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A theory is constructed for the influence of dispersionless phonons on the diffusion and localization in one- 
dimensional systems. The conductivity of perfect one-dimensional crystals, is described by the Drude 
formula, as a result of exact cancellation of an extensive class of non-ladder diagrams. In imperfect 
crystals (impurities, structural disorder), the dispersionless phonons do not disturb the localization, and 
the localization length and form factor, as well as the dielectric constant, are preserved. The low- 
frequency asymptotic behavior of the conductivity, however, becomes different, taking the form 021n30 
instead of w21n20. In addition, if the free path times for scattering by impurities and phonons (T ,  and r,,) 
satisfy the inequality r,,~,,, then the characteristic time that limits the region of the low-frequency 
asymptotic behavior is no longer the free-path value 7, but the diffusion value T~'/T,,. The results are 
valid in the region of relatively low temperatures T( oo(oo is the phonon frequency) and in the region of 
weak scattering T ,  T, 1 and r,,, T, 1. The considered model is apparently of greatest importance from the 
point of view of the interaction of electrons with fully-symmetrical intramolecular phonons, for which the 
frequencies are quite high so that the upper bound on T is not very stringent. We conclude with a 
qualitative examination of the conductivity under certain other conditions. 

PACS numbers: 63.20.Kr, 72.10.Di 

1. INTRODUCTION 

The main singularity of the electron spectrum of one- 
dimensional disordered systems is that all  the states a re  
localized in them. ['I Therefore such systems have no 
static electric conductivity or  diffusion. C2*31 These 
statements a re  valid for real  systems only at zero tem- 
perature, when the electrons interact only with the 
static potential of the impurities. 

At finite temperatures real phonons produce for the 
electrons a time-dependent potential that gives rise to 
transitions between the electron states with different 
energies. By the same token, the interaction with the 
phonons differs radically from the interaction with the 
impurities, which leads to localization of the electrons 
on account of the exact interference of waves scattered 
by different impurities. One should expect the change 
of the energy in scattering by phonons to disturb the in- 
terference and to lead to qualitatively new effects. 

In our preceding paperc41 we considered the influence 
of weak electron-phonon interaction on the kinetics of 
electrons localized in an impurity field. The conditions 

were indicated under which the interaction with the pho- 
nons causes transitions between localized states of the 
electrons, disturb the localization partially, and by the 
same token give r ise  to a finite conductivity. In this 
case the electron motion consists of hops over distances 
on the order of the localization length in the impurity 
field, which follow each other in intervals on the order 
of the time of scattering by the phonons. 

Gogolin et a l .  have indicated the mechanisms 
through which the interaction with the phonons can in- 
tensify the localization of the electrons. These mecha- 
nisms in conjunction with the previously obtained re-  
~ u l t s ~ ' ~  have made it possible to  propose an explanation 
for the experimental data on the temperature dependence 
of the electric conductivity and the dielectric constant of 
TCNQ salts with structural disorder. 

Thus, the influence of the phonons on the electron 
kinetics in one-dimensional conductors is manifold-they 
can disrupt a s  well a s  enhance the localization. To de- 
termine the relative importance of the different types of 
electron-phonon interaction, i t  is therefore necessary 
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to make use of qualitative concepts obtained from ex- 
perience with the exact solution of model problems. 

In the preceding paperc4] we considered phonons hav- 
ing a sufficiently large average frequency w and disper- 
sion A. Namely, i t  was assumed that the criteria wri 
>> 1 and AT*>> 1 were satisfied, where T, is the mean 
free path time relative to scattering by the impurities. 

The last criterion is most strongly violated in the im- 
portant case of dispersionless phonons, which is at 
present of particular interest from the point of view of 
interactions of electrons with intramolecular phonons. 
It is shown in the present paper that the case with T << w, 
admits of an exact solution. It turns out that localiza- 
tion i s  strictly preserved, and the localization length 
remains constant even if rph<< ri, where r,,, is the mean 
free path time relative to scattering by phonons. The 
static conductivity o is equal to zero a t  arbitrary ratio 
ri/rph, while the static dielectric constant remains the 
same a s  a t  T,, =a. When ri/rph>> 1, however, the con- 
ductivity o begins to increase a t  an early stage: the 
characteristic frequency is w - T,,,/T:, whereas a t  ri/rph 
<< 1 the characteristic frequency is w - l/ri. The se- 
quence of the diagrams is much more numerous than the 
one corresponding to the kinetic equation; nonetheless, 
in the absence of impurities, the Drude formula is ob- 
tained when the sequence is summed for o(w). 

