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The propagation of intense random waves in nondispersive media with high-frequency absorption is 
considered. The exact solution of the Burgers equation is used to determine the spectra of random waves 
at sufficiently large distances. The nonlinear interaction between spectral components is shown to lead to 
an increase in the energy of the long-wave part of the spectrum. The interaction of sinusoidal and 
quasimonochromatic waves with broad-band noise is investigated in detail. It is shown that the long-wave 
part of the resulting spectrum carries information both about the spectrum of the broad-band noise and 
the parameters of the regular signