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We study the nature of electrosound waves in a plasma with a negative permittivity in strong hf fields in 
which the electrons of the plasma may acquire relativistic velocities. We show that under conditions when 
the pressure of the hf wave is larger than the hydrodynamic pressure the electrosound wave is a 
compression wave, while for weak hf fields we have a rarefaction wave. 

PACS numbers: 52.35.Dm 

The success attained in recent times by laser tech- 
niques enable us to obtain electromagnetic fields in 
which electrons may acquire relativistic velocities. 
The electromagnetic radiation by cosmic objects (galac- 
tic nuclei, radio-galaxies, quasars, and so  on) may 
serve a s  a source for similar strong fields in cosmic 
space. When such strong electromagnetic radiation 
acts upon a plasma the electron mass becomes depen- 
dent on the amplitude of the pumping wave and this can 
lead to considerable changes in the vibrational proper- 
ties of the plasma. The results oft" indicate the possi- 
bility of a parametric amplification of longitudinal waves 
in a plasma, owing to the relativistic oscillation of the 
electron mass with the frequency of the external field. 
A peculiar feature of this parametric effect, in contrast 
to the well-known results oftz1 (see the literature cited 
inc2') is the fact that parametric resonance can occur in 
a purely electronic plasma when the wave motion of the 
ions can be neglected. The effect of the relativistic mo- 
tion of the electrons on the non-linear processes in the 
plasma is considered int3]. It follows from the results 
of these papers that the relativistic nature of the elec- 
tron motion can lead to the development of shock waves. 

It is well known that the propagation of high-frequency 
electromagnetic waves in a plasma may be accompanied 
by electrostrictive effects which manifest themselves in 
that the pressure of the hf field changes the density and 
thereby the permittivity of the medium. Hf waves with 
a frequency lower than the plasma frequency, wo< w,, , 
can not propagate in the plasma (we have a plasma with 
a negative permittivity). However, if the intensity of 
the hf wave is sufficiently large, density modulation 
processes result in the region where the radiation is 
localized moving in the plasma in the form of electro- 
sound s ~ l i t o n s - s e e ~ ~ ' ~ ' .  In those papers the hf elec- 
tromagnetic wave was assumed to be weak: 

particle is in that case always in the direction opposite 
to that of the wave propagation. Under condition (1) a 
solitary wave must always have the character of a rare-  
faction wave. 

We study in the present paper the effect of the depen- 
dence of the electron mass on the pumping wave ampli- 
tude on the nature of the propagation of electrosound 
waves in a plasma with a negative dielectric permittivity. 
In such strong hf fields the hf pressure force is larger 
than the hydrodynamic force and the total pressure force 
changes sign. The plasma particles a r e  accelerated in 
the direction of the wave propagation and a solitary wave 
has the character of a compression wave. 

1. In this part we formulate the basic equations of the 
plasma hydrodynamics in strong hf fields when it is nec- 
essary to take into account the relativistic nature of the 
electron motion. The propagation of an electrosound 
wave is described by the system of the Maxwell equa- 
tions and the plasma hydrodynamics equations. We shall 
not restrict  the amplitude of the hf field and assume that 
the electrons in the hf field may acquire large (up to 
relativistic) velocities. We have 

an, - + div &v.-0, a= (e, i ) ,  at 
1 aB 

rotE=--- 
c at  ' 

When there is a hf field present the required quanti- 
ties contain not only a slow time dependence but also a 
fast  dependence with a characteristic time T - l / w 0 .  We 
can therefore look for each of the quantities A = (E, B, 
nu, p,) in the form 

4m.'oo2 
(1 ) A=(A>+A, 

E;' = - arc' (3) 
e, VT.', le(oo)l=-- 1, 

00' 

where the angle brackets indicate averaging over a time 
where Em is the maximum value of the hf field strength interval -7 : 
and v,, is the electron thermal velocity. Inequality (1) 
is equivalent to the condition that the hf pressure force <A> = - l '+* I A (t') dt'. 
be small compared to the hydrodynamic pressure force. 2 ~ , - <  

(4) 

The total pressure force (hydrodynamic plus hf pressure 
and hence also the velocity of the wave motion of the The time interval T is assumed to be much shorter 
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than the characteristic period of the slow change tSl. 
We shall not take into account in what follows processes 
which a re  connected with the heating of a plasma in a 
hf field. This assumption is valid only under conditions 
when the collision frequency is small compared to t ;:. 
We confine ourselves to the case where the fast changing 
motion of the ions can be neglected and also when there 
is no magnetic field ( B )  = 0. If we assume the spatial 
dependence to be sufficiently smooth, L >> T I ;,I (L is 
the characteristic distance of the change of the slow or  
fast changing quantities), we can use the procedure of 
calculations described inc5'. Substituting Eq. (3) into 
the se t  of Eqs. (2), we can use the averaging (4) to sep- 
arate the fast changing motion from the slow one. Fur- 
ther assuming that (v,) <<c and L >>rvTe we get for the 
fast  changing quantities a set  of equations 

a R. - + div (iz.>G.=O, 
a t  (5 c) 

1 a26. 4ne2 
rot rotp, +I-+ - (n.)G.=O. 

c d t = c 2  

Knowing the quantity (n,) we can find 5, from Eq. (6) 
and then from Eqs. (5) all rapidly changing quantities. 