2. SELECTION OF DIAGRAMS AND CALCULATION 
OF VERTICES 

We consider a one-dimensional system of noninter- 
acting electrons with a dispersion law c (p), situated in 
a random potential. We assume that the electrons in- 
teract with one branch of the dispersionless phonons with 
frequency w,. We confine ourselves below to the pa- 
rameter range in which the Peierls transition does not 
set in. To determine the character of the localization, 
of the electric conductivity, and of the dielectric con- 
stant it is necessary to  calculate the correlation func- 
tions of the density and current operators. A diagram 
technique suitable for this calculation was described in 
the preceding paper. 

If the phonon dispersion is large, then after absorp- 
tion and emission of several phonons the electron en- 
ergy practically never returns to the initial value. There 
a r e  no interference effects in such an electron-phonon 
scattering. Therefore in the earlier calculationc4' of the 
polarization loop, all  that was left in final analysis was 
an aggregate of phonon lines corresponding to the usual 
kinetic equation. For  dispersionless phonons, a s  a re-  
sult of consecutive absorption and emission of equal 
numbers of phonons, the electron energy returns to ex- 

~+---t- FIG. 1. 
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FIG. 2. Diagrams with "hot" lines. 

actly the initial value. The result i s  an interference 
between the electronic states that correspond to mul- 
tiple scattering by phonons. Therefore the class of es- 
sential phonon diagrams becomes much larger, ap- 
proaching to a considerable extent the class of impurity 
diagrams. The phonon frequency w, will be assumed, 
a s  inc4', to be high enough: w,r,, WOTph>> 1. At low tem- 
peratures T <<wo, the scattering of an electron by pho- 
nons proceeds via infrequent absorption and subsequent 
rapid emission of phonons. Consequently, in the pres- 
ence of Fermi degeneracy the phonon absorption and 
emission processes couple the levels E and c * w,, where 
c lies near the Fermi energy (c = c,). With the energy 
c chosen in this manner, the attenuation of a Green's 
function with energy c i s  small in comparison with the 
attenuation of Green's functions with energies E i w0 
relative to the parameter N- e-Wo'T << 1. The energy 
levels of significance for our problem, and the transi- 
tions between them, a r e  shown and numbered in Fig. 1. 
The mean f ree  path of an electron with c zc, i s  defined 
by the expressions 

This is the same length which entered in the linearized 
kinetic equation (seec4', Sec. 7). The lengths la and 1, 
correspond respectively to production of a hot electron 
with energy E + wo and a hot hole with energy c - wo. The 
processes of phonon emission by hot carr iers  corre- 
spond to the lengths 

If w,<<c,, then l;=I;, l d = l t .  

The minus and plus indices correspond to scattering 
with and without rotation of the momentum, respective- 
ly. As indicated above, I,, 1, >> 11, I,. 

The correlation functions a re  represented by a dia- 
gram in the form of an electron loop consisting of two 
Green's functions. Typical examples of the phonon in- 
se r t s  in the loop a r e  shown in Fig. 2. Each diagram 
contains two phonon lines corresponding to successive 
absorption and emission of a phonon, so  that the elec- 
tron Green's functions contained between them a re  rap- 
idly damped. The integral over the distance between 
the phonon lines converges over the "hot" lengths I, 
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i I i 
! t i FIG. 3. Two-phonon skelton 

I ? vertices. The hot lines are 
cross-hatched. 

-I,, I,, whereas the integral over the position of a pair 
of phonon lines converges over the "cold" length I. After 
passage of a pair of phonon lines, the energy of the elec- 
tron line returns to i t s  initial value and in this respect 
the pair of phonon lines is analogous to an impurity line. 
We shall henceforth not separate the diagram segments 
containing hot lines, and calculate initially integrals that 
converge over the hot lengths; this will yield expres- 
sions for the effective vertices that join only cold lines. 

Assuming I ,  to be small in comparison with I, we 
shall nevertheless regard I, a s  long enough in compari- 
son with the electron wavelengths A(&), A(& i w,). The 
contribution of diagrams of the type of Fig. 2c, in which 
the rapidly oscillating factors do not cancel out, is 
small relative to the parameter EA/W~I, << 1, and such 
diagrams will therefore be omitted. 

The contribution from the diagrams of Fig. 2b van- 
ishes exactly. The segment of this diagram, containing 
the left-hand phonon line, is identical with the diagram 
of Fig. 6b ofL4', taken at coinciding energies; but it is 
precisely in this case, a s  shown inc4', that the contribu- 
tion of this diagram vanishes. 

