithmic derivative (3.10) can now have a phase X 
close to (3.17), even if py l ies in the middle of the for- 
bidden band. 

Notice that even in the case of a low impurity concen- 
tration, a quite narrow transition layer at the boundary 
with the metal will quite probably possess semimetallic 
properties. 

falling somewhere in the middle of the forbidden band of 
the semiconductor, then in the absence of impurities in 
the lat ter  the electron density exponentially falls off 
from the boundary with the metal into the semiconductor. 
Although in the case of a narrow forbidden band this 
decrease may be comparatively prolonged (see, for ex- 
ample, ''I), the logarithmic derivative v,(E), (3.8), does 
not oscillate with the thickness of the semiconducting 
film. This can easily be verified if, for the determina- 
tion of the electron wave function in the semiconductor, 
we use, for example, the two-band model (see, for ex- 
ample, 'lo'), and determine x(E) in  i t s  explicit form, 
assuming the boundary condition (3.7). Then averaging 
over thicknesses of the order  of the interatomic distance 
with a view to eliminating the oscillations connected with 
the modulating Bloch function, we find that x varies 
monotonically with t within finite limits equivalent to the 
maximum value of the phase in (3. lo), i. e. , equivalent 
to n/4 (see the comment connected with the phase 62 in 
(3.13)). In the case of a wide forbidden band this value 
is even smaller. Thus, in the situation under considera- 
tion the electron density of states in the metal will not 
oscillate with increasing coating thickness. 

4. QUANTUM OSCILLATIONS OF THE 
SUPERCONDUCTING TRANSITION TEMPERATURE 

Let us consider the superconducting properties of the 
metal-nonmetal sandwich system, assuming, for sim- 
plicity, that the interaction responsible for the pairing 
of the electrons is different from zero only in the metal- 
lic film. In accordance with the results  of the preceding 
section, the role of the nonmetallic film in this case 
should be manifested through a change in the boundary 
conditions for the electrons in the metal. 

Let us begin with the consideration of the ideal metal- 
lic film without a coating, and let us limit ourselves to 
the case of a weak electron-phonon coupling. In the 
framework of the standard temperature technique, '"I 

the determination of T, reduces to  the solution of the 
equation for the gap 

Here the Gun a re  Green functions in the mixed represen- 
tation. Using for their determination the normalized 
eigenfunctions q , ( x )  corresponding to the Hamiltonian of 
the transverse electron motion in the film and satisfying 
the corresponding boundary conditions, we have (see for 
example, '121) 

where 

Let us represent the solution to Eq. (4.2) in the form 

3. If the chemical potential of the metal has avalue 
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Carrying out the iterative procedure and integrating 
both sides of Eq. (4.1) with respect to x ,  we find after 
simple calculations 

I i l g ( p ) l n ( 2 . y o D l n T , )  =I-$, (4.3) 

p= ( ~ o ( ~ - E . )  ) - C B ( ~ - E , I O ( ~ - E . )  a d z q , ~ ( z ) q , ; ( = ) - - i l .  
I", r j  

(4.4) 
Here g(p)  is the density of states determined by the ex- 
pression (2.4). 

The correction P, which appears because of the in- 
homogeneity of the gap, is of the order of a/d.  Thus, in 
the case of zero boundary conditions 

In the expressions (4.3)-(4.5) figure the metallic film's 
true chemical potential, which differs from the value 
p0 in the bulk metal by the quantity (2.9). 

Let the metallic film now have a nonmetallic film on 
it. The change arising then in the boundary condition 
will be felt only by the electrons with a transverse en- 
ergy, E,, lying in a narrow interval of the order of 
p - V :  near p (v: is the bottom of the conduction band 
in the semiconductor o r  semimetal). This pertains only 
to a small number of levels, a s  compared to their total 
number in the metallic film. Therefore, P, (4.4), just 
as Ap, (2.9), varies relatively little with the thickness 
of the nonmetallic film, and the oscillations in these 
quantities are  very feebly marked. At the same time 
the quantity Ag, which is of the same order of smallness 
as 6 and Ap, varies (oscillates) with the thickness, t ,  
of the nonmetallic film with an amplitude of the order of 
its magnitude. Hence it follows from the relation (4.3) 
that the superconducting transition temperature oscil- 
lates with t, the oscillations being correlated precisely 
with the oscillations of the density of states at the Fermi 
surface. Determining T, from (4.3), and going over to 
the smoothed-out electron density of states, i ( p ) ,  in 
the metallic film (see Sec. 2), we find for the transition 
temperature corresponding to the nonmetallic-film 
thickness t the expression 

The transition temperature, T,(O), in the metallic film 
without a coating is determined by the relation (see 
(2.10)) 

where To is the transition temperature in the bulk metal. 

