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Exciton-phonon interaction can arise in quasi-onedimensional and qaasi-two-dimensional semiconductors if 
the electron and hole in the exciton are spatidy separated. This interaction is due to the change of the 
electron-hole Coulomb interaction energy under flexural deformations of the filaments or planes. The 
energy of the exciton and its effective mass, which can differ by tens of hundreds of times from its bare 
mass for a number of real values of the coupling constant, are calculated for the regions of strong, weak, 
and intermediate coupling. These effects are not connected with the formation of electron or hole polarons 
in the crystal and can take place even under conditions when the interaction of the free electrons and 
holes with the lattice vibrations is negligibly small. 

PACS numbers: 71.35. +z  

INTRODUCTION the properties of excitons with spatially-separated elec- - - 
trons and holes. This discussion is timely in connection 

It is known that the interaction of an electron with lat- 
with the rapidly developing experimental research on the tice vibrations in dielectrics leads to the appearance of 
physical properties of quasi-one-dimensional and quasi- 

the so-ca11ed polaron effects. [" effects can be two-dimensional semiconductors (see, e, g., ['." and the 
significant also for large-radius excitons in those cases 

literature cited there). The energy and the effective 
when the electron-phonon interaction essentially renor- 

mass of the exciton a r e  calculated on the basis of Feyn- malizes the effective masses of the electrons and of the 
holes. In quasi-one-dimensional and quasi-two-di- man's method of continual integration, which was de- 

veloped by him in polaron theory. The results  take the mensional semiconductors, however, a strong interac- 
form of an interpolation that goes over into the results  tion between the excitons and the lattice is possible even 
obtained independently in the limits of strong and weak at a negligibly small constant of interaction between in- 

dividual quasi particles (electrons and holes) and the exciton-phonon coupling. 

lattice. 

Indeed, for excitons in which the electron and the hole 
a r e  localized on different filaments o r  planes, a unique 
interaction takes place between the exciton and the lat- 
tice, and is due to the change of the Coulomb energy of 
the electron and hole when these filaments (planes) a r e  
deformed. On the other hand, if the electron and hole 
a r e  localized on the same filament (plane), then the indi. 
cated interaction does not take place. This difference 
between the interactions of the aforementioned excitons 
with the lattice should lead to a number of singularities. 
In particular exciton ser ies  with relatively narrow and 
broad lines should coexist in the exciton absorption and 
emission spectra. It must be borne in mind that the dis- 
cussed effect of modulation of the energy of the Coulomb 
interaction of the electron and the hole by the lattice vi- 
brations can be of importance also in three-dimensional 
semiconductors, provided that the allowed electron 
and hole energy bands a r e  sufficiently narrow in 
these semiconductors. From this point of view, a dis- 
tinguishing feature of quasi-one-dimensional and quasi- 
two-dimensional semiconductors i s  precisely the fact 
that the electron and hole bands a r e  extremely narrow 
for certain directions, because of singularities in their 
structure. It is clear, of course, that a similar effect 
takes place also in quasi-one-dimensional and quasi-two- 
dimensional metals and semimetals, where the Coulomb 
interaction of quasiparticles of like sign should also be 
modulated. 

We confine ourselves in this paper to a discussion of 

1. EXCITON IN A QUASI-ONE-DIMENSIONAL 
SYSTEM 

When considering the problem of an exciton in which 
the electron and hole a r e  localized on two different fila- 
ments, we choose a coordinate system with origin is 
halfway between these filaments, x and y axes in the 
plane of the filaments, and the x axis directed along the 
filaments. 

In a quasi-one-dimensional semiconductor, the inter- 
action at macroscopic distances between an electron and 
a hole situated on different filaments, takes the formcB1 

where E,, = E, and E, = E,, = E,, a r e  the principal values of 
the dielectric tensor, d is the distance between the fila- 
ments, and x is the projection of the vector joining the 
electron and the hole on the direction of the filaments. 
If the filaments a r e  deformed, then in f i rs t  order in the 
site displacements Eq. (1) acquires an increment 

where u, and u, a r e  the displacemements perpendicular 
to the filaments a t  the points of the f i rs t  and second 
charges. Expanding u, and u, in the normal coordinates 
qkL, we find that the interaction between the particles, 
with allowance for the possible deformation, is given by 
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where 

In (2), xo i s  the coordinate of the center of gravity, n 
is the normal along the y axis, N is the total number of 
sites, M is the mass of the site, and is the number of 
the phonon branch. We assume that the unit cell con- 
tains one site. 