FIG. 4. Complication in- 
troduced in the skeleton dia- 

a gram by drawing out the 
cold lines from the self- 

:- I energy parts: k-number of 
r "tongues" in the upper part, 

n-in the lower. 

4 11' 
I 
? ? 

When integrating diagram Fig. 2a with respect to  the 
frequencies 51, and G,, the main contribution propor- 
tional to N results from the term with 51, =a2. It is by 
this that we mean that absorption and subsequent rapid 
emission of phonons predominate in the scattering, as 
a result of which the electron returns to  a state with the 
same energy as before. The principal skeleton vertices 
corresponding to such processes a r e  shown in Fig. 3. 
The contribution from diagrams with 51, = -a2, corre- 
sponding to a change of 2wo in the electron energy, is 
of higher order in N, and will henceforth be omitted. 

Naturally, the self-energy diagrams for the hot lines 
involve states with E = c p ,  corresponding to the return 
of the electron to the initial energy (see Fig. 4a). 
Therefore the diagrams of Fig. 3 a r e  made more com- 
plicated because of these cold electron lines a r e  drawn 
out over distances on the order of I beyond the limits of 
the section bounded by the pairs of the initial phonon 
lines, followed by their attachment to other cold lines 
via any one of the diagrams of Fig. 3. By way of illus- 
tration, Fig. 4a shows three self-energy parts; when 
the cold lines contained in them a re  drawn out, the re- 
sult is the diagram of Fig. 4b. It is clear that the dia- 
grams must be made more complicated in two ways: 
first, by increasing the number of self-energy parts 
from which the cold lines a re  drawn out, and second, by 
increasing the number of tongues on each of the drawn- 
out cold lines. 

In what follows, we shall draw out the cold lines only 
from the self-energy diagrams of Fig. 5a (a'). The 
analogous contribution from the diagrams of Fig. 5b 
(b') contains a factor (TT~,)-' ,  which we assume to be 
small (see the Appendix for details). 

The next +ask is to obtain an expreqsion correspond- 
ing to the diagram of Fig. 6. This diagram has been in- 
troduced to designate assemblies of diagrams of the type 
of Fig. 4, in which integration is carried out over all  
the internal variables and summation over all the vari- 
ants of the rearrangements of the internal phonon lines 
a t  a fixed number of external ends. The diagram of 
Fig. 6 does not change the number of lines in the verti- 
cal section, and corresponds therefore to the skeleton 
diagrams of Figs. 3a and 3b. We present detailed cal- 
culations for the contribution made by the skeleton dia- 
gram 3a, after which we write out the expressions cor- 
responding to all  other skeleton diagrams in Fig. 3. 

The internal phonon lines can be inserted in the two 
ways shown in Fig. 7. Carrying out integration over all  
x i  and y ,  and over z' -z  (see Fig. 4) and recognizing that 
the internal phonon lines a r e  arranged in sequence along 

FIG. 5. Self-energy parts. The dashes correspond to permu- 
tation of single and double lines. 
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FIG. 6. Effective phonon ver- 
tex produced after integration 
along the hot lines. 

n pairs 

the coordinate, we obtain for a diagram with r internal 
phonon lines in the upper part  and s lines in the lower 
part the expression 

The expression 1/1; + 1/1 i is the result of summation 
over phonon lines of type a and b (or a' and b') of Fig. 
7. Only absorption of a phonon with production of a hot 
electron i s  taken into account in (3). The processes of 
absorption with production of a hot Fermi hole corre- 
spond to the substitutions 1, - I ,  and I ,  - I,. 

We introduce for the calculated contribution the nota- 
tion 

The quantity r,, is the result of summation over all 
the arrangements the internal phonon lines 

r,, =z ( - 1 ) + C + . c E : c : I : ,  k 2 1 ,  n > i ,  
r.1 

(5) 
r , ,= i ,  r, =z ( - i ) ~ ; : : ,  k 2 1 ,  ron=z ( - i ) a c : : ,  " 2 1 .  

The expression for r,, simplifies if one uses the identity 

where the integration is over a small circle around z =O.  

Substituting (6) in (5), we obtain after simple transfor- 
mations 

Expressions (7) correspond to the skeleton diagram of 
Fig. 3a. The remaining skeleton diagrams of Fig. 3 
correspond to analogous expressions 

1,- rkn (a), I ,+ 
la+( l t++l , - )  15-  ( l ,++l , - )  r k n  (b), 

1,' 
rkneZiY'lY (c), 1,- 

la+ (1,++1,-) Fhne"*"" (d) 
l*- (1,++1,-1 (8) 

The presence of the lengths 1' and 1 ' in these formulas 
is due to the contribution of the diagrams of the type of 
Figs. 7a and 7b. 