Thus, the variation of the transition temperature with 
the thickness of the nonmetallic film is proportional to 
6g(t), and the entire pattern, obtained in the preceding 
section, of density-of-states oscillations can be wholly 
referred to the quantity 6Tc =T,(t) - T,(O). In this case, 
however, it is very important that there occur a sharp 
amplification, connected with the large factor 1/I X l g ,  

x (pO), of the oscillation amplitude. The locations of the 
extrema remain unchanged. 

The circumstance that the density of states at the 
Fermi surface figures in all the formulas i s  connected, 
in fact, with the usual assumption that g(E) varies little 
in an energy interval of the order of w, nearthe chemical 
potential. In the case of a sandwich system the depen- 
dence of Ag  in (2.6) on energy through the logarithmic 
derivative of the wave function at the boundary, n(E), 
(3.8), then leads to the condition imposed on the variation 
of the phase x (see (3. lo), (3.13)): 

When this inequality is violated, it is necessary, in 
deriving the expression for T,, to take into account the 
energy dependence of Ag, and this leads to a decrease in 
the amplitude of the transition temperature oscillations. 

In the case of a semiconducting film the inequality 
(4.8) does not impose rigid conditions on the parame- 
ters.  For a semimetallic coating ax/aE - t, and for a 
sufficiently large thickness t the condition (4.8) begins 
to be violated. A consequence of this is the decrease 
of the oscillation amplitude with increasing t .  

Let us now briefly discuss the question of the influence 
of the finite thickness on the transition temperature, 
T,(O), in a thin film without a coating, a problem which 
has been widely discussed in recent years (see, for ex- 
ample, 1'2-151). According to (4.7), the variation of T, 
in a thin film is determined simultaneously by three 
causes: the variation of the density of states, the in- 
homogeneity of the gap along the thickness, and the shift 
in the chemical potential. For zero boundary conditions 
the contributions from the variation of the density of 
states, (2.7), and the inhomogeneity of the gap along the 
thickness, (4. 5), cancel each other out. As a result, 
the variation of the transition temperature is determined 
by only the shift, (2.9), in the chemical potential, which 
leads to the growth of T, with decreasing thickness. 
This result was first  obtained by ~ h a ~ o v a l ' ~ ]  and later 
by Ovchinnikov. However, the above-noted cancel- 
lation has a relatively fortuitous character and is absent, 
for example, in the cases of other boundary conditions. 
In a real  metal, A g  and P in the general case cease al- 
together to correlate with each other. This manifests 
itself especially clearly in metals with a complex elec- 
tronic structure in the presence of relatively small 
electron clusters. As has already been noted, a small 
cluster makes the same contribution to A g  as the main 
group of carr iers ,  whereas i ts  contributions to go(p) and 
/3 a re  small. On the other hand, the contribution of a 
small cluster to the change in the chemical potential 
yields (see (2.9)) 

i. e., effectively decreases the contribution of the small 
cluster to the total value of A g  by roughly a factor of 
two. But the sign of the contribution remains unchanged, 
and for zero boundary conditions each small cluster 
leads to the lowering of T, . Thus, in apolyvalent metal, 
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depending on the electronic structure, a decrease in the 
film thickness can lead to either an increase o r  a de- 
crease in T, . 