The set  of equations describing the slow motion of the 
plasma has the form 

a a 
=-e~~)-mc=- ( ( i  +i:)")- ~ . - - l ~ < ~ . ) .  ar m:ca a r  

acne)  a - + - ((n.)<v,)+(n",G,))=O, 
a t  ar  (7 1 

a p ,  a p .  a - + v , - 2  = e (E) -TI - In  n,, 
a t  d r  dr 

ani - + div niv,=O, 
d t  

div (E )=4ne {nr - (n . ) ) .  

We confine ourselves to plasma motion such that the 
condition of quasi-neutrality is satisfied and that there 
is no slow current: 

The set  of Eqs. (7) can then be reduced to two equations: 
to the equation of motion and the equation of continuity 
of the ion component of the plasma. These two equations 
together with Eq. (6) form the basic set  of equations de- 
scribing the behavior of a plasma in the field of a hf 
wave: 

Here v: = Te /m  (Te  >> Ti)  and for the sake of simplicity 
we have introduced the notation: n = n ,  , V = vi , p= 5,. 
As one should expect, the pressure of the hf field is 
given by the average kinetic energy of the fast changing 
electron motion. In the non-relativistic limit, p2/m:c2 
<< 1, Eqs. (10) and (11) a r e  the same a s  the equations 
given incb5'. In the case of small density perturbations 
n = n o + 6 n ,  6n <<no (we restrict  ourselves to this case 
in what follows) the change in the density 6n is propor- 
tional to p2 and in the non-relativistic limit the last 
term in Eq. ( l l ) ,  which takes intc account the modula- 
tion of the plasma density is proportional to p3. Taking 
the relativistic correction to the electron mass into ac- 
count leads already in f i rs t  approximation to the appear- 
ance in Eq. (11) of yet another term proportional t o p 3  
which under well defined conditions may change the 
structure of a non-linear wave in the plasma. 

2. We study the solution of the se t  of Eqs. (9) to (11) 
in the case of stationary waves propagating in the plas- 
ma with a constant velocity. We restrict  our consider- 
ation to a one-dimensional problem when all slowly 
varying quantities we a r e  looking for  depend on the ar- 
gument t = ~ - u t :  

When the hf electromagnetic field is so strong that 
the electrons in the plasma acquire in it relativistic 
velocities, the hf wave can, according to the results 
ofc6', be purely transverse only when i t  is circularly po- 
larized. We therefore look for the momentum of the 
rapidly changing motion in the form 

In the case of circular polarization of the wave we 
can omit in Eq. (10) the brackets indicating averaging 
over the fast  changing motion a s  p2=pi(5) contains only 
the slow time dependence. Substituting (12) and (13) into 
Eqs. (9) to (11) we get 

where C1, C2, and Cg a r e  integration constants. 

We consider the solution of the set  of Eqs, (14) to (17) 
which has the form of a solitary wave. We assume that 
at infinity the hf electromagnetic field, the plasma den- 
sity perturbation, and the velocity vanish (V- 0, Poo 0, 
n-no a s  t - iw) and that d v / d (  is constant. From 
these conditions we easily determine the integration 
constants: 
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In the case of small density perturbations, 8n/no 
= (n - no)/no << 1, we get from Eqs. (14) and (15) 

Substituting this last  relation into (17) we find for the 
f i rs t  integral of Eq. (17) the following expression: 

. . 

(19) 
where we have introduced the notation 

We took the integration constant, in accordance with 
the conditions chosen a t  infinity (dpo /d5 - 0 a s  6 - * -), 
to be equal to zero. It is not possible to find the ana- 
lytical solution of Eq. (19) in the general case, but we 
can trace the nature of the solution by using a formal 
mechanical analogue. We take the momentum po in Eq. 
(19) a s  the coordinate and the dimensionless coordinate 
z a s  the time. We can then identify Eq. (19) with the 
energy conservation law for a particle moving with zero 
total energy in a potential field 

A closed motion in the field (20) is possible only pro- 
vided 

The maximum value of the "coordinate" Po=& f 0 is de- 
termined by the condition 

The potential (20) has a maximum, equal to  zero, a t  the 
point Po= 0 and under the conditions (21), (22) a negative 
minimum value at the point 