Processes with hot holes correspond to the substitu- 
tions 1, - 13, l2 - 1,. 

We thus arrive a t  a diagram technique with effective 
vertices of the type shown in Fig. 6, corresponding to 
expressions (8). ThisJechnique is similar to that con- 
structed by ~erezinskii '"  for impurities, but differs in 
that the vertices connect not pairs but entire bundles of 
electron lines. 

3. ELECTRIC CONDUCTIVITY OF A PERFECT 
CRYSTAL 

To calculate the correlation functions, we use a pro- 
cedure developed earlier. Cs*4' Each diagram for the po- 
larization loop is divided into three parts that lie re-  
spectively to the left, in between, and to the right of the 
outer vertices x' and x. The number of pairs of single 
and double lines passing through the vertical sections of 
the diagram at  the points x and x' will be designated rn 
and m'. We then obtain for the right and central parts 
the equations 

where 

Substituting (7) in (11) we obtain I?, = m .  Taking this 
into account, we see  that the length L drops out of Eqs. 
(9) and (10). 

The correlation functions zO(w, k) and gl(w, k) of the 
densities and of the currents a r e  expressed in the fol- 
lowing manner in terms of R,(x) and Z,,,(x', x)C3*41: 

FIG. 7. Inclusion of cold lines with the aid of rotating and non- 
rotating vertices. The diagram a(a') corresponds to the factor 
(-It(& + ~ ~ ) ) - l ,  and the diagram b(bP) to the factor ( - I q ( &  + (iO))-'. 
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where 

The equations for Rm and Qam(w, k) a re  

The dimensionless frequency and momentum a r e  
equivalent to (we put henceforth T,, = 7) 

Equations (18) and (19) a r e  solved by making the ex- 
ponential substitution 

From this we get 

We note that a t  low frequencies C<< 1 the main con- 
tribution to the sums is made by the terms with m - y-' - -1 12 - v  . 

In the region WT<< 1, the correlator (23) has a diffu- 
sion form with a diffusion coefficient D(&) = 12(c)/2~(c). 
For the conductivity in a homogeneous field (k =0) we 
obtain the Drude formula 

The quantity 7(&)/2 i s  the usual transport relaxation 
time. 

Expressions (23)-(25) coincide with the results of the 
solution of the general one-dimensional kinetic equa- 
tion. Moreover, even Eqs. (18) and (19) a r e  already 
identical to those obtained by summing the ladder dia- 
grams corresponding to the kinetic equation. We em- 
phasize, however, that Eqs. (18) and (19) were obtained 
by summation of a rather broad class of diagrams, in- 
cluding diagrams of the type of Fig. 4. The main dif- 
ference between the one-dimensional and three-dimen- 
sional cases is that in the former the ladder diagrams 
dominated relative to the parameter ET>> 1, while here 
the analogous result i s  the consequence of exact cancel- 
lation of more complicated diagrams, each having the 
same order of magnitude a s  the ladder diagrams. 

It is seen that there is no localization of the electrons 
in the case of electron interaction with dispersionless 
phonons, and the conductivity a t  zero frequency remains 

finite and is determined by the usual Drude formula. It 
is of interest to emphasize in this connection that in the 
three-dimensional case' elastic two-phonon scattering is 
practically equivalent to impurity scattering. [" The 
qualitative difference between the results for these two 
types of scattering in the one-dimensional case is con- 
nected with the introduced limitation on the hot path 
length I,>> h&/w,, which is sufficient to eliminate definite 
interference diagrams. 

4. CONDUCTIVITY OF CRYSTAL WITH IMPURITIES 

We consider now the joint influence of impurities (or 
of structural disorder) and of dispersionless phonons on 
the localization and electricconductivity. The problem 
can be solved a t  I, << 1;. In this case the inclusion of the 
impurity lines in the internal  par^ of the diagram of Fig. 
4 (i. e., in the interval z ,  2') results in small correc- 
tions of the order of 1,/1 f << 1, which can be neglected. 
In this approximation, the problem reduces to simulta- 
neous summation of the contribution of the impurity 
lines and of all  the phonon vertices considered above 
(for example, of the type of Fig. 6), The equations for 
Rm and @,,(w, k) include additively terms that correspond 
to both types of interaction 

where 

Interaction with impurities corresponds in Eq. (26) to 
the term linear in 112, and in Eq. (27) to terms quadratic 
in m and m = L. In the region of low f,requencies, the 
large nz a r e  always important: in the case of interaction 
with impurities nz - (wT*)-' >> 1, C31 and in the case of in- 
teraction with phonons m - (wT)-''~ >> 1 (see Sec. 3). It 
follows therefore that a t  low frequencies the terms due 
to the interaction with impurities predominate in (26) 
and (27). This means that in the limit as w - 0 we can 
neglect the interaction with the phonons a t  any ratio of 
ri and T, SO that at large times the correlators retain 
the same form a s  in the absence of phonons. Thus, the 
asymptotic form of the density correlator, meaning also 
the localization length, i s  determined exclusively by the 
interaction with the impurities, and the static conduc- 
tivity i s  equal to zero. 