In the above-presented discussion, we abstracted our- 
selves from other possible influences of the finiteness 
of the film thickness on T,, specifically from the role of 
the fluctuations of the order parameter and the electro- 
magnetic field, a s  well a s  from the role of the variation 
of the phonon spectrum (see, from example, C""51), 
which falls outside the limits of the present paper. 
Notice, however, that, from all appearances, their ef- 
fect is weaker than the effect of the variation of the den- 
sity of states, which was directly demonstrated in re- 
spect of fluctuations by Ovchinnikov. [I5] 

5. OSClLLATlONS OF THE ELECTRICAL 
CONDUCTIVITY 

Let us consider the longitudinal conductivity, a,, , of 
a film with a nonmetallic coating, and show that o,, oscil- 
lations appear under the same conditions under which the 
Ag  oscillations arise. It is significant that the effect can 
be completely elucidated within the framework of the 
quasi-classical B o l t Z m a ~  equation alone (in contrast 
to, for example, the Shubnikov-de Haas effect, which 
requires for i ts  description allowance for the off-diago- 
nal elements of the density matrix). Restricting our- 
selves at low temperatures to taking account of electron 
scattering by impurities only, we have the well-known 
simplest form of the solution to this equation. 

To find the t dependence of the conductivity, we can 
use the same procedure used in Sec. 2, i. e . ,  deter- 
mine o,, in the ideal metallic film with the boundary con- 
ditions (2.1) for the electron wave function and then 
separate out the nonoscillatory-for fixed x(E)-part 
corresponding to the actual averaged picture. 

With allowance for (2.2) the basic expression for o,, 
has the form 

where fo is the equilibrium electron distribution func- 
tion and T is the relaxation time. 

After integrating, and assuming, for simplicity, that 
7 depends only on the energy, we find 

To determine the sum figuring in (5.2), wa use the 
Foisson transformation, retaining the notation used in 
(2.5): 

Assuming, a s  before, that k F d > >  1, and retaining only 
the leading-in this parameter-terms, we have for the 

first  integral in (5.3) 

The sum over m leads to an expression containing both 
oscillating and nonoscillating terms, but all of the them 
a re  at least k F d  times smaller than the second term in 
(5.4). Taking this into consideration, we find for the 
smoothed-out value of the longitudinal electrical conduc- 
tivity the expression 

It is interesting that if n and, consequently, A g  do 
not depend on energy, e.  g . ,  in the case of a boundary 
with vacuum, then allowance for the variation of the 
Fermi energy in the film (see (2.9)) in the expression 
(5.6) leads to the cancellation of the second term in the 
brackets in (5.5), and the longitudinal electrical con- 
ductivity remains equal to the electrical conductivity 
of the bulk metal. (This result naturally remains valid 
until the finite thickness begins to affect the electron 
mean free path in the film.) But a s  has already been 
noted in the preceding section, the A g  oscillations ar is -  
ing when the thickness, t ,  of the semimetallic o r  semi- 
conducting film in the sandwich system is varied virtual- 
ly does not lead to the variation of p .  As a result, the 
oscillations of theelectron density of states in the metal 
with t will cause the longitudinal conductivity to oscil- 
late in phase with the T, oscillations (out of phase with 
the electrical resistance oscillations). The relative 
GI,-oscillation amplitude will be less  than in the T, case, 
since the specific-for superconductivity-enhancement 
of the dependence on the variation of the density of states 
is absent. 

Let us now elucidate the question of the influence of 
temperature on the quantum oscillations of the conduc- 
tivity. In going from (5.1) to (5.2), we replaced - Ofo/ 
a& by a delta function, which led to the temperature in- 
dependent expression (5.4). In fact, we can do this at a 
finite temperature only under the condition that Ag, a s  
a function of E, oscillates in energy interval 6E >> T. 
At low temperatures this inequality is always fulfilled. 
However, it may begin to be violated a s  the temperature 
increases, and the thicker the coating, the earl ier  this 
will happen. This will lead to the decrease of the os- 
cillation amplitude with temperature. It is worth noting 
that, because of the large value of 6E, especially for the 
small thicknesses corresponding to the initial period, 
the slowly decaying quantum oscillations of o,, can, in 
principle, exist in a wide temperature range. 

6. THE THREE-LAYERED SYSTEM 

We have thus far considered only the two-layered, 
metal-nonmetal system. However, of considerable in- 
terest  is the system where nonmetallic films cover the 
metallic film on both sides. Now the boundary condi- 
tions for the electrons in the metal at both boundaries 
vary with the variation of the deposited-film thickness. 
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Extending the results of Sec. 2 to this case, we have period of the oscillations of the electron density of states 
for the smoothed-out electron density of states, (2.6), in the metal and, consequently, of T ,  (see (4.6)) should 
in the metal (cf. (2.8)) increase sharply with the thickness t, and the number of 