Strongly -coupling approximation. There exists a region 
of parameters in which the strong-coupling approxima- 
tion of polaron theory is  valid. In this case we can ob- 
tain the state of the exciton in the deformed crystal, by 
assuming the deformation to be static. ['I In a quasi-one- 
dimensional semiconductor, the dielectric tensor can 
be essentially anisotropic: &,, >> c,. Then, a s  shown 
earlierc8', there exist macroscopic bound states of an 
electron and a hole with an internal-motion dimension 
(z)'<< & E ~ / E , ~ ,  and we can therefore put ~ ' ( x )  = ~ ' ( 0 )  in 
(2). If x, is  the dimension of the region of motion of the 
exciton a s  a unit, then (2) contains k,Sl/xo. Assume 
that jl<< To (this assumption will be confirmed by the final 
results), then the term k,x/2 in (2) can be neglected and 
the interaction (2) takes the form 

where Vo = V(x=O). We retain in (3) the dependence of 
V(x) on x, but neglect it in the second term (vl(x)- ~ ' ( 0 )  
= Vo/d), since i t  already contains the small factor ul - %. 
It i s  seen from (3) that in this approximation the vari- 
ables of the internal motion and of the motion of the pair 
as a unit a re  separated, so that the problem is easily 
solved. 

Let us find the stationary state by starting from a 
variational principle for the Schr6dinger equation. As- 
suming the electron mass and the hole mass to be dif- 
ferent, we write down the functional of the energy in 
terms of the normalized functions of the relative motion 
X(X) and of the motion of the center of gravity q(xo): 

where w, is the phonon frequency. 

At ?<<de&,,/c, the potential V(x) can be expanded up to 
terms proportional to 9, and then the vanishing of the 
variational derivative with respect to ~ ( x )  

leads to an oscillator equation for ~ ( x ) .  

The energy of the ground state of the internal motion 
of the exciton i s  equal toL8' 

Varying with respect to q,, with allowance for the fact 
that c,, q_u = cu & ,  we obtain 

We eliminate q,, from (4), and then 

The last term in (6) can be represented in the form 

The! kernel a (x  - xf)  decreases rapidly with increasing 
I x -  x I ,  and therefore, recognizing that q(x) varies 
slowly, we can reduce (6) to the form 

hZ 
F ,  = zj 1 2 1 '  dz-a lq(z) l'dz, 

where 

The constant a, in particular, is determined by the pho- 
non spectrum of the crystal. To estimate (Y we have 
used the Debye model, where w,, = c,k, w ,,,, = ctk, and 
k, - n/d. I t  i s  seen that B(k,)= 1 and is a t  any rate weak- 
ly dependent on the parameter k,. This justifies the use 
of the Debye approximation and means in fact that the 
details of the phonon spectrum in the region of large k 
a r e  immaterial in the calculation of 0. We note that 
in the continual model of the lattice, which i s  not used 
here, we have kD - m and consequently a - a, this be- 
ing due to the divergence of the deformation energy of 
an infinitesimally thin filament in an elastic continuum. 
As will be shown below, for excitons in quasi-two-di- 
mensional systems, no such divergence arises,  so that 
in this case i t  is also possible to use the continual ap- 
proximation. 

The equation 6~,(x)/bq(x) = 0 has an exact solutionCQ1 

'h I 
ch xz'  

where n=2am/FT2. In this case F, = - a2m/3?i2. 

T o  find the translational mass of the new quasiparticle 

323 SOV. Phys. JETP 4321,  Feb. 1977 Agranovich eta/ .  323 



consisting of the exciton plus the deformation, we shall 
assume, following Landau and Pekar, 'lol that the exci- 
ton and deformation move a s  a unit with velocity v. 
Taking into account additionally in (4) the kinetic energy 
of the lattice motion 

we obtain a contribution proportional to 2, whence 

For the parameter E, ,E,  = 100, C, = 0.7 105 cm/sec, 
c , = i c , ,  d = 6 A ,  and IFl\ =2.8 .  eV we have m** 
-200 m. 