Under conditions when the interaction with the phonons 
does not influence the static characteristics, it is of par- 
ticular interest to investigate the frequency dependences. 
We consider two limiting cases. 

a. Strong scattering by phonons (7 << 7;) 

The low-frequency region is determined here by the 
inequality t<< P2 << 1, i. e., WT:/T<< 1. 

Analogously, C31 in the low-frequency limit we can go 
from difference equations to differential equations. In 
this approximation, Eq. (26) can be solved exactly: 
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and the equation for Q' takes the form 

where 

and K1 is a Bessel function. Equation (29) was written 
out for k=O. The conductivity u(w) is expressed in 
terms of the correlator 

(31) 
In contrast to the impurity problem proper, the dif- 

ferential equation for Q' is in this case accurate enough 
to calculate the principal term in Re o(w). The reason 
is that the contribution of the terms with small m in the 
sum (1 5) i s  small in terms of the parameter 8 << 1. We 
shall solve Eq. (29) by expansion in terms of I val << 1. 
This yields in the lowest order the answer for the im- 
purity problem proper: X I ( & ,  w) = v(&)l;(~)2g(3)(- iv). 
Therefore Im u(w) has a t  low frequencies the same form 
a s  in the absence of phonons. Cs'41 

The interaction with the phonons comes into play in 
the next order in va. The quantity Re u(w) is now of the 
order of av2, i. e., it increases in comparison with its 
value - v2 in the absence of phonons. 

To calculate Re u(w), we break up the integral (31) 
into two: over the region 0 s p  c p o  and over the region 
Po c p  <a, where l v(YI <<PO << I val'12<< 1. In the region 
p<< I va 1"' we can neglect the f i rs t  term of (29). As a 
result we obtain 

R ( p ) - l  dQ1 --1,>-. -- 
dP p (p - i va )  

The integration constant i s  determined from the con- 
dition that Q1(p) be regular a s  p -0. Formula (32) 
yields a t  p =Po the boundary condition for  the derivative 
dQ1/dp obtained for the region p >> I v a  I .  

Expanding R (p) in terms of I v a  I /po << 1, we obtain 
from (32) 

dQ' In po+2C-I i va  - I = ( - i v )  [-- + - ( ln ( - i va )  + 2 ~ - 2 )  . (33) 
d p  .=no Po PO' I 

where C is the Euler constant. 

In the region p>> I va  I ,  Eq. (29) can be solved by ex- 
panding in terms of I va I << 1. We seek Q' in the form 
Q' = Q: + Q:, where (cf. '31) 

The equation for Q: is 

d 
P I 1  ( p )  =iv - (R ( p )  -2p7"Ki ( 2 ~ ' " ) ) .  

dp (36) 

The substitution 2plf2 = Z  transforms (36) into an in- 
homogeneous Bessel equation for the function zQ:(z). 
Its solutions, which satisfies the condition that i t  de- 
crease a t  infinity, is of the form 

The non-integrable divergences in f(z) cancel each 
other a t  small z. Differentiating and expanding (37) in 
the small quantity Po = z  !/4, we obtain after comparison 
with (33) 

Substituting (37) in (31), we obtain the contribution 
made to  the integral by the upper region: 

+v2a  -Ing p, + ln2 pa- (2C-3)  (2C-1) ln  p, [ : I 
-v'a In(- iva)  [ ln2p,+2 (2C-1) ln  p,+4C2-4C+2] +const v'a. (40) 

Using (32), we obtain the contribution from the lower 
region 

+2(2C-1) ln  p. I n ( - h a ) +  (2C- I )  ( 2 ~ - 3 ) l n  p a ]  + conrt r'a. 

Adding (40) in (41), we obtain ultimately 

(42 
Here a(&, w) is the contribution made to the conductivity 
by electrons with energy E .  To obtain the total conduc- 
tivity u(w), i t  must be integrated with respect to  E with 
a weight -&/BE. According to (I), (12), and (20), the 
phonon time T decreases like expi- I E - c ,  l /T} with in- 
creasing distance from the Ferrni level. In the calcula- 
tion of Re u, this factor cancels out the exponential con- 
tained in an/&, and a s  a result it turns out that the 
actual integration region includes the entire interval be- 
tween C, - w0/2 and &, +wo/2 (in contrast to the usual 
situation, cf. in particular, (25), when the integration 
region has a width on the order of T). 