The amplitude dependence of the propagation speed of 
the wave can be found from Eq. (23): 

where Km= ( l + p ~ / r n ~ ~ ~ ) " ~ -  1. If 

(which in the non-relativistic case corresponds to the 
case which is the opposite of (1)) we must take from the 

two solutions (24) only the solution with the positive sign 
in front of the radical a s  u2/c2 > 0. One verifies easily 
that this solution is always larger than the ion-sound 
velocity u2 >v:, and, hence, that we have according to  
(18) a compression wave, bz > 0. Inequality (21) can 
then be assumed to be satisfied, if 

If the hf field is sufficiently weak s o  that the inequali- 
ty 

m. 00' v.' -K,<2-- le(ca,) 1 
mi o'.' C' 

(the case considered int4') is satisfied, we must choose 
from the two solutions (24) the one with the negative 
sign in front of the radical. Indeed, i t  follows from the 
inequality (27) that 

Expanding the square root in (24) in a power ser ies  in 
small quantities and retaining the f i rs t  terms in the ex- 
pansion we check that condition (21) can with a large 
margin be satisfied by the solution with the negative sign 
in front of the radical. As was shown in the f i rs t  sec- 
tion, the presence of the term +(w: /d,)~, in Eq. (25) 
is caused by taking into account the relativistic correc- 
tion to the electron mass. This term does not occur 

where relativistic effects were completely ne- 
glected, and the quantity S, given by Eq. (25), is nega- 
tive, S <  0. The requirement of bounded solutions a t  in- 
finity, i. e., Eq. (21), can thus under the conditions 
ofL4v53 be satisfied only with the negative sign in front of 
the radical. But for that solution u2<v: and a solitary 
wave has always the character of a rarefaction wave. 

3. We consider the results obtained above in the 
weakly relativistic limit when the analytical solution of 
the problem can be carried out until the end. 

The solution of Eq. (19) with the conditions (21), (22) 
has the form 

where v, is the maximum value of the electron velocity 
in the hf field. Expression (28) is the same a s  the re- 
sult of"'. If we assume that 

then Eq. (24), which determines the dependence of the 
phase velocity on the amplitude of the fast  changing ve- 
locity v, can be simplified: 

This relation is valid in two cases. 

254 SOV. Phys. JETP 45(2), Feb. 1977 N. L: Tsintsadze and D. D. Tskhakaya 254 



1)  In the case when the hf field is sufficiently strong, 
so that 

m. w oz - um2B4 7 u."e (00) I ,  
mt OL. 

and a>O. 

2) In the case when the hydrodynamic pressure force 
is larger than the hf pressure force. One can write 
that condition, according to (27), in the form 

Then vk /c2 << 4 1 c(w0) I and a = - (wt /LO:,) I ~ ( w , )  I 

We note that in the second case we chose from the 
two solutions of (24) the solution corresponding to the 
one considered int4'51. 

Using (la) ,  (28), and (29) we get for the change in the 
density the expression 

The way the density depends on the coordinate 5 un- 
der the conditions (30) and (31) is thus the same, but 
the maximum deviation of the density from its equilibri- 
um value has under those conditions opposite signs. 
Under condition (30) we have a compression wave. 

We substitute Eq. (32) into the equation of motion (10) 
for the ions. Neglecting small terms we get 

The right-hand side of this equation determines the 
total pressure force acting upon the ion component of 
the plasma. The hf pressure and hydrodynamic pres- 
sure forces a re  in opposite directions. If the hf pres- 
sure force is larger than the hydrodynamic pressure 
force, 

the total pressure (the hydrodynamic plus the hf pres- 
sure) force is directed outwards from the region where 
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the hf field is localized. In the region of leading edge 
(along the direction of motion of the solitary wave) the 
particles in the plasma acquire a velocity directed in 
the direction of the wave propagation-there is a "sweep- 
ing up" of the plasma by the hf field pressure. As the 
phase velocity of the solitary wave is larger than the 
particle velocity, u >> V, the wave overtakes the parti- 
cles. In the region of the trailing edge of the solitary 
wave the particles a re  braked and behind the wave we 
have the unperturbed plasma (V- 0, 6 n  - 0, as  5 - - m).  

The effect of the sweeping up of the plasma by the hf 
pressure thus leads to an enhancement of the plasma 
particle density in the perturbed region of space. 

If the hf pressure force is less  than the hydrodynamic 
pressure force (the case considered the total 
pressure force is directed into the region where the hf 
field is localized. In the region of the leading edge of 
the solitary wave there is an intake of plasma particles, 
and in the region of the trailing edge of the solitary 
wave the particles a re  braked. The direction of motion 
of the particles i s  the opposite of that of the wave propa- 
gation, and we have everywhere a rarefaction wave. 
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