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The thermodynamics of the two-dimensional Heisenberg model with the magnetic dipole interaction taken 
into account is considered. The existence of two effects is demonstrated: the magnet becomes effectively 
planar and a spontaneous magnetic moment arises. The longitudinal susceptibility, which turns out to be 
logarithmically large as the field tends to zero, is also calculated. 
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1. INTRODUCTION 

Recently magnets with layered structure, in which the 
interplanar exchange integral f '  is 3 to 6 times smaller 
than the intraplanar exchange integral 7, have been ex- 
tensively investigated. These system can be f i rs t  re- 
garded a s  collections of planar magnets, and the inter- 
action between planes is next taken into consideration. 
As was shown inc'], a planar magnet with a purely iso- 
tropic exchange interaction cannot have a nonvanishing 
spontaneous magnetic moment at a temperature T #0, 
which i s  a special case of the general theorem concern- 
ing the impossibility of spontaneous symmetry breaking 
in a degenerate planar system with a local interaction.['' 
The formal reason for this is the divergence of the inte- 
gral that determines the mean square of the transverse 
fluctuation of the spin a t  small momenta: 

where y, is the Bohr magneton and a is the lattice con- 
stant. 

The dipole interaction of the spin in a plane leads to 
an "easy plane" type of anisotropy, a s  a consequence of 
which the magnet becomes effectively two-dimensional 
over distances of the order of p", but the suppression 
of fluctuations not emerging from the plane takes place 
over substantially greater distances of the order of p4. 
This allows one to divide the problem into two parts. 
In the f i rs t  part  the renormalization-group method[&71 
is applied in order to reduce the system to a collection 
of "block-spins7' associated with regions of size y" 
forming an effectively two-dimensional system. This 
problem was solved by ~ h o k h l a c h e v , ~ ~ '  who found that 
the temperature and the parameter characterizing the 
dipole interaction at large distances vary significantly 
in comparison with their "bare" values. In the second Two-dimensional magnets with two-component spin 
stage the problem of a two-dimensional planar system (planar) were investigated in detail by ~ e r e z i n s k i < [ ~ '  
is considered with allowance for the dipole interaction, who proved the existence of a phase transition in which 
where the scale invariance of the planar system[" makes rigidity of the system p, with respect to slow rotation of 
i t  possible to find the exact dependence of the sponta- 

the magnetic moment appears. 
neous magnetic moment I ( m )  l on the parameter p and 

Various small perturbations of planar systems were 
investigated inL4' from the point of view of scale invari- 
ance. The two-dimensional isotropic Heisenberg model 
was investigated by ~ o l y a k o v . ~ ~ '  It was observed that 
the effective temperature increases with increasing size 
of the fluctuations. Although an exact proof does not 
exist at the present time, it is nevertheless very prob- 
able that neither long-range order nor rigidity exists in 
this case, and a phase transition is  not present (also 
seecB1). 

The model of a two-dimensional Heisenberg magnet 
with allowance for the magnetic dipole interaction is 
investigated in the presented work. The magnetic dipole 
interaction is a long-range effect and leads to the ap- 
pearance of a term linear in the momentum in the fluc- 
tuation energy. As a result, the mean square fluctua- 
tions of the spin becomes finite and the formation of a 
nonvanishing order parameter becomes possible. The 
important small parameter of the problem is the ratio 
p2 of the intensities of the dipole and exchange interac- 
tions: 

to determine the equation of state correct  to terms of 
order o(T~). 