In connection with the establishment of the integration 
limits, it should be noted that the lengths I(& i wo) play 
the role of the hot lengths and satisfy the condition I(& 

335 Sov. Phys. JETP 45(2), Feb. 1977 Gogolin et a/. 335 



5 wo)<l(c) only a t  cF - wo/2<c < E ~  +wo/2. At c >cF 
+ w0/2 the length I(&) is the hot one, and I(& - wo) the 
cold one, and analogously for the region c < cF - wo/2. 
The electric conductivity is determined in all cases by 
the cold lengths. Their dependence on the energy is 
such that cancellation of the exponential factors takes 
place only in the interval (c, - wo/2, cF + wo/2). Out- 
side this interval, the integrand decreases like 
expi- 2 I c - cF I /T) and the relative contribution of the 
corresponding regions is small in terms of the param- 
eter T/w0 << 1. It should be noted that our derivation of 
(42) is not utterly invalid a t  the boundaries of the indi- 
cated interval, namely in regions of width of the order 
of T near EF i wo/2, since the hot and cold lengths be- 
come comparable there. 

The integration of (2) over the principal interval yields 
in the principal logarithmic approximation 

This formula is valid a t  low frequencies, when 
~ ~ [ T ( & ~ ) / w T ; ] > >  w0/2T. 

All the foregoing complications disappear in the case 
of a nondegenerate (~ol tzmann)  electron gas. Accord- 
ing to (I), T(E) i s  constant in this case; a s  a result, the 
actual integration region has a width - T, and for an ex- 
plicit calculation of the integral of (42) i t  is necessary to 
know only the function r,(c). The formula for the con- 
ductivity is in this case valid in the entire region T/ 

w 7 f  >> 1. 

The low-frequency dielectric constant c =4so(w- 0)/ 
(- iw) i s  determined by the first  term of (42). It retains 
exactly the same valuec3p4' a s  in the absence of phonons; 
this fact has already been noted above. At the same 
time, the absorption (i. e., Re a) changes significantly 
in comparison with the value Re o = 8n e21 f(wri)' ln2(w7,) 
in the absence of phonons. First, the highest-order 
term has the structure w2 ln3(w71/7), a s  against 
w2 ln2(wri) in the absence of phonons. Second, the en- 
t i re  expansion is in terms of W T ~ / T  rather than wri. 
The characteristic time ri corresponds to  ballistic mo- 
tion of the electron over a length IT, while T:/T corre- 
sponds to diffuse motion over the same length, with a 
diffusion coefficient D - v27 determined exclusively by 
phonon scattering. Since, however, the localization is 

FIG. 8. Frequency depen- 
dence of the conductivity 

~trtw) and of the dielectric con- 
stant. 

fully preserved, this diffusion has a pure quantum char- 
acter. 

In the region of high frequencies WT:/T>> 1, Eqs. (26) 
and (27) a re  solved directly by expanding in powers of 
8. In the lowest order in Bm - 81 C 1"" << 1 we have 

e7-l 3eZ1- 10eT-3 2e1 (9ezT+3e1+4) 
Q : = ~ - T - { Q . I + ~ [ ~ - + ~  --- 

3(eT+l)s  3(el+lj'(e7-I) 

(44) 
From this we obtain ultimately 

2 1 P(l+i sign o )  
o(o)=-eZl-- ""' ] (45) 

n i - iwd2 [I- 2 w r l "  (I-iuri2j" ' 

It follows from (45) that the impurities decrease Re o 
and Im o simultaneously; the expansion is now in terms 
of I vcu I -' << 1. The imaginary part  of a(w), meaning 
also the dielectric constant ~e c (w), goes through zero 
and reverses sign even in the region where (45) i s  valid. 
Thus, the dielectric constant acquires the characteris- 
tic dielectric sign already in that frequency region where 
the conductivity is still well described by the Drude for- 
mula. The frequency dependences of Re o(w) and Re c (w) 
a re  shown schematically in Fig. 8. The expansions (45) 
and (42) a r e  continuously joined together at I val - W T ~ /  

7- 1. 

