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It is shown that a structural transition in a crystal can be due to a nonlinear resonance "capture" of 
different lattice vibration modes. The condition for capture is a> c (a is a dimensionless anhannonicity 
parameter and E is a dimensionless coupling constant for the modes). A phase transition model is 
constructed on the basis of new experimental data for the group of isomorphous crystals of the 
triglycinsulfate type. It is shown that a coherent state of the orientational vibrations of the heavy-atom 
groups is formed below the transition point, and the thermodynamic characteristics of this state are found. 
The connection between the dynamical approach developed and the models for the ferroelectric type of 
ordering is discussed. 

PACS numbers: 63.20.-e, 64.70.Kb, 61.50.K~ 

INTRODUCTION the vicinity of a ferroelectric phase transition. These 

Structural lattice instability is one of the mechanisms 
that can lead to a phase transition of the ferroelectric 
type. From the dynamical point of view, such a transi- 
tion may be accompanied by the appearance of the so- 
called "soft mode," whose frequency tends to zero a s  
T - T, .[' ' However, the dynamical approach allows us 
to look a t  the problem of instability of lattice structures 
from a somewhat more general point of view. Indeed, 
if the variation of some parameter (e. g., the tempera- 
ture) leads to a situation in which some characteristic 
frequencies of the system turn out to be close (i. e., in 
resonance), then the structure of the system should also 
be reconstructed, and the soft mode corresponds to the 
particular case of such a resonance. 

1nC2' the possibility was discussed of the occurrence 
of a structural phase transition because of a resonance- 
type instability arising a s  a result of the interaction of 
certain types of degrees of freedom of the lattice. The 
present paper is devoted to a detailed analysis of this 
question. Underlying i t  a r e  a number of experimental 
data on the analysis of the spectra of the Raman scat- 
tering (RS) of low-frequency optical lattice vibrations in 

data have now been obtained for the family of isomor- 
phous crystals of the TGS group (triglycinsulfate, tri- 
glycinselenate, triglycinfluoroberyllate), C3' for ammo- 
nium fluoroberyllate (AFB), [*] dihydrate of sodium am- 
monium  ele en ate,^^^ etc. It is customarily assumed that 
the phase transition occurring in the enumerated crys- 
tals is of the order-disorder type.[" The RS data allow 
us, however, to obtain a more detailed picture of the 
phase transition. The reason for this consists, on the 
one hand, in the fact that there can exist in complex 
lattices individual structural atomic groups which a re  
relatively weakly coupled to the remaining lattice and 
which execute motions almost independent of the other 
groups. Therefore, it may turn out to be possible to 
indicate that atomic group whose critical behavior de- 
termines (primarily) the phase transition. Thus, in all 
the above-enumerated crystals the isotopic substitution 
of hydrogen by deuterium does not lead to a significant 
change in the Curie temperature. This leads to the con- 
clusion that the ordering is undergone by the relatively 
heavy elements: the glycine ions in TGS or  the tetra- 
hedral groups in the other crystals. On the other hand, 
the width of the line and i ts  intensity in the RS spectra 
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essentially depend on the coherence properties of the vi- 
brations of the atomic groups in different lattice unit 
cells. Thus, the RS data may allow us to take a new 
view of a ferroelectric transition a s  a transition with a 
critical variation in the temperature dependence of the 
coherence properties of the vibrations of the atomic 
groups in the lattice that undergo the ordering. 

If we introduce some effective potential in which the 
atomic groups vibrate, then the coherence factor for 
these vibrations in different unit cells is determined by 
the phase correlation of the vibrating groups (trajectory 
or orbit correlation). To the establishment of a long- 
range order below T, should correspond an infinite cor- 
relation length of the phases of the trajectories belong- 
ing to different unit cells. A similar analysis, which 
underlies the present work, differs from the existing 
theories of the appearance of spontaneous polarization 
in having the dynamics of the trajectories of the atomic 
groups undergoing the ordering introduced more exactly 
into the microscopic model. Indeed, usually the atomic 
orbits a re  replaced by an equilibrium position in a po- 
tential well, and the phase transition ar ises  a s  a result 
of the distortion of, o r  a shift in, the equilibrium posi- 
tions. Such an approach is equivalent to an effective 
averaging over the orbits (i. e., over the oscillations in 
the potential well), and leads to the loss of the concept 
of coherence of the orbits in different cells of the lattice. 