2. REDUCTION TO A PLANAR MAGNET 

The Hamiltonian of the system has the form 

+ (gPB) C S (x) S (x') -3 (S (x) n) (S (x') n) 
Ix-xf13 

Here x and x' denote vectors to the lattice si tes of the 
two-dimensional lattice (for simplicity we assume it to 
be'a square lattice), a is the basis vectors of the lattice, 
n is a unit vector in the direction x-  x', and H is the 
magnetic field. The system of units is adopted in which 
the exchange integral P, the lattice constant a, and the 
length S of the spin vector a r e  equal to unity. The spin 
is assumed to be classical. The latter assumption does 
not reduce the generality of the investigation since in 
the present problem, a s  will be evident from what fol- 
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lows, the spins associated with large regions a re  impor- 
tant and these can be regarded a s  classical quantities. 
Let us take a s  the starting point the conjecture that dis- 
tances which a r e  large in comparison with the lattice 
constant a re  important for the magnetic properties of 
the system. This conjecture will be validated by the 
following calculation. It allows us to change in the Ham- 
iltonian (1) from a summation to an integration: 

where h = g p B  H and p = g p g .  

Since the vectors n lie in the plane of the lattice, the 
behavior of the components of the moment S perpendicu- 
lar  to the plane (cp) and lying in the plane (m) will be 
substantially different. Let us assume that the compo- 
nent cp is small. Then the components cp and m separate 
in the Hamiltonian (2). For the cp component we obtain 
the Hamiltonian 

A divergent integral, whose value depends on the meth- 
od of cutoff, appears in the second term of the Hamilto- 
nian 28, . It is natural to replace this integral by the 
corresponding sum over the lattice, which gives the val- 
ue 9 for it. If the first  two terms a re  kept in the Hamil- 
tonian Z,, it  follows that there i s  an exponential de- 
crease of the correlation function (cp(x)cp(xl)) with a cor- 
relation radius x - " ~  where X =  27 p2. This allows one to 
estimate the relative size of the third term in%, (in 
comparison with the first  two terms). Namely, by as- 
suming I x - X' I - p-', (q - q')' - (p2, we find that this ratio 
- p. Thus, the third term in 1, can be neglected. 

It will be shown below that the correlation functions 
of the m component decrease according to a power law. 
Therefore, the spin averaged over distances larger than 
p-' essentially l ies in a plane. 

However, the interaction of the m component with the 
fluctuations of the transverse component cp with scales 
smaller than p" substantially alters the coefficient of 
the Hamiltonian for the m component. 

As was shown by ~ o l ~ a k o v , " '  the temperature and 
correlation functions of the isotropic Heisenberg model 
in a plane a re  essentially renormalized during the tran- 
sition to large spatial scales. In our case this renor- 
malization cuts off at a distance of the order of x " / ~ ,  
the distance a t  which the transverse component cp "dies 
out." The renormalization of the temperature and the 
anisotropy parameter fo r  this case a re  contained in 
~hokhlachev' s articlet8': 

The renormalized value of the dipole interaction parame- 
ter  p i s  obtained in the following way. Following Khokh- 
lac he^,^^' le t  us write down 

Here Z,S, is the average spin in the enlarged region of 
size r ,  $ a r e  the short wavelength fluctuations inside 
this region, and s;= 1. Let us substitute (5) into the 
Hamiltonian (1) and average it over the rapid fluctua- 
tions JI. In this connection the dipole interaction term 
preserves i t s  form even for  the spins of the enlarged 
region; however, the coefficient p 2  is changed. Omit- 
ting the simple calculations, we present the final re-  
normalization group equation for p: : 

The solution of Eq. (6) is 

There is no renormalization of the magnetic field for a 
three-component spin. 

Thus, we have reduced the problem of a three-com- 
ponent Heisenberg magnet to  the problem of a two- 
component (planar) magnet with renormalized values of 
the temperature and of the dipole-dipole interaction 
constant. We note that the Hamiltonian of the compo- 
nent in the plane contains a short-range term of the form 

where m(x)  denotes the modulus of the vector m(x). 
Therefore, the correlators of the modulus decrease 
rapidly, just a s  the correlators of the transverse com- 
ponents. Only the rotation angles of the vectors a r e  
correlated a t  large distances. 

