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We use an expansion of the collisionless kinetic equation for a plasma in a non-uniform magnetic field B 
to obtain a set of equations for a two-fluid anisotropic magnetohydrodynamics, taking into account terms 
of order 1 / B  2, in particular, for the magnetic viscosity tensor and the thermal currents. 
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1. INTRODUCTION 

We evaluate in the present paper corrections to first  
and second order in the parameter l/n, = mc/eB to the 
well known Chew-Goldberger-Low equations for a mag- 
netized anisotropic collisionless plasma. 

We showed inc1' that in the framework of the one-fluid 
magnetohydrodynamics (MHD) one must describe a plas- 
ma in a strong magnetic field B in the collisionless ap- 
proximation by the anisotropic MHD equations with a 
magnetic (collisionless) viscosity tensor that takes into 
account effects due to the finite Larmor radius. We re- 
tained then only terms of order 1/B and ignored 
"oblique" thermal electron and ion currents which in the 
one-fluid approximation cancel one another. However, 
it was shown inc2', where a strongly colliding plasma 
was considered, that in a number of cases an important 
role is played in the viscosity tensor by the spatial de- 
rivatives of the thermal currents which in the method 
of"' a re  formally contained in the terms of higher or- 
der in 1/B. We do not assume the single-fluid approxi- 
mation in the present paper and we use an expansion of 
the kinetic equation taking into account terms of order 
l/B3 which enables us to make the se t  of equations of 
the collisionless anisotropic two-fluid MHD for a plas- 
ma in a non-uniform magnetic field more precise; these 
equations generalize the equations obtained earl ier  inc3'. 
Up to first  order similar results have been obtained in 
a recent paper.[4' 

2. ZEROTH AND FIRST APPROXIMATION 
EQUATIONS 

The collisionless kinetic equation for charged parti- 
cles of kind cu is of the form 

Dropping the index cu for the sake of simplicity we put 
v= V+ u, where V is the average and u the random ve- 
locity. Introducing instead of f a  the distribution func- 
tion F( t ,  r, u) and assuming the magnetic field B to be 
strong we rewrite Eq. (2.1) in operator form: 

axis directed along B. Assuming S2, to be a large quan- 
tity, we look for a solution in the form of an expansion 
F= Fo+F1+F2+. . . , where Fk - 51ik (see, e. g. ,c5'61). In 
zeroth approximation we have Fo =Fo(u;, u:, r, t), where 
u,,  = u . h ,  u, = u - hull . For the first  correction F1 = Foal 
we get 

and, requiring that the density n, the velocity V, and 
the pressure tensor components pa,=p,6aa+ (PI, -PI) 
xk, k, a r e  completely determined by Fo alone, we find 
the MHD equations in the zeroth approximation: 

dn v .B  - + div nV=O, A"' = ;, 
at  

Pi"' = (Pll)ad=-pU (div V+2h(hV) V )  , P?' = (PJad =pl(h(hV) V-2 div V ) ,  

thereby determining A'''. For the integration of Eq. 
(2.3) it is necessary to make a definite choice for F,. 
For restrictions on the choice of Fo follow from the 
requirement that @, must be periodic in the angle cp and 
are  found by averaging Eq. (2.3) over cp: 

U L  -- a 
( & Z U ~ V ~ V U + ~ ~ ~  div h)-]F.=o, a u, (2. 5) 

where b t ,  = baa - ha k, . Solving this equation is not less  
complicated than integrating the original equation. One 
can note, however, that Eq. (2. 5) can be considerably 
simplified in the case when the motion of the plasma is 
independent of the coordinates along the magnetic field. 
This assumption enables us to use for Fo a two-temper- 
ature anisotropic Maxwell function-the simplest dis- 
tribution which takes into account the evident anisotropy 
of a magneto-active plasma without collisions. We note 
that if we take for Fo the usual isotropic Maxwell func- 
tion, we would get from Eq. (2. 5) an additional restric-  
tion on possible plasma flows: 

div V=3h(hV) V .  (2.6) 