As will be shown below, our analysis enables us to es- 
tablish the appearance below T, of not only spontaneous 
polarization, but also of spontaneous coherence of the 
vibrations of the atomic groups in different cells of the 
lattice. A nicer question is the question of the forma- 
tion of bound states below T,. For classical vibrations 
we can indicate only one type of interaction that leads 
to the formation of a bound state-nonlinear r e ~ o n a n c e . ~ ~ '  
Owing to resonance, the vibration amplitude varies, 
which leads to the variation of the vibration frequency 
because of anharmonicity. The latter leads to the de- 
tuning of the resonance condition and to the saturation 
of the resonance. The effective Hamiltonian under the 
conditions of nonlinear resonance i s  analyzed in detail 
in 52. 

The above-presented arguments a re  developed in the 
present paper for a somewhat simplified model for crys- 
tals of the TGS type, for which a comparison of the the- 
oretical results with the experimental RS data can be 
carried out. In this model the ordering occurs a s  a re- 
sult of the interaction of two low-frequency lattice vibra- 
tion modes. Below T, a bound state of the vibrations of 
the various structural units of the crystal is formed 
which leads to the occurrence of shifts in the equilibri- 
um positions of the structure elements. A significant 

FIG. 1. 

role in the formation of the bound state is played by the 
anharmonicity of a t  least  one of the vibration branches. 
Owing to anharmonicity, there occurs a "capture" of 
the vibrations into a nonlinear-resonance state, which 
determines a new equilibrium structure of the lattice 
a t  T<T,. 

$1. DESCRIPTION OF THE MODEL 

It is convenient to start  with some experimental data 
for crystals of the TGS group, data which underlie the 
phase transition model considered below. Analysis of 
the RS spectra led to the discovery of two low-lying 
vibration branches with anomalous behavior of the fre- 
quency near T, .I2' A typical example is schematically 
shown in Fig. 1. Simultaneously with the critical be- 
havior of the w1 and w, lines a s  T, was approached there 
was observed a broadening of the second line (Fig. 2). 
An investigation of the spectra of the isomorphous (in- 
cluding the deuterated) crystals enabled us to establish 
the fact that the w, branch is primarily due to the trans- 
lational vibrations (of the SO, and SeO, groups for tri- 
glycinsulfate and triglycinselenate respectively), while 
the w, branch is due to the orientational vibrations of 
glycine. 

In Fig. 3 we schematically show the relative disposi- 
tion of the SO, groups and the glycine-I ions['' responsi- 
ble for the critical branches of the w, and w, vibrations. 
The coupling between the SO, groups is realized through 
the glycine-I1 and glycine-111 ions (not shown in the fig- 
ure) by means of hydrogen  bond^.''^ The glycine-I 
groups execute orientational vibrations conditionally (in- 
dicated in the figure by an arrow). 

The two curves in Fig. 1 pertain to the same symme- 
try class (B) ,  which does not correspond to the symme- 
t ry  class of the soft mode in the ferroelectric phase. 
Furthermore, far  from T, the quantity Aw = w, - w1 - wl, 
w, , and, consequently, the interpretation of the results  
shown in Fig. 1 a s  the splitting of the vibration frequen- 
cies of one and the same group of atoms in a double- 
minimum potential is to be excluded. 