Let us make a few remarks concerning the conditions 
under which the foregoing results a r e  valid. We note 
first  that we have taken into account above only linear 
distortions of the lattice. This i s  justified if the dis- 
placements u of the filaments a r e  small  in comparison 
with the distances between them. Changing from the 
normal coordinates (5) to the displacements, we obtain 
u/d- ~ ~ l d ~ T , c : ~ .  For a wide range of parameters and, 
in particular, for those of them which were used by us, 
we indeed have u/d<< 1. 

We note also that, a s  seen from the foregoing, in our 
case the wave function and the energy of theobtained state 
a r e  characterized by only one coupling constant a, al- 
ih~ugh  in our problem there a r e  three independent pa- 
ralr e ters  with the dimensions of length: d, T, and To, 
anb consequently there should be in the general case a t  
least two independent coupling constants characterizing 
the states of the system. The reason why we a r e  left 
with only one coupling constant a! in our case is that the 
functional (7) used above, a s  already emphasized, has 
been written under the assumption that the radius F of 
the internal motion in the exciton i s  small in comparison 
with the dimension To of the self-localization region. In 
this limit (??/?Zoo<< 1) the internal dimension of the exciton 
along the x axis drops out and the problem reduces to an 
analysis of the interaction of a structureless particle 
with the lattice, i. e., to a situation that is described al-  
ready by only one coupling constant. We note that the 
inequality ?E<< T,, can also be written in the form EW, 
-i> I F, I ,  where w, is the frequency of the internal motion 
in the exciton. Explicit expressions for F, and wo were 
given above. We can verify that the indicated inequality 
is indeed satisified for the parameters employed above. 

In addition to this inequality, the use of the strong- 
coupling approximation also calls for satisfaction of the 
inequality I F, I >> EwD. This relation, for sufficiently 
"rigid" lattices, may not take place (these lattices have 
a low energy IF, I and, for example for the parameters 
indicated above, we have I FI I -EwD). It is precisely for 
this reason that we develop in the next section a more 
general theory of intermediate coupling. This theory 
will make i t  possible also to dispense with the already 
discussed limitation F << zo. 

methodt5' yields in the entire range of parameters fairly 
accurate results that go over in limiting cases into the 
solutions obtained in the strong and weak coupling ap- 
proximations. If the system energies expressed in 
terms of the coordinates and their derivatives, then, 
according toc5', the partition function Sp exp(- pH) (and 
consequently the free energy 

where r1 is the temperature) can be expressed in the 
form of a path integral 

where S is a function of the trajectories in configuration 
space: 

Each path s tar ts  at the instant of time t=O and termi- 
nates a t  t=PR at  one and the same point. 

The integration over all q,, q,, . . . was carried out by 
Feynman in his solution of the polaron problem, and we 
shall use this integration to eliminate the phonon coordi- 
nates. I t  can be shown that in our case 

. sin 
k , d + k r ( t )  . k , d + k a ( s )  dtds. 

2 
Slll 

2 

It i s  impossible to integrate further with respect to 
Dxo and Dx, because of the complicated form of the last 
term of (10). The continual integral can be calculated 
only if S is an integral of functions in the form 2(t) ,  
x(t), g2(t). Just a s  in the polaron problem, C51 we use a 
variational method. In place of an exciton that interacts 
with a lattice, we consider an exciton in which, besides 
a direct Coulomb interaction between the electron and 
the hole, each of the particles interacts with a fictitious 
particle of mass Me via the potentials f (xe - xe)'/2 and 
f (x,, - xe)'/2, where xe, x,, xe a r e  respectively the coor- 
dinates of the electron, the hole, and the fictitious par- 
ticle, while f and Me a r e  variational parameters. 