We assume in what follows that F, has the form of an 
anisotropic two-temperature Maxwell distribution and 
we restrict  ourselves to plasma flows which a r e  inde- 
pendent of the longitudinal coordinates. 

where A = ( ~ / ~ ) E + [ V X Q , ] - + ,  h=B/B, n,=(eB/mc)h, We lopk for the solution of Eq. (2.3) in the form a, 
a point indicates the total derivative d /d t  = B/Bf  + (V. V), = &,(cp)+ gl, where 6, is independent of cp and is neces- 
cp is the azimuthal angle in velocity space with the z- sary  for finding the higher approximations considered 
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in  Sec. 3. The function G1(cp) was  found inc" and is 
equal to 6, = a,, + where  

Here W,, = V, V,+ V, V, - $6," divV is the s h e a r  veloc- 
ity tensor ,  H,, an analogous tensor  formed f rom the 
components of h, and E ~ ,  is the ant isymmetr ic  unit 
pseudo- tensor .  

We now consider  the second correct ion F2. Substi- 
tuting F1 into the right-hand s ide of (2.2) we get f o r  F2 
the equation 

and, integrating it  over  the velocities u, with weights U, 

2&,, , and E, we find the f i r s t  cor rec t ions  to  Eqs.  (2.4): 

Here i?"' is the magnetic viscosity tensor:  

The thermal  cur ren ts  qL1!L a r e  described by the ex- 
pressions 

and, finally, 

Using the definitions (2.10) to (2.12) we can wri te  the 
f i r s t  two equations of (2.9) in  the f o r m  

pi'' = - divq~L'+2Pll (hv)h-2&, py'= - div qy' -q,, (hV) h + k ,  
T. T. 

(2.13) 

where 

In fact, a l l  r esu l t s  obtained s o  f a r  a r e  contained inc", 
written in  the one-fluid approximation. 

3. SECOND APPROXIMATION 

T o  find the second o r d e r  cor rec t ions  we mus t  solve 
Eq. (2.8), determining 6, beforehand. Using the equa- 
tion f o r  the third approximation 

aiid integrating it over  the velocities u with weights u, 
2&,,,  E ~ .  a s  before, we find the second correct ions to  the 
motnent Eqs.  (2.4). It is c l e a r  that they have the s a m e  
f o r m  a s  Eq. (2.9) which holds a l so  fo r  fu r ther  approxi- 
mations. It is only necessary  to  use in  the definitions 
of q6t)1, G ( 2 ) ,  11(2) F2 instead of F1 i n  Eqs. (2.10) to 
(2. 12). It a l l  thus reduces to the determination of the 
function 5,. The equation f o r  like the res t r i c t ion  
on F,,  follows f r o m  the condition that the second ap- 
proximation be periodic. Integrating Eq. (2.8) over  cp 
and using the independence of the longitudinal coordi- 
nates  we get 

where 

We have assumed that initially 6, = 0. We note that ow- 
ing to the assumed independence of the longitudinal co- 
ordinate  t e r m s  with d r o p  out of Eqs. (2.9) of the  
f i r s t  approximation. Therefore,  if we had res t r i c ted  
ourselves t o  t e r m s  a 1/51,, a s  was done in"', we could 
not evaluate &,. A s  the cor rec t ions  a 1/51; have for- 
mally the s a m e  f o r m  a s  Eqs.  (2.9), f o r  the s a m e  rea-  
son we need not consider  the s y m m e t r i c  par t  of a,. 
But in the second-order  correct ion 6, occurs  necessar i-  
ly. 