It seems more natural to use the idea of resonance be- 
tween the corresponding vibration modes. A qualitative 
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model for the lattice dynamics is based on the following. 
The glycine groups execute orientational vibrations that 
can be assumed to be largely localized. They a r e  cou- 
pled to each other primarily via the SO4 groups. On the 
other hand, the translational vibrations of the SO4 
groups a r e  collective vibrations. We shall be interested 
only in the optical branch of these vibrations, which 
branch can be close in frequency to the orientational vi- 
brations of glycine. Thus, the system's Hamiltonian 
describing only the dominant critical components of the 
motion can be represented in the form 

Hamiltonian of such a system has the form 

where I,, 9, and I,, 8, a r e  the action and angle of the 
corresponding degrees of freedom and EV is the inter- 
action, whose magnitude is characterized by the dimen- 
sionless parameter c. In the zeroth approximation the 
vibration frequencies a r e  equal to 

Let us write down the condition for resonance: 

where I,, is the action of the atomic group executing lo- 
calized vibrations near the coordinate rj, I,, is the ac- 
tion of the collective mode having the wave vector k, and 
the Vj, a re  the components of the interaction energy. 
The orientational-vibration amplitude can attain a con- 
siderable magnitude near T,,[ '~ and therefore HIj de- 
scribes anharmonic vibrations; w, = 8HIj /8ZIj = w,,(Z, $). 
The collective translational vibrations can be assumed 
to be linear. Since the amplitude of the I-vibrations 
(the anharmonicity notwithstanding) is relatively small, 
the magnitude of the momentum Ak that canbeexchanged 
by the 1- and c-vibrations is also small, and the spread 
in magnitude of the momenta for the c-modes effectively 
interacting with the 1-vibrations is small. In the small- 
k region (which makes the dominant contribution near 
T,) the frequency difference arising when k changes by 
Ak because of the dispersion of the optical branch can 
be neglected. Hence we arrive a t  the single-frequency 
approximation for the c-vibrations: 

where the index k on I, has been dropped and averaging 
over the angles has been carried out in V. 

At sufficiently high temperatures the glycine groups 
execute random vibrations about the centers rj , and a r e  
weakly coupled (because of the intense temperature fluc- 
tuations) to the c-vibrations (i. e., with the SO4 groups). 
If, a s  T approaches T,, the variation of, for example, 
w, (or w , ~ )  can lead to resonance (w,= w,), then the for- 
mation of bound I-c vibrational states is possible below 
T,. As will be seen below, the nonlinearity of at least 
one of the branches is a necessary condition for the ex- 
istence of the phase transition. 

$2. DETERMINATION OF THE EFFECTIVE 
HAM l LTONl AN 

As has already been noted, we considered the case 
when the critical behavior of the lattice is due to the 
resonance interaction of two anharmonic modes. To 
determine the form of the Hamiltonian, let  us, follow- 
ingL6', f i rs t  consider the phenomenon of nonlinear reso- 
nance between two arbitrary degrees of freedom. The 

where nl, , n,, a r e  fixed integral numbers, while 11, and 
I, a r e  the oscillator-action values a t  which the reso- 
nance (2.3) arises. 

Let us expand V in a Fourier series:  

and, using (2. I), (2.2), and (2.4), let us write down the 
equations of motion: 

dH 
f 2  =--=- i e z  n,V ,,,, exp i (n161+niB,) +c.c., 

a*, 

If the values of I, and Z2 a r e  close respectively to I,, 
and I,,, then a resonance ar ises  in the system, and, 
according to the condition (2.3), we can retain on the 
right-hand side of each of the expressions (2. 5) only the 
term from the sum with n, =nl, and n, = - n,,: Further- 
more, let us neglect in the expressions for 8, and 4, the 
terms of the order of &; this will be justified below. 
After this, the system (2.5) in the vicinity of the reso- 
nance goes over into the following: 

z , = ~ E ~ , , v  ain 9, 

Iz--2enl,V sin 9, 

From the first  two equations we find the relation 

nzJt+ntrIz=const. (2.7) 

Let us multiply the f i rs t  equation in (2.6) by w,, the 
second by w,, and add: 

o , ( I , ) f ,+a2(Iz )12-2eV sin $.$-0. 