After eliminating the coordinate x,, the introduced ac- 
tion takes the form 

1" i " md2 ( t )  mu:x2 ( t )  ) dt 
S - j d t m i : ( t ) ~ ~ J  (-+- 

O - k  4 4 
0 

Intermediate coupling. Feynman's path-integral where 
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The continual integral with the action So can be calcu- 
lated exactly, and the difference between S and So is 
taken into account in the form of a correction 

F=F,+p-'(S-So),  

Po = l l n  e-'oDx0 Dx, 
B 

(S-So>= f (S -S , ) e -S~Dxo  Dx e-SoDxo Dx. / I  ( 1 4 )  

Direct calculation of ( 1 3 )  and ( 1 4 )  a s  a-  0  yields 

where 

It is seen from (15)  that a substantial contribution to 
the integral i s  made by the times t -  l / w , ,  and therefore 
k : ~ 4 r n w , ~ ~ /  t i w 2 .  Consequently, the expansion of V ( x )  
in a series in small x  is valid for 9?<< d 2 ~ , ,  / E ,  if 

The inequality is least satisfied in the weak-coupling 
limit v2 /w2-  1 .  For example, at d  = 1 0  and w , -  lom2 
eV, this inequality reduces to the requirement that the 
anisotropy be sufficient: E , ,  /E,>> 2 .  With increasing 
coupling force ( v 2 / w 2  > 1 )  the ser ies  expansion of V ( x )  
becomes more and more justified. 

Variation of the functional F, was carried out by a 
numerical method. We have also calculated the exciton 

TABLE I. I3nerg.y and effective mass of exciton. 

translational mass, using Feynman's method. L51 In or- 
der of magnitude, the effective mass  coincides with M e .  
The results a r e  given in Table I. 

The transition to the case of strong coupling and of 
excitons with internal-motiondimension .F <<& is ef- 
fected in (15)  as w,-  m and V>> W, w,. If & >>d, then 
a substantial contribution to the integral (15)  is made by 
small kx,  and it is therefore possible to sum over k, 
setting kr = 0  in w ,  and eh. As a result, F1 takes the form 

The minimum of the energy 8, = - ( ~ ~ n z / n t i ~  is reached at 
~ = 4 a ~ r n / n t i ~  (a  is defined by formula ( 8 ) ) .  In this case 
W - w , .  An exact solution for the functional ( 7 )  yields 
Fl = - a 2 m / 3 t i 2 .  If the exciton dimension in the unde- 
formed system is large in comparison with G, corre- 
sponding to wo << V,  then we have in the strong-coupling 
limit w = V and 

Comparison of (16)  and (17)  shows that in the strong 
coupling approximation the case Z>>Zo differs from the 
case T<<Z,, only in an inessential renormalization of the 
coupling constant. Thus, allowance for the finite dimen- 
sion of the internal motion yields F1 = - m a 2 / 4 n t i 2 .  

We note that when wo << V the energy does not depend 
at all on the frequency wo determined by the direct Cou- 
lomb interaction. This might mean that a bound state of 
two electrons or  two holes with wi < 0  is possible. Actual- 
ly, however, in the presence of a deformation the inter- 
action between identical particles differs only in sign 
from ( I ) ,  and it  is necessary to add to d  the deformation- 
induced change of the distance 2 u b )  << d  between the par- 
ticles along the y axis. Differentiating ~ ( x )  we obtain 
the force acting between the particles: 

It i s  seen therefore that at &/ax <O and I &/ax I > Ix I c , /  
d ~ , ,  the interaction is of the attraction type. Thus, a t  a 
sufficient anisotropy E , ,  >> E,, in a certain region x ,  a 
more important role in the dependence of the energy on 
the distance i s  assumed by the change (d  + 2 ~ b ) ) ~ / c , ,  
which leads to an effective attraction between the parti- 
cles, a s  compared with x2/&, ,  . Consequently, a t  a fixed 
deformation, the energy of interaction between identical 
particles, as a function of the relative distance, can 
have a local minimum a t  x  = 0 .  