Taking th i s  r e m a r k  into account, i t  is sufficient to  
determine solely the t r a n s v e r s e  components of the ther- 
mal  c u r r e n t s  q/,2,',. As f o r  our  purposes it is sufficient 
t o  calculate only the moments  of the functions 6, and F2, 
there  is no necessi ty  to  solve the equations which de- 
t e rmine  them. We show in the Appendix that the second 
o r d e r  cor rec t ions  in  the  moment equations a r e  deter-  
mined by means  of the function H I ,  obtained ear l i e r ,  
and Eq. (3.2) and they can  be wri t ten in  the fo rm 

where we have used the notation 

Retaining in Eqs.  (A. 5) only t e r m s  which do not drop 
out identically when substituted into Eqs. (3.4) to  (3.6) 
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we find 

~ : ~ ' = n , ! ~ ' + n ~ : '  div v+&' v,v.+~~'V,V,+'/,E,.+~I,,, 
(3.8) 

61w= ((q:" -'/rC' ) V)h,k+(hV)  (&h+6v&,h,) (Qun-'/*Q?') 
+Vq (h@uv+hPw+h$w). 

Here q'+) - -QI ( 1 )  +i,h, and the tensor E,, is similar to 

W,, and formed from the vector Q'". This tensor takes 
into account the contribution from the derivatives of the 
thermal currents in the viscosity tensor. We have split 
off in the tensor (3.8) the part 61,, which in an important 
way depends on the derivatives of the magnetic field. 
One can show that 6I,, 0 for a uniform field. For the 
vectors S,, ,, of (3. 5) we find 

and fo r  the tensor G, ,  we get the following expression: 

c d  D,, T 1 
G,.=nT. -- + f ( h v )  n;:' +(,w,.+ { [ T ( & + h p ~ u ~ ~ )  '1,. 

dt nT,, 

The functions i , , , , ,  llL'", and 8 which occur in Eqs. 
(3.9) to (3.11) are  determined in terms of the function - +, (see also (2.11)) 

they satisfy, a s  one can easily prove by using Eq. (3.2), 
the relations 

where the index (. . . )' indicates the evaluation of the 
quantities neglecting 6' .  

Explicitly the right-hand side of the equations can be 
written in the form 

T 
Y.=T, ( 3  div %+3'qU ( h v )  b 

TI 

To simplify the notation we have in Eqs. (3.14) intro- 
duced the notation: x = [hx ( h ~ ) h ] ,  a ,,= T,,p,, /m a,, a, 
= T,p,, /ma,; T* is given by Eq. (2.13). In deriving 
Eqs. (3.14) we have used Eqs. (2. lo), (2.11) which de- 
termine n::, q,, ,, and the identities 

We note moreover that in Eqs. (3.9) to (3.15) we must 
use for the calculation of the total derivatives of TI,,,  
the moment Eqs. (2.4) in the zeroth approximation. 
Moreover, bearing in mind the remark made for Eq. 
(3.2), we must determine the solutions of Eqs. (3.13) 
with the zeroth initial conditions. This means that if 
for some reason o r  other the functions (3.14) a r e  iden- 
tically zero, the corresponding moments a re  also equal 
to zero. 

The complete se t  of MHD equations is obtained by 
summing the corrections of all orders obtained above; 
together with the Maxwell equations it describes the ion 
and electron components of the plasma taking into ac- 
count terms a 1/92, in the case where collisions may be 
neglected. The only restriction which allows us to ob- 
tain the simplest solution which is explicitly expressed 
in most terms in terms of the first  moments of the dis- 
tribution function consists in the requirement that the 
plasma flow be independent of the longitudinal coordinate. 

To compare the equations obtained here with the re- 
sults ofc'] in which the collisionless MHD equations were 
obtained by the moment method with a consistent assump- 
tion about the symmetry of the higher moments we con- 
sider the particular case TI,= const, B = const, V,,= 0. 
The complete set  of equations then simplifies consider- 
ably and becomes 

where 

q = [ h X S l / f Z B  , (3.17) 
1 

(qLV) V+qL div V + T q , ~ , ~ . )  

We have omitted in Eqs. (3.17) terms with V g  and Vlll, 
which drop out of Eqs. (3.16). One sees  easily that up 
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to t e rms  a ~/SZ; Eqs. (3.16), (3.17) a r e  the same a s  the 
corresponding equations of [ 3 3 .  