As a result, we find the integral of the motion: 
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Expanding w, and w, in the vicinity of the resonance val- 
ues of I,, and Iz, : 

dot  (Icr) 
@ , ( I t )  --"'(I,,) +T (It-Iir) ,  i-1- 27 

and taking (2.7) into account, we obtain from (2.8) the 
effective Hamiltonian in the form 

1 d o l ( I 1 , )  
f f r - f l t  ( I I r )  +H,(I,,) + -- 

2 d l ,  
(II-II.)2 

1 d ~ r  (12,) +-- 
2 d l ,  (IZ-I2,)=+2eV cos 9. (2.9) 

The expression (2.9) describes coupled oscillations of 
two degrees of freedom in the vicinity of the resonance 
(2.3) 

From (2.9) we estimate the maximum change in the 
action in the vicinity of the resonance (i = 1, 2): 

and the maximum frequency change: 

doc (It.) 61 - 4&V 6 w t = -  
I ,  dl, I"' . 

In the equation for $ in (2.6) we neglected the terms of 
order E V .  The condition under which this is valid is 
obtained from the inequality 6 0  >> EV, or  with allowance 
for (2.11): 

here we have introduced the dimensionless nonlinearity 
parameter ( Y E  (dw/dl)(l/w). The inequality (2.12) is 
decisive for  what follows, and expresses the condition 
for "capture" of the system into resonance. As can be 
seen from (2.12), the nonlinear resonance can also ar ise  
in the case of weak anharmonicity ( 0  << 1) provided the 
mode-coupling constant c is sufficiently small. 

The obtained expression (2.9) allows us to write down 
the effective Hamiltonian (1. I), (1.2) describing the 
strong (resonance) coupling of the 1- and c-vibrations. 
For this purpose, let us se t  in (2.9) 

Comparing (2.9) and (1. I), (1.2), we arrive at the ex- 
pression 

N 

+2 -LC V(Ij, ,  I.) cos $,, 
IN 

j - 1  

where the factor N -'I2 has been introduced into the in- 
teraction term for correct normalization and the phase 
q j  takes into account the position (r,) of the vibrating 
atomic group and is equal to 

In (2.14) n and n, a r e  a pair of whole numbers deter- 
mining the resonance: 

k is the wave number of the collective mode. Since a l l  
the groups will henceforth be assumed to be identical, 
the index j on o, in (2.15) and on If, in (2.13) will be 
dropped. The Hamiltonian (2.13) with allowance for the 
remarks made above assumes the following final form: 

+2eN-"V(I,, I.) c c o s  rlrj. 
I- l 

A characteristic feature of the obtained Hamiltonian 
is the presence of the phases JIj, which describes the 
coupled 1- and c-vibrations, JI, being, according to 
(2.15), an approximate motion integral that assumes 
random values for different lattice si tes j. The pres- 
ence of the factor CcosJI, in the interaction term of the 
effective Hamiltonian of the lattice expresses not only 
a formal, but also a fundamental difference between the 
approach being developed here and theories of the dis- 
placive o r  order-disorder type. If the spread in the 
phase JIj from site to site is "sufficiently random," then 
2 cosJI,- 0, and the coupling between the 1-  and c-vibra- 
tions effectively disappears. On the other hand, a s  will 
be seen below, 2, cosJIj #O at T < T,, which indicates, on 
the one hand, the formation of a bound 1-c state and, on 
the other, the coherence of the phases JI ,  ." 
$3. THE CONDITIONS FOR A PHASE TRANSITION 

The thermodynamic properties of the system (2.16) 
a re  determined with the aid of the statistical sum 

where p =  1 / ~  and d r  is an element of phase volume. 
We can write 

Here dl?, is an element of volume of the collective de- 
gree of freedom, while d r ,  is the element of volume of 
the j-th atom. Using the definition of +, we have 

Substituting (3.2) and (3.3) into (3. I), we obtain 

X ~ P { - ' / * P ~ ' P ~ " - ~ ~ ~ E N - ' ~ V ( I , ,  I.) cos 9,) 
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'where w' = dw(zj)/dzj I Ij=Ir and 

In the f i rs t  order in the vibration amplitudes, the in- 
teraction has a dipolar character, and the matrix ele- 
ment can be represented in the form 

in which g is some constant. 