3. PLANAR MAGNET WITH A DIPOLE-DIPOLE 
INTERACTION 

Let us further investigate the system in the region of 
distances greater than x-'", that is, greater than the 
correlation radius of the component cp(x). Here the spin 
can be regarded a s  lying in the plane. The Hamiltonian 
has the form 

where m(x) is a unit vector. Here the second and fourth 
terms arose, respectively, from the isotropic and trace- 
l e s s  parts of the dipole-dipole interaction of two-dimen- 
sional spins. As will be shown in the Appendix, the last 
term in (8) is not essential for calculation of the average 
magnetic moment with the exception of the region of very 
low temperatures, where the magnetic moment saturates. 
In the region where the value of the magnetic moment 
does not coincide with the saturation value of the moment, 
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the indicated term can be neglected. The value of the 
spontaneous magnetic moment is determined accurate to 
a certain function of the temperature with the aid of con- 
siderations based on scale invar i an~e .~~ ' " '  As follows 
from the form of the Hamiltonian (8), the scaling dimen- 
sion of the parameter p: is given by Ap; = 1 - 2A, where 
A =  T1 / 4 ~ p , ( ~ ~ )  is  the scaling dimension of the order 
parameter. The spontaneous moment is given by 

Equation (9) is meaningful at A <  1/2. For A >  1/2 the 
dipole-dipole interaction cannot establish long range 
order. The coefficient in Eq. (9) can be approximately 
obtained by a variational method.[" 

Our further goal consists in the calculation of the de- 
pendence of the magnetic moment on the field h and on 
the dipole-dipole interaction p l .  In this connection we 
shall confine our attention to the case of low tempera- 
tures, T1 << 1. To this end we introduce the angular 
variable w, : m (x) = (cos w, , sinw,). In contrast to the 
usual planar model, the field w, is not a f ree  field. The 
interaction contains an infinite number of vertices orig- 
inating from the exapnsion of the terms h cosw, and 
p: cos(w, - w,, ) in powers of w, . 

Let us apply the method proposed by Polyakov in order 
to utilize the small quantity TI in explicit form: let  us 
change from the variable w, to the variable a, = ox /m. 
The Hamiltonian (8) takes the form 

Let us isolate the quadratic terms from the Hamiltonian 
a: 

1 (ax-ax , ) '  h -%=-I ( Y ~ ~ ) ' P ~ + * J J ~  d 2 r  dZx' + - ax2 d'x. 
T, 2 2 

We shall regard the remaining part  - Zo a s  the inter- 
action Hamiltonian. The Hamiltonian %, corresponds to 
the "bare" correlator 

Averages of the form ( (w, - w,, )2 ) a r e  represented by a 
summation of graphs, among which the loop graphs a 
(see Fig. 1) play the most important role, but an infinite 
number of other graphs exist, for example, graphs b 
through d. The complete summation of all these graphs 
is apparently impossible. Therefore, we shall confine 
our attention to the case of low temperatures, TI << 1, 
when the loop graphs a make a considerably larger con- 
tribution than all of the remaining graphs. For example: 
the graph in a with two loops is proportional to ~ : l n ' ( l /  
p l )  whereas graph b is proportional. to T:. It is conve- 
nient to carry out the summation of the loop graphs, 
leading to an essential renormalization of the parame- 
t e r s  R and h by the renormalization group method. 
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Omitting simple calculations, we present the ec{~ations 
of the renormalization group: 

where Z, is defined in Eq. (5) and 5 = I n ( r  fi ). 

It i s  necessary to integrate Eqs. (11) with respect to 
{ with the initial conditions R, 1 r.o= R, h, I,, = h from 
zero up to a certain value 5,= l n ( r c 6 )  determined by 
the values of R and h. From Eqs. (11) it follows that 

Here Y, i s  related to Z by the equation: Z = ( Y , G ) - ~ .  