4. ONE-FLUID APPROXIMATION 

In theone-fluid approximation the se t  of MHD equations 
simplifies. Putting ei = - e, = e ,  , n, = ni = n, 3, = j i  =$ fi 
we consider a single-charged neutral plasma with equal 
ion and electron pressures.  Changing in the electron 
equation of motion to the limit me- 0, we find Ohm's 
law: 

(4.1) 

which takes into account the anisotropic pressure  and 
the Hall effect. It i s  c lear  from Eqs. (2.10) and (2.11) 
which determine the viscosity tensor and the thermal 
currents  in f i r s t  order  that q:lt,= - q(,'!, and ii:e' = 0 a s  
me- 0. Adding the ion and electron equations of motion 
we get therefore 

nM?=-V. ( p + &  + Li X B]  /c+ Mng . (4.2) 

where ;ra ;r"' = ;'I' + G'2' ' i s  the total ion viscosity tensor. 
We have added to the right-hand side of Eq. (4.2) a 
term taking into account the gravitational acceleration 
g. We can derive similarly the equations for  the longi- 
tudinal and transverse pressure  components. We as-  
sume that the relative velocity of the plasma components 
i s  small  compared to the mass  velocity and then 

where 

We shall not write down expressions for  the right- 
hand sides of (4.3) a s  the summation does not lead to 
an appreciable simplification of the notation. We note 
merely that the currents  qE a r e  given by Eqs. (3.5), 
(3.9), (3.10) in which we need take into account only the 
ion t e rms  and instead of n1'" and 9 use the difference 
between the ion and electron contributions to these func- 
tions. 

If we neglect displacement currents, we must add to 
the s e t  (4.2), (4.3) the equations 

4n j 
rot B = -, div B=O. (4.4) 

C 

Hence, when we neglect the Hall effect and the contribu- 
tion from the pressure  gradient we get the freezing in 
equation: 

Using the continuity equation 

n=-n div V, (4.6) 

one can show that the energy conservation law is satis- 

fied in the se t  of Eqs. (4.2), (4.3), (4. 5), and (4.6) (g 
= 0); 

The integral i s  here  over the volume occupied by the 
plasma. 

We show that the s e t  of Eqs. (4.2), (4.3), (4. 5), and 
(4. 6) sat isf ies the entropy conservation law 

Let 

be the entropy density in zeroth approximation. Expand- 
ing F in a s e r i e s  in the corrections, we find s =so- 6s, 
where 

It follows from Eq. (4.9) that the correction 6 s  is of 
second order  in 1/52, and we must therefore in the sys- 
tem of moments, taking into account the f i r s t  approxi- 
mation, retain so, a s  in that case  

We consider second order  te rms.  Evaluating the total 
t ime derivative of 6 s  and using the equations for  the 
functions F , , ,  , we find 

dtis - + 6s.div V=-div L-I, at 
(4.11) 

where 

Using Eqs. (2.3), (2.8) we can express  the integral I in 
t e r m s  of n::, q'2', and II"). Using then Eqs. (4.3) and 
(4.10) one can easily show that the combination obtained 
can be brought to the form 

independent of the actual expression for  nh:, q'2', and 
H ' ~ ' .  Combining Eqs. (4.11) and (4.13) we find the en- 
tropy conservation law: 

The vector X in Eq. (14) describes the total contribu- 
tion from the ions and electrons. By using the identities 
(A. 1)  and Eq. (2.3) we can find the actual expression 
for  X for  each of the components. 

In conclusion we use the se t  (4.2), (4.3), (4. 5), and 
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(4.6) to consider drift waves of aplaneplasma layer. Let 
in the equilibrium state T != T: = T(x), h = n(x) ,  BO = ~ ( x ) e , ,  
g=ge,, OO=nH,,=q~,,=o. u s i n g p i = + p  for the ion ther- 
mal currents (2.11) we then have 

where 7=p/4nBi  i s  the magnetic viscosity coefficient. 