For N- m , we have from (3.4)- (3.6): 

Zmmax exp  N { - ~ o . y 0 + l n  Q ( y o )  1 ,  

Q b )  - J ~ P  d g  e ~ p { - ~ I ~ ~ o ' ~ ~ - 2 p e g y ~  cos $1, (3.7) 

y -IclN. 

The extremum value, yo,  of the action of the field of the 
collective mode in the volume of one unit cell of the lat- 
tice is determined from the condition 

if Eq. (3.8) has a solution yo >O. In the opposite case 
yo =o. 

To estimate the quantity Q, we must accurately deter- 
mine the limits of the integrations over P and +. Since 
the expression (2.16) for 8 has meaning only for parti- 
cles captured into resonance with the field of the collec- 
tive mode, the domain of integration over Zj lies, for 
each j , in the vicinity of I, with the interval (2. lo), The 
region of variation of the quantities P and JI is deter- 
mined from the Hamiltonian (2.9). 

The computation of Q gets, however, significantly 
simplified a t  sufficiently low T if the condition 

is fulfilled. In this case in Q(y) stands a sharp function 
under the integral sign and 

where Zo is the Bessel function of imaginary argument. 
The substitution of (3.10) into (3.8) leads to the equation 

which is an analog of the Curie-Weiss equation. The 
solution to (3.11) for yo =y o (T)  is shown in Fig. 4. The 
critical temperature T, is determined from (3.11) for 
y 0- 0: 

Similarly, the magnitude of the gap can be  found: 

The obtained phase transition is analogous to the phase 

FIG. 4. 

transition into a spontaneous coherent state considered 
in t9 I . At T < T, the interaction between the collectivized 
mode and the localized vibrations of the groups leads to 
the formation of a bound state. The motion of the indi- 
vidual groups participating in the 1-mode becomes phys- 
ically ordered, i. e., becomes coherent. The onset of 
long-range order manifests itself in this property. 
Above T, the temperature fluctuations destroy the bound 
state, and the existence of a finite density (yo/h) of 
bound phonons of the collective mode becomes energeti- 
cally disadvantageous. The term describing the inter- 
action of the field of the collective mode with the I-mode 
effectively vanishes a t  T > T, . Indeed, i t  follows from 
(2.16) that the quantity CYml cosJIj is of the order of N l f 2  

at  T > T,, since i t  is a sum of a large number of random 
numbers. On the other hand, at T < T, the correlation 
between the phases implies that 

It should be noted that the appearance below T, of a 
coherence state of the orientational vibrations of the 
atomic groups is a universal property (of the system), 
presupposing only anharmonicity of the potential and not 
depending on i ts  concrete form. Different shapes of the 
potential curve for the orientational vibrations can lead 
to additional classification of the type of phase transi- 
tion (of the displacive type, order-disorder type, etc. ). 
If we exclude the phonon part from the interaction term 
in the Hamiltonian (2.16), then we can obtain direct in- 
teraction between the groups executing orientational vi- 
brations in various unit cells. The constant of such an 
interaction is easy to compute, and is of the order of 

Comparison of (3.14) with (3.12) leads to the natural 
result J,, - T,, and reveals the physical meaning of the 
expression for T, . 