It follows from the results that in the case of strong 
interaction with phonons the form of the correlators i s  
determined by different mechanisms a t  different times. 
At t < T  the correlators correspond to free particles, a t  
T <  t < T ~ / T  the decisive role is played by scattering by 
phonons, which leads to ordinary diffusion, while at 
t >T:/T the mechanisms of scattering by phonons and by 
the impurities act jointly and in the limit a s  t - m the 
asymptotic values of the correlators a r e  determined 
only by impurity scattering. 

b. Weak scattering by phonons (7 >>ril 

In this case the accuracy of the differential equations 
of the type (29) for R and Q is insufficient for the deter- 
mination of the low-frequency Re a. Therefore, in 
analogy withCs1, we use the exact solution of (26) 

Substituting (46) in (15), we obtain 

where 

satisfies the equation 
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Here 

Equation (49) must be solved accurate to terms linear in 
CY << 1; this is carried out in the same manner a s  the 
calculation of Re o in ~ e r e z i n s k i p s  paper. C31 It is nec- 
essary next to calculate in the same approximation the 
conductivity in accordance with (47). 

We present here only the highest-order logarithmic 
term in the conductivity increment 6a due to the interac- 
tion with the phonons 

It is seen that the highest-order logarithmic term in 
(51) coincides with the analogous term in (42). 

5. CONCLUSION 

We have investigated above the influence of low-fre- 
quency dispersionless phonons on the localization and 
electric conductivity. The obtained solutions a re  valid 
when the following criteria a r e  satisfied: 

The principal results consist in the following: 

1. In a perfect crystal, dispersionless phonons en- 
sure conductivity described by the Drude formula. 

2. In an imperfect crystal (impurities, structural dis- 
order), dispersionless phonons do not disturb the local- 
ization, whose form factor of and length I f  a re  strictly 
preserved, a s  is also the static dielectric constant. 

The very fact that the localization is preserved can 
be easily interpreted from qualitative considerations, 
since it is impossible to ensure energy conservation for 
dispersionless phonons in hops between localized states. 
It is much more difficult to interpret the constancy of 
the length I f .  

Phonons with small dispersion A should upset the lo- 
calization relatively little, to the extent that the param- 
eter A r i  << 1 is small. Since the energy change in the 
two-phonon process is of the order of A, we can assume, 
in analogy with the a- d law, that the electric conduc- 
tivity is proportional to ( ~ 7 ~ ) ~ .  

We shall discuss in this connection certain results of 
an analysis of the conductivity of TCNQ salts with asym- 
metrical cations Qn and Adz. C53 Since the values ob- 
tained for the energy difference of the localized states 
of order 7;' were - 350 OK, which is large in compari- 
son with the Debye frequency w, - 70 K, it  was assumed 
that the delocalization is caused in the main by the in- 
teraction with the fully symmetrical intramolecular pho- 
nons. The constant g of the intramolecular electron- 
phonon interaction at the si te n can be naturally intro- 
duced in the form Hi,, = (g~,~,)"2an + a,(b,' + b,). From the 
value of rph obtained by reducing the experimental datac5' 
it follows that g- 0.03-0.04. This is unexpectedly low; 

we note for comparison that in molecular crystals of the 
aromatic ser ies  (such a s  anthracene) the intramolecular 
exciton-phonon interaction is usually noticeably larger 
and reaches g- 1 for a number of vibrations. It can be 
assumed that the obrained small effective value of g is 
connected with the smallness of the parameter  AT^. It 
is also possible that an important role is played in de- 
localization by two-phonon processes with participation 
of fully symmetrical intramolecular and acoustic pho- 
nons. The former ensures a sufficiently large average 
frequency, and the latter makes i t  possible to reconcile 
the initial and final energies in the hops. 

The Hamiltonian of the interaction with the non-fully- 
symmetrical (NFS) intramolecular phonons $A,a>,(b; 
+ bn)2 contains a term A,a';a,bib, corresponding to elastic 
scattering of electrons by phonons; in analogy with the 
impurities, i t  ensures localization. The terms with 
b t  and bi, which describe the inelastic processes, a re  
relatively small a t  low temperature N(w,) << 1. Accord- 
ing to the proof presented above, they do not disturb the 
localization produced by the elastic scattering compo- 
nent, provided that the dispersion of the phonons can be 
neglected. Therefore the static conductivity of such a 
model system is equal to zero even in the absence of 
impurities. 

This result is valid in the lowest order in the elec- 
tron-phonon coupling parameter g ' =A,/&,. In the next 
higher orders i t  is necessary to take into account the 
multiple elastic scattering of the electrons by the NFS 
phonons, which a re  themselves moved over the crystal 
by successive inelastic processes (of the type b$ and 
bi). Since the displacement of the phonons means a 
change of their potential with time, these processes 
should lead to a finite electric conductivity (which, how- 
ever, should be small to the extent that g ' is small). 