From Eqs. (4.2) and (4. 5) we find the equilibrium 
condition 

I l d  BZ 
q )  

p u n  ~ = p + -  
dz  8n 

(4.16) 

If we now consider small perturbations of the form 
f (x) exp(- iwt + ikz), we can show that for slow waves, 
satisfying the condition w2/k2 << 2p/p (seeL") it follows 
from Eqs. (4.2), (4.3), (4. 5), and (4.6) (using the fact 
that w/n,, << 1) that 

where we have put a = kql/wp. If T' = 0, the current 
terms in (4.17) a s  should be expected, drop out and we 
arrive at the well known equation from the theory of 
drift waves.[71 As the current terms occur in combina- 
tion with derivatives of the magnetic field, they will 
clearly be unimportant when p = ~ I T ~ / B ~  << 1. 

The authors are  grateful to A. B. ~ikhanovski!  for 
discussions of the results of this paper. 

APPENDIX: THE DERIVATION OF THE SECOND 
ORDER CORRECTIONS FOR THE VISCOSITY TENSOR 
AND THE THERMAL CURRENTS 

For the derivation of the second-order corrections it 
is convenient to use the following directly verifiable 
identities for arbitrary velocity-independent tensors 

Ca 9 Ma6 , P a 6 v  : 

= - I - a u,us ( 6 t e ~ ~ ~ + 6 , l e ~ ~ , , )  hTM,,. 
4 av (A. 1) 
1 a 

P , B , ~ . L ~ b l ~ T L  - -- (u.uP~L (6auLe~s.+ GaVLesnr) hJ',vy 
6 av 

+uLzu,e,hn (6 .p~LP.~+6 , t . lP~m~)  1, 
uCuC+ [ h  X u I p [ h  X ul. =u:6iw , 

where u:, = u i u i -  $6&uf. When evaluating q;:,, n;:, 
ll"' it is necessary to consider integrals which a re  sim- 
i lar  to Eqs. (2.10) to (2.12) with the function F,. Us- 
ing Eq. (2.8) for F, we can reduce them to combinations 
of integrals of the function F1. For instance, for the 
calculation of the transverse components qi2' we use 
the transformation 

1%) - a a Cc~i  - J d3u ~ , C U - L F ~ =  J d3u e,Fz - u  [ h  X C]=C 5 d3u e, [h X u]  -Fa .  
a r~ d v  

(A. 2) 

Consider Eq. (2.8) we find then 

where 

Using similar transformations for qj?', nh2,' , n'' we 
can write down the second corrections to Eqs. (3.4) to 
(3.7). Transforming integrals such a s  (A. 4) we find 
expressions for the functions occurring in them: 

I::" =x::'+n,!:' div V+n;:' v,v,+ nit' V,V,+V,Z,,, 

~ , , = - ~ ~ " + 2 h , ~ , ~ - ~ . n ~ . + 2 h . ~ , p , . , +  (q:" V )  V 
T 

+q?div v + ~ Q , ~ ~ , F B V ~  - - van!:', 
m  

d 1 (A. 5) s - - ( q ; l ) + q , ; O ) - h , ~ . i  - -n!A) vppaB+Va(n,2+II, ,11)  - dt mn 

In Eqs. (A. 5) we have written 

1 n,$ = hTP,,,, naSL= - 6 LQ=o~v, 
2 '" (A. 6) 

As the periodic part of F1 is known (see (2.7)) the con- 
tribution from it to the tensors (A. 6)  can be completely 
calculated a s  it reduces to moments of the function Fo. 
When evaluating these integrals we use the identities 

m  aTn A +- Ai ,...., i2" 
m 

(A. 7) 
m  

AO"+I)- -0, 

where we have put 

A"' - < u s , .  . . . . u<,>,  A1?'= < u ~ ~  . Ui, . . . . . U i  ,,), 

((...I)= j a a ~ ( . . . ) ~ ~ ,  A = ~ / T ~ V ~  

We then have 

The components of the tensors (A. 6), determined in 
terms of the function F, G I ,  reduce to moments of that 
function satisfying the equations given in the text. 
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Interaction between a beam with a supercritical initial 
velocity and finite-amplitude waves 