If, for example, the characteristic potential in which 
the orientational vibrations a r e  executed is a double- 
minimum potential, then we can make the problem less  
exact in the followihg manner. Let us average the Ham- 
iltonian over the fast  orientational vibrations of the 
atomic groups and introduce in place of their trajectories 
a spin variable characterizing only the position of the 
atomic group in one o r  the other minimum of the poten- 
tial. In this case the interaction between the atomic 
groups in neighboring cells of the lattice has an exchange 
character with the coupling constant J,,, and we arrive 
a t  a conventional model of the order-disorder type. 
The above-developed approach does not include the de- 
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scribed rough approximation, and allows us, a s  will be 
seen below, to obtain new information about the state of 
the lattice when the phase transition occurs. 

$4. STRUCTURAL CHANGES OCCURRING I N  THE 
PHASE TRANSITION 

In this section we consider two questions: the ques- 
tion of the appearance of a mean molecular displacement 
field a t  T <T, and that of the determination of the corre- 
lation function of the positions of the atomic groups exe- 
cuting orientational vibrations. 

Let us introduce the complex amplitude, 5 ,  of the 
field of the collective mode: 

Substituting (4.1) into (2.16), and taking into account 
(3.6), we can derive the following equation of motion for 
5: 

From (4.2) follows the condition for equilibrium: 

The right-hand side in (4.3) is a self-averaging quanti- 
ty, i.e., for  N - a ,  

The basic assertion consists in the following: 

and is deduced a t  once from the fact that 

lim (EE'IN) = y o ( T ) .  
N-m 

It also follows from (4.5) that 

(e""~)f  0, T I T , .  (4.6) 

Now let  xi be the displacement of the i-th atom. Let us 
write 

At T>T, the phases 9# a re  distributed randomly, and 
(xi ) = 0. However, a t  T < T,, on account of (4.6), ( x  ) 
#0, i. e., a mean displacement field exists. The phase 
of the field gets frozen in and is indeterminate. There- 
fore, 

lim (SIN'") <yo'". 
3-r- 

For a more complete characteristic of the displace- 
ment field of the atoms, le t  us compute the correlation 

function 

Let us, for simplicity, restrict  ourselves to the case of 
resonance of the f i rs t  order (n = 1) and of weak anhar- 
monicity of the orientational vibrations. The latter 
means that we can retain in (4.7) only the term with rn 
= 1, C1=C. It follows from (4.7) and (4.8) that 

where A,,,r = r,,, - ri , and we have taken the properties 
of the Hamiltonian (2.16) into account. In deriving (4.9), 
we used the inequality (3.9), and the quantity C(Z) can be 
taken out from under the averaging sign a t  the point Z=Z,. 
From (3.4), (3.5), and (2.7) we find 

Let us transform (4.10) with the aid of (2.11) and sub- 
stitute i t  into (4.9): 

Y (TI R,= IC ( I , )  1 cos (kAmr) .  (4.11) 
 YO(^) 

As can be seen from (4. l l ) ,  the correlation function 
R, is proportional to the order parameter y o ( T )  and 
vanishes identically a t  T >T,. At T <  T, there appears 
in (4.11) in the general case a superstructure having a 
characteristic period equal to the period of the collec- 
tive mode. For the group of crystals under considera- 
tion an x-ray structural analysis does not reveal a su- 
perlattice. This means that the dominant contribution 
to the critical interaction is made by phonons with a very 
long wavelength, and the factor c o s ( k ~ , r )  in (4.11) can 
be omitted. If we take the higher-order terms in the 
expansion (4.7) into account, then the corresponding 
corrections to R, can easily be found and a r e  expressi- 
ble in terms of (cosm$). 