The renormalized value (mrc)  is equal in modulus to 
unity since upon increasing the dimensions of the cell 
over which the spin is summed the fluctuations a re  
weakened, and the renormalization procedure which we 
have adopted reduces the vector m in each cell to unit 
length. By definition we have: (m,,) = ~ " ( m ) .  Hence i t  
follows that I(m)l= Z. At the same time the average val- 
ue of the magnetic moment is determined by the formu- 
la  

For a free field this would give 

1 T d'k , ,m) , = ex* (- - 2 (O.9 ) = exp [ - - ; J m ~ . ( k ) ] .  (13) 

In our problem the field w, is not free, and the equation 
(cosw,)= exp[- (1/2)(w:)] is, strictly speaking, incor- 
rect. However, the graphs violating this equation a re  
of order 0(T3) and a r e  discarded in our approximation. 
Therefore, the interaction is taken into account only by 
the replacement of the parameters in G ( k )  by the renor- 
malized parameters. 

After substitution of (12) into (13), we obtain the fol- 
lowing equation for the determination of Z(R, h): 

Considerations of scale invariance show that Z is of the 
form 

FIG. 1. 
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For the function F ( x )  of the scale invariant x 
= hR we obtain the equation 

The solution of Eq. (16) in the region of weak fields X F - ~  
<< 1 is given by 

Thus, the longitudinal susceptibility in a zero field turns 
out to be logarithmically divergent. For fields which 
a re  strong in comparison with the dipole interaction 
(but substantially smaller than the saturation field h 

/T), 

The homogeneous distribution w, = const does not give 
any contribution to 2%'; therefore, le t  us explicitly iso- 
late the dependence on the difference between the angles 
0%- Wxr : 

3wiz cos 20, cos(ox-ox+,) - J j d l x  day 
2 (A. 2) 

To the approximation of zero order in T I ,  the term 
(A. 2) gives a correction 

to the energy fluctuation with momentum k, where 0 
denotes the angle between the direction of k and the 
spontaneous moment. However, due to the fact that 
(A. 2) contains the factor cos2 w,, the renormalized val- 
ue of this term is substantially larger than the scalar 
term ~ " k  : 

which gives the correct behavior of the moment Z 
-ha/  (2-A) 

A phase transition associated with the appearance of 
a "superfluid density" occurs at a temperature TC1. In 
our system a second phase transition associated with 
the appearance of long range order may occur a t  a tem- 
perature T,, <T,, . Such a phenomenon in a two-dimen- 
sional planar weakly anisotropic magnetic substance was 
investigated inc4', where a variational approach gives 
the value A =  l/s at  the transition point T,, . From this 
point of view T, should have coincided with Tcl. How- 
ever, the accuracy of the variational approach is un- 
known. At the same time experimental data exist on 
layered magnetic  substance^,^^' from which one can, a s  
shown inc4', calculate A a s  the ratio of the susceptibili- 
ties x , ,  Judging from the indicated experimental 
data, the value of A  near the transition point Tcl is 
close to unity. From this point of view the possibility 
of a second phase transition a t  TC2< Tcl appears quite 
plausible to us. A phase transition involving the ap- 
pearance of a magnetic moment was observed in the 
NiC1,-graphite systemL101 by Karimov and Novikov. 
The value of A  at the transition point T,,, observed by 
these authors, was equal to - 0.6. 

We thank S. B. Khokhlachev for valuable discussions 
and S. V, Maleev for helpful remarks. 

APPENDIX 

Let us show that the last term of the Hamiltonian (6) 
is important only at very low temperatures. For this 
purpose let us represent i t  in the form 

- 11- x' ld (A. 1) 

where is the azimuthal angle of the vector x - x'. 

The relative contribution to the renormalized correla- 
tion function turns out to be of the order of Z4: 

G - 1  (k) =k2+R-'Z2k+R-'ZBk cos 2 8 f h Z .  (A. 4) 

In order to  evaluate the contribution to the spontaneous 
moment, we substitute (A. 4) into (11) and we shall as- 
sume the last  term in (A. 4) to be small. Then a non- 
vanishing contribution from it  appears only in second 
order, and the relative correction to the moment turns 
out to be of order Z8, which is not small  only a t  very 
low temperatures, when Z =  1. The spectrum of the 
spin waves becomes significantly anisotropic in this 
region. 
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