It i s  important to investigate the stability of the ob- 
tained state. Let the deflection of one filament a s  a re-  
sult of the deformation be u(x) ,  and that of the second 
filament ( - u ( x ) ) .  Then the elastic energy is defined a s  
the minimum of the functional 

Note. The energy is measured in units of RwD ( w D  = lOI3 sec-'). 
The mass is measured in units of 2m ( m  is the electron mass): ci 
c, =0.7 X lo6 cmlsec; &,=3; c,/ci=0.5; p = 1 g/cm3; a,, is the dimen- 
sionless coupling constant: a, = % r-3/2 (m/liWD ) ' I 2  e 4 / p d 4 ~ ~ A ~ L & , I .  

under the conditions 
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It can be shown that the energy of a state in which the 
deformations a r e  shifted relative to one another by 2a, 
(u(x) -U(X +a), -u&) - -U(X -a)) differ from the energy 
of a state with deformations u(x) and -u(x) by an amount 

where 

Ineul' cos k,d Inetrl' 
9'"- C ,,,.: 9 a(k=) -=  

~ , . I L  r,.h,r 

u(kx) i s  the Fourier transform of u(x). 

Inasmuch a s  a2(kx) :, p2(kX), the sign of 6F is deter- 
mined by the sign of p(kX). If the spectrum of w, is such 
that the frequency w,, increases with increasing ky when 
k, and k, a r e  constant. then p(kx) > 0 and 6F < 0. Thus, 
for the acoustic spectrum, the obtained state has the 
maximum elastic energy. It can therefore be stable only 
if there is a sufficiently strong Coulomb attraction be- 
tween the particles. In the presence of repulsion, the 
obtained state is unstable. It is also unstable in the case 
of attraction if the parameters a re  such that w, << V (rel- 
atively weak attraction, corresponding to <<;I. 

It follows from the considerations advanced above that 
the only possible states of,the exciton-plus-lattice system 
a r e  those in which the dimension % of the deformation 
region is not small in comparison with the bare exciton 
radius Z. This conclusion is clear, of course, also 
from pure qualitative reasoning: in a rigid lattice, the 
deformation radius is large, and a s  the lattice becomes 
softer, this radius decreases, but cannot become much 
smaller than x. 

Since the variational procedure used above3' does not 
lead to stable solutions a t  all values of the initial param- 
e ters  of the problem (it  turns out that Zo <<F in the re- 
gion of the considered unstable solutions), and stable 
solutions should exist even for these values of the initial 
parameters, we a r e  faced with the problem of improv- 
ing the variational procedure. It appears that such an 
improvement can be reached, for example, within the 
framework of a model in which the electron and the hole 
interact with different fictitious masses. In connection 
with the foregoing, we shall henceforth confine ourselves 
precisely to the parameter region in which > 2. 

For the case of strong coupling F, << w, is realized at 
v2 - w2<< w;. In this limit the term 4C(1 -eqt) /wv3 
in the exponential of (15) can be neglected. We then 
have for the energy of the state 

hkSZ 
n [ e x p { - -  ( ~ - e - ~ ~ ~ )  1- cos k ~ e x p { - -  ( f+emoi)  . (20) 

$moo 4moa ""I 
The same expression for F ,  can be obtained by perturba- 
tion theory. 

Weak-coupling approximatim . The unperturbed func- 
tions of an exciton moving with momentum fip a r e  
= L - ' / ~  exp(ipxo) qn(x)(qn(x) a r e  the oscillator wave func- 

tions n = 1,2, . . . , L is the length of the filament). The 
perturbation is the second term of (2), in which i t  is 
necessary to put, for the reason indicated above, V'(x) 
= v0/d. In second-order perturbation theory, the cor- 
rection to the energy of an exciton with momentum fip 
is given by 

where 

Direct calculation yields 

f,(z)=co$ z if n is odd. 
f.(z) =sinz z if n is even. 

The second factor in (21) can be represented in the 
form 

Summing over n and putting p = 0, we obtain expression 
(20). Thus, (15) goes over into the strong and weak 
coupling approximations. 

2. QUASI-TWO-DIMENSIONAL SYSTEMS 

The foregoing results can be easily generalized to in- 
clude the case of a system of semiconducting planes. In 
the strong-coupling approximation, when i? << G, the 
functional of the energy takes the form (4) with the sub- 
stitution kr- k,,, where k,,, %, x are  already two-dimen- 
sional vectors lying in the plane of the layers. A func- 
tional of the type (61, which was obtained after eliminat- 
ing the coordinates of the internal motion, cannot be 
minimized exactly with respect to q(%) in the two-di- 
mensional case. To estimate the minimum we there- 
fore choose a simple form of a normalized trial function 
q(%) = (2 /1~) ' /~ne  " I r i .  The expression for F, depends 
essentially on w,,. For the Debye spectrum we have 

where 

The y axis is directed perpendicular to the planes. 

It is seen from (22) that for the quasi-two-dimensional 
systems the localized states a r e  produced if p > fi2/4m. 
In this case the energy gain increases monotonically with 
decreasing dimension of the deformed region, therefore 
the equilibrium value w 51/F and cannot be obtained within 
the framework of the employed approach, where it was 
assumed that HX << 1. The condition P > t2(4m)-' is satis- 
fied, for example, a t  &, ,=3 ,  d = 8 &  c , = 0 . 7 . 1 0 ~ c m /  
sec and p =  1 g/cm3. The Feynman continual-integration 
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method yields in the case of a quasi-two-dimensional 
system an expression analogous to (15) for the energy 
F,, except that the first  two terms have an additional 
factor 2, and the integrand contains k,, in place of k x .  
As seen from the analysis of the strong-coupling ap- 
proximation, there exists a critical interaction constant 
such that when the interaction is weaker the change of 
energy and mass of the exciton, due to the deformation, 
is small and can be calculated by perturbation theory. 
On the other hand, if the interaction exceeds the critical 
value, a strongly localized state is produced, the dimen- 
sional of which, a s  follows from an analysis of the ex- 
pression for F,, is determined by the details of the pho- 
non spectrum w,,. In particular, for a Debye spectrum, 
the dimension of the state is of the order of the inter- 
atomic dimension. To investigate such states i t  is there- 
fore necessary to know the actual form of the interaction 
between the charges at short distances, and the form of 
the phonon spectrum a t  short wavelengths. 

In quasi-one-dimensional and layered systems, the 
phonon spectrum is anisotropic and can have singulari- 
ties due to flexural oscillationsof the filaments or  the 
planes. C11"21 In particular, if the elastic constants cor- 
responding to the interaction of the atoms inside one 
plane a re  much larger than for the atoms situated in dif- 
ferent planes, the spectrum takes the formc"' 

where s2 - wf 8, - w:a2 (a is the lattice constant in the 
plane), w, is the frequency corresponding to the relative 
motion of the planes, and wo is the frequency of the flex- 
ural oscillations of the plane, with w, << w,. At kt >> wl/  
woae =p2, the term a: ki predominates in the spectrum. 
It follows therefore that the principal role in the defor- 
mation of states with dimensions < l /p  is played by 
flexural deformations, the energy of which increases 
rapidly with decreasing ?,(w:- l&). It is therefore 
clear that the dimension of the state is determined by 
the macroscopic parameter p-'. For the spectrum (23), 
the energy a s  a function of the variational parameter n 
takes the form (22), but P = ~ ( n ) ,  where 
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Assuming, for example, w, = 1013 sec-', w, = 3 = 10" 
sec", a = 3 A, d = 5 A, and c,, = 3, we obtain by numeri- 
cal calcu1ation~-l /p,E=-0.01 eV-tiw, and nz** =16 m. 
We note that the use of a spectrum similar to (23) for a 
quasi-one-dimensional crystal at sufficiently small w, 
can increase the constant (Y [ ~ q .  (8)] by several times. 

In all the estimates, the exciton bare mass m* was 
assumed to be equal to 2m, where m is the mass of the 
electron in vacuum. It is seen from the foregoing that 
the coupling constant increases if the effective bare 
mass of the exciton is larger than 2m. It follows from 
the results that m** depends very strongly on (Y,. 

Therefore a small increase of the exciton mass m* leads 
to a substantial increase of m**and E .  

"1n other words, we have in mind a sys tem Hamiltonian that 
includes t e rms  representing mutual scattering of two quasi- 
part icles (electrons o r  holes) with emission o r  absorption of 
a phonon, and corresponding to flexural oscillations. 

' )see the expression fo r  the energy of the elastic deformation 
of the lattice (last  t e r m  of (4)). 

3 ' ~ s  already shown, this procedure i s  suitable fo r  the parame- 
t e r  region where To >> Z. 
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