oscillations should be severely limited. Such a picture 
Y. (El  Ag=-J-LarCtg-+ k (6.1) was first observed by Sixl, "' and the shape of his curves 

d is qualitatively quite close to that of the theoretical 
curve shown in Fig. 4. It should be noted that, in ac- 

where the are the values of the logarithmic deriva- 
cordance with the results of Sec. 3, Ag and T, should 

tive (3.8) at the two boundaries, which should be inde- 
increase during the ~ t i a l  grodh of the thiclmess of 

pendently determined for each of the nonmetallic layers. the semiconducting film in the case of an ideal boundary. 
It Eollows from (6.1) that the variation of the density in The subsequent variation in th general case depeslds on 

'themeM depends simdtaneOusl~ on the size effect in the ,htian b e h e m  the puampters of the metal and the 
.bath nCXUnetallic films* The phase X in (3. lo) and (3. 13) semiconductor. In particular, the situation is  possible 
then has in these films uncorrelated values. As a re- when thefinite scale of the inhomogeneous electron 
sult, there arises a distinctive interference between the density in the semiconductor does not allow the oscilla- 
two nonmeta11ic layers, even though the mean tions to develop and the transition temperature T ,  can 
free path in the may be compared to only pass through a maximum and then approach a limit- 
d .  The variation of A g  is determined now by the values iw value with increasing t, or even simply approach a 
of the thicknesses, tl and tz , of the two nonmetallic liniting value. This was, in fact, experimentally ob- 
films. The nature of the T ,  and u,, oscillations, when served in N a u g l e ~ s c 5 ~  and s t rowin~sc i4~  early investiga- 
tl and t2 are varied in the three-la~ered be tions. To the ideal boundary will, to all appearances, 
determined by the results of the preceding sections if correspond a thin transition layer with a high density of - for A g  we insert the expression (6.1). free carriers. In this layer should occur a rapid growth 

7. COMPARISON WITH EXPERIMENT. 
CONCLUDING REMARKS 

of the phase (see (3. lo), (3. l l ) ,  and (3.13)), and T, will 
attain a maximum over a very small thickness t .  (This 
assertion is of qualitative nature, since the formulas of 

The obtained results enable us to explain the whole Sec. 3 may not, strictly speaking, be applicable to such 
set of available experimental facts connected with the thicknesses. ) This was, in fact, observed in all the 
observati6n of the superconducting transition tempera- investigations. If the coating on the metal is a 
ture (and resistance) oscillations in metal-nonmetal semimetal, then, as  follows from the above-obtained re- 
layered systems. sults, the initial variation of the period with t should, 

on the contrary, change into oscillations (in principle, 
As is apparent from the above-presented analysis, damped oscillations) with a constant period. It would be 

the oscillations of T, or the nonmonotonic behavior of interesting to verify experimentally the of 
this quantity with the thickness of the nonmetallic film such a pattern by measuring T ,  specifically in a metal- 
can arise in the case when this film is  a semimetal or semimetal system. 
a semiconductor, and then primarily when the semi- 
conductor has a comparatively narrow forbidden band The amplitude of the T, oscillations is  proportional to 
and thereby an appreciable Bohr radius, (3.18), and a , the scale of the variation of Ag, (2.6), as x(E) in the 
low first-Bohr-level energy, (3.14). On the other hand, boundary condition (2.1) passes through the entire range 
in the case of a dielectric with a wide forbidden band the of possible values. But A g -  l/d, and therefore the T,- 
T, oscillations should, as  a rule, be absent. This as- oscillation amplitude should be inversely proportional to 
sertion is apparently in complete correlation with the ex- the thickness of the metallic film. 
perimental results. ""I In particular, Sixl, l4] who dis- 
covered the T ,  oscillations in aluminum covered with a The decrease of the amplitude of the T ,  oscillations 

semiconducting SiO film, verified subsequently that other with thickness was first  observed in experiments per- 
semiconductors with a narrow forbidden band also give formed by Mikheeva's group. c1'31. ~ i x l ' ~ ~  established 
a similar effect. ~h~ of the investigationsc5.61 in a very clear-cut form that the nature of the depen- 

pertain to the deposition on a metal of semiconducting dence corresponds precisely to ITc- l/d (see alsoc6'). 