For  impurities, in contrast to NFS phonons, there 
a r e  no grounds for assuming that allowance for the de- 
viation from the Born approximation disturbs the local- 
ization; we therefore have, a s  before, a(w =0) =O. How- 
ever, the low-frequency asymptotic value of a(w) may 
change. Indeed, when the electron is localized in a 
bounded region i t  inevitably experiences successive col- 
lisions with each impurity a t  time intervals - riclt, 
where c is the impurity concentration. Such repeated 
collisions do not occur in the Born approximation. One 
can therefore expect the function a(w) to change i ts  form 
at  frequencies w < (cliri)-l. 

We have shown in the preceding paperc41 that phonons 
upset the electron localization if two criteria a r e  simul- - - 
taneously satisfied: WT,, WT,,>> 1 and Ari ,  Arph>> 1. By 
rigorously solving the equations we have demonstrated 
above the extent to which the second criterion is es- 
sential: strong violation of this criterion leads to a 
radical change in the results. We shall discuss here 
qualitatively the consequences ensuing from violation of 
the f i rs t  criterion. We have already notedcs1 that at -- 
w r i  << 1 an adiabatic situation arises, namely, the po- 
tential produced by the phonons can be regarded a s  
quasistatic. This random potential, when added up to 
the impurity potential, enhances the localization. As a 
result, the mean free path, and consequently also the 
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localization length, decrease with increasing T. An 
adiabatic regime can arise also in a perfect crystal, but 
only a t  high temperatures and in the case of a sufficient- 
ly strong electron-phonon coupling. Indeed, if the fre- 
quency of the electron in the instantaneous field of the - 
phonons T greatly exceeds Sj (i. e., wrph  << 1 o r  3 <<gT), 
then the adiabaticity criterion is satisfied. A short- 
term localization is then produced wherein the electron 
remains in the region - v,~, during the time that the 
phonon potential is stationary. For phonons with strong 
dispersion (i. e., A-w),  the potential is destroyed within 
a time -w-'. This enables us to  estimate the diffusion 
coefficient" D- (v,T,,)~~ -D,,Wr,,. Here DDr - v:rph i s  
the ordinary diffusion coefficient. We see  that in the 
adiabatic region D<< D,,, with D- T-'; a t  5Tph>> 1, the 
ordinary diffusion i s  preserved with D - D,,. For dis- 
persionless phonons, the potential i s  exactly recon- 
structed within a time 2a/w,. Therefore the diffusion 
can proceed only a s  a result of the non-adiabaticity, and 
i t  is then natural to expect an even lower value of D. 

The authors a re  grateful to L. P. Gor'kov for a very 
useful discussion. 

APPENDIX 

The summation of the self-energy parts of Fig. 5 
leads to the following expression for the Green's func- 
tion: 

i 
GT (E lz-z') =- - I 

e1p {LP(&) lx-xll + - 1.L-zf I (Z++X- , 
U(E) ~ ( € 1  1 

(A. 1) 
where 

and 

(A. 3) 
correspond respectively to the diagrams of Figs. 5a and 

5b. The entire real  part  of C++Cm, which is equal to 
- $ u (l/l ' + l / l m )  and yields the damping of G', is the re-  
sult of the first  two terms in (A. 2). The term 2- and 
the last term in C' a r e  different from zero because of 
the residues a t  the poles n(c -a). It can be shown, how- 
ever, that their sum is always imaginary. It therefore 
contributes only to the renormalization of the spectrum 
and drops out completely from the correlations functions 
(just a s  the imaginary part  of the first  two terms in 
(A. 2)-seec4?. This sum was left out inc4'; i t  follows 
from the foregoing that this has no influence whatever 
on the results obtained there. 

On going to more complicated diagrams of the type of 
Fig. 4b, the expressions analogous to (A. 3) and to the 
last term enter in (A. 2) separately, but a r e  different 
from zero, a s  before, only as a result of the residues 
a t  the poles n(& - S2). At T SE, the contribution from 
these residues leads to a strong damping of the Green's 
functions, of the type e-T'X"V,  where x is the length of 
the "tongues" and therefore the corresponding terms can 
be left out. Accordingly, it is not necessary to draw out 
the cold lines from the diagrams of the type of Fig. 
5b (b'). 

"L. P. Gor'kov has kindly informed us that a s imi lar  estimate 
for  D was obtained in an unpublished paper of J. Hertz and 
M. H. Cohen. We wish to emphasize the decisive signifi- 
cance of the adiabatic cri terion fo r  the validity of this result. 
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