A. S. ~akaj ,  S. S. Krivulya, I. N. Onishchenko, and V. D. Fedorchenko 

Physico-technical Institute, Ukrainian Academy of Sciences 
(Submitted July 14, 1976) 
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Results are presented of an investigation of the instability of finite-amplitude waves in a system consisting 
of an electron beam with a supercritical velocity and a bounded plasma. It is shown that the beam with 
the supercritical velocity (v,> v , ~  w,/k,) can transfer up to 60% of its energy to the wave. Results are 
presented of a computer simulation of the amplification process and compared with the results of 
experiment. 

PACS numbers: 52.40.Mj, 52.35.P~ 

The instability of waves of finite amplitude in a sys- where v, is the beam velocity; wi= 4re2nb / m ,  n, being 
tem consisting of an electron beam with a supercritical the beam density; e ,  m a r e  the electron charge and 
velocity and a bounded plasma was discovered theoreti- mass; k, ,  and k ,=  n/d a r e  the longitudinal and transverse 
cally inc'] and then observed experimentally inc2'. The components of the wave vector, d denoting the trans- 
theoretical analysis shows that beams with supercritical verse  dimensions of the plasma. 
velocities, in the course of their interaction with an  
amplifiable wave, t ransfer  to the wave a considerably 
higher energy than do beams of the same density, but 
with subcritical velocities, a s  a result  of which beams 
with supercritical velocities a r e  more efficient means 
of wave amplification. Therefore, the investigation of 
the development of the instability of waves with finite 
amplitudes in such systems is of interest  both for  plasma 
physics and for  practical application. 

The present report  contains the results  of a further 
study of the process of interaction of finite-amplitude 
waves with beams whose initial velocities exceed the 
critical velocity, which is equal to the maximum phase 
velocity of the wave in the bounded plasma. 

1. It i s  well known that waves with infinitely small  
amplitudes a r e  not intensified by a beam in a bounded 
plasma if the initial velocity of the beam exceeds the 
maximum possible phase velocity of the plasma waves. 
This can easily be seen from the dispersion equation 
for the waves. In the case  of magnetized electrons (w, 
>w,, where w, i s  the electron cyclotron, and w, the 
electron plasma, frequency), the electron motion can 
be assumed in the description of the potential oscilla- 
tions to be  one-dimensional. In this  case  the dispersion 
equation has the following form (seeL3'): 

This equation does not possess complex solutions 
when v, >v,c w,/kl. This means that waves with infinite- 
ly smal l  amplitudes a r e  not intensified by a beam in a 
bounded plasma if the initial velocity of the beam exceeds 
the maximum possible phase velocity, v,, of the plasma 
waves. 

As shown inc1', the system, which i s  stable in the lin- 
e a r  approximation, loses  i t s  stability if the amplitude 
of a n  initial perturbation exceeds some cri t ical  value a t  
which the wave begins to capture the beam electrons. 
The value of the cri t ical  amplitude depends on the veloc- 
ity of propagation of the ba re  wave in the system. 

As is well known, the characterist ic  time, 7, during 
which the velocity of a particle can change significantly, 
under the influence of the field of a wave with amplitude 
cp, i s  equal in order  of magnitude to 

if the initial particle velocity is not very f a r  from the 
phase velocity of the wave. Therefore, if the ampli- 
tude of the ba re  wave in the course of the wave's excita- 
tion increases for  a period of time much shorter  than 7, 
then the particle velocities do not have time to change 
appreciably during this  period, and the beam can be 
considered to be monoenergetic. Since the velocities of 
the beam particles a t  the initial moment exceed the 
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