G~ or s i  films. quite clear is the state in which the It should be noted that the absolute magnitude of the T ,  

carbon film used to produce the metal-nonmetal system variation with t can itself easily be quantitatively ac- 
i n t ~ - 3 ~  was. ~t could have been both semicon~uctiw and counted for if the enhancement effect, which obtains 

semimetallic. precisely for T ,  (as compared to Ag-see Sec. 4), is 
taken into account. In the case ofC4] it is sufficient for 

Since the considered ascillation mechanism i s  con- . this purpose to use (4.6) and the simplest expression for 
nected with the variation d theboundary cmdition for the A ~ ,  (2.6), which to a single spherical Fer- 
electrons in the metal, a boundary condition which arises mi surface. ~t should be pointed out that the scale of the 
as a result of the size effect in the nonmetallic film, the T ,  oscillations can be quite considerable even in the case 
locations of the extremum points on the T,(t) curve of an appreciable metallic-film thickness, and is more- 
turned out in all the variants of the metal-nonmetal over amplified owing to the presence of small electron 
boundary to be independent of the thickness of the metal- clusters. 
lic film. This result was experimentally established in 
a clear-cut form inL14]. As has been shown in Sec. 3, As was shown in Sec. 5, the conductivity oscillations 
if the nonmetallic film is a semiconductor, then the are much more feebly marked than the T ,  oscillations. 
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Nevertheless, they were experimentally observed by 
Mikheeva et al. [33 The theoretically predicted non- 
trivial-on the fact of it-result that the resistance and 
T, should undergo antiphased oscillations is in complete 
agreement with the dependence found in"]. Among the 
results obtained inc2*31, of special interest i s  the ob- 
servation of a critical sensitivity of the oscillatory pat- 
tern to the simultaneous covering of the metal with non- 
metallic films on both sides. The ideas developed in the 
preceding section allow us to understand that this effect 
is connected with the phase difference in the baundary 
conditions that i s  introduced by the independent size ef- 
fects in the two nonmetallic films. 

Let us note, in conclusion, that the remarks made in 
Sec. 4 about the variation of T, in an isolated metallic 
film enable us to understand the possible nature of the 
different-in sign-dependences of T, on d in different 
metals. 
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New measurements of the viscosity of water behind a 
shock wave front 
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A new method is put forward for measuring the viscosity of shock-compressed dielectrics, based on 
magnetoelectric recording of the velocity of cylindrical conductors behind the shock front. The viscosity of 
water at pressures between 30 and 80 kbar was determined. The measured viscosity was found to be 
greater by five orders of magnitude than the viscosity of water under normal conditions. 

PACS numbers: 51.20. +d 

Viscosity under high dynamic pressures was deter- 
mined from the violation of similarity in the at- 
tenuation of perturbations on a shock wave front. This 
method was used to determine the viscosity of water for 
pressures in the range 80-250 kbar and the results 
were found to lie in the range between 1.5X lo4 and 3 
x10' P. Other values of the viscosity of water, lower 
by a factor of a million, are  reported inc4'. The latter 
are based on measurements of the electrical conductiv- 
ity of shock-compressed water electrolytes. In this 
paper, we describe a new and more direct method of 
measuring the viscosity of dielectrics behind a shock 
wave front. The method has been used to determine the 
viscosity of water at pressures in the range 30-80 kbar. 

The method i s  based on recording the acceleration of 
"heavy" cylindrical bodies by the flow of a lighter ma- 

terial behind a shock wave front. Plane waves were 
produced by detonating a charge, 100 mm in diameter, 
in a layer of water, 30 mm deep. The bodies to be ac- 
celerated were in the form of copper and tungsten wires, 
0.3-0.5 mm in diameter. They were placed in the cen- 
tral cross section of the layer, parallel to the plane of 
the shock wave front. The velocity of the wires dragged 
by the flow of compressed water was recorded by a mag- 
netoebctric method.15*" To do this, the entire assem- 
bly was placed in a constant uniform magnetic field of 
350 Oe, and the emf induced in the wire as it  cut the 
magnetic lines of force was recorded by an oscillograph. 
In analogous experiments using a 0.1-mm aluminum foil 
instead of the wire, measurements were made of the 
mass velocity u(t)  of water in the central cross section 
of the layer. A change in the length of the wires from 
10 to 20 mm did not lead to a change in the recorded ac- 
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