As has already been noted, the anomalous properties 
a re  possessed by only those degrees of freedom that 
have been "captured" into nonlinear resonance. In par- 
ticular, the number of anomalous c-mode phonons is 
small. These a re  the phonons whose action l ies in the 
interval I * 61, where 61 is found from (2.10). The situ- 
ation below T, is similar to the coexistence of the nor- 
mal and superfluid components in a quantum liquid. The 
smallness of the number of anomalous phonons leads to 
a situation in which, for example, the widths of the c- 
mode lines below and above T, differ little from each 
other. This is in agreement with experiment (see Fig. 
2). On the other hand, the anomalous effects at T < T, 
should manifest themselves strongly in the properties of 
the I-vibrations, since coherent motions and displace- 
ments occur only below T,. In particular, in light scat- 
tering by the I-vibrations the intensity of the light should 
fall sharply at T >T, because of the straggling of the 
phases of the scattering atomic groups. At the same 
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time there occurs a sharp broadening of the scattered 
line, which has been observed in experiments.[23 

CONCLUSION 

The model developed in the present paper describes 
phase transitions due to the ordering of large structural 
elements of the lattice. There exists a semiphenomeno- 
logical approach in which one o r  another law of interac- 
tion between, and a coupling constant for, the cell ele- 
ments undergoing the ordering a r e  assumed. We can, 
however, say a priori that the appearance of an ordered 
state is connected with the formation of a bound state 
of certain types of motion of the lattice. We considered 
one of the possible cases: the formation of a bound 
state a s  a result of the capture of vibrations into a non- 
linear resonance. Crucial for  the capture is the con- 
dition (2.12), which expresses the weakness of the cou- 
pling in comparison with the anharmonicity. The per- 
formed analysis, which partially takes the lattice dy- 
namics into account, allows us to obtain additional in- 
formation about critical phenomena and to carry  out a 
comparison with a wider class of experimental data. 
Among these should be information about the coherent 
properties of the vibrations of characteristic atomic 
groups and spectral line widths and intensities and 
their temperature dependences. On the other hand, 
the dynamical character of the analysis leaves untouched 
a number of questions about the structure of the lattice, 
questions which a r e  purely symmetry-related in charac- 
ter .  For this reason, in the present paper the specific 
type of transition (displacive o r  order-disorder) is not 
ascertained, and only i ts  more general and more uni- 
versal property- spontaneous coherence below T, , the 
appearance of which is characteristic of diverse reso- 
nance processes'93-is established. 

Although the approach to ferroelectric phase transi- 
tions that has been developed in the present paper per- 
tains to a definite class of crystals, i t  is, nevertheless, 
clear that it is based on ideas of sufficiently general 
character, the realization of which may, in the general 
case, prove to be not so  simple a problem. In this con- 
nection, it is useful to note some general consequences 
of the performed analysis: 

1) The more exact aIlowance for the dynamics of the 
atomic groups in the effective Hamiltonian introduces 
into the theory detailed characteristics of the localized 
potential for the atomic groups, characteristics on 

which depend T,, the mean polarization, etc. This may 
allow us to express a number of phenomenological pa- 
rameters in terms of the constants of the potential. 

2) The coherence properties of the trajectories of the 
various atomic groups determine the various character- 
istics of photon o r  phonon scattering by the lattice. 
These results cannot be obtained in the approximation 
in which the orbits of the atomic groups a r e  replaced by 
the equilibrium positions of the groups. 

3) The correct  analysis of the dynamical susceptibility 
near the phase transition point is, apparently, impossi- 
ble in principle without the correct  allowance for the dy- 
namics of the atomic groups in the lattice. The model 
Hamiltonian obtained in the paper can be used for such 
an analysis. 

4) Finally, we can, in the framework of the model 
developed, compare in a satisfactory way the obtained 
theoretical results with the experimental RS data for 
the group of crystals of the TGS type. 

"1t should b e  noted that, as a ru le ,  the  phase,  $,, of the  bound 
s ta te  i s  ignored in  p a p e r s  on  the microscopic models f o r  f e r -  
roelectr ici ty.  I t  may be  in fe r red ,  however, that the tem- 
pora l  dynamics of the phases  3, has  a s t rong  influence on the 
s p e c t r a l  p roper t ies  of the  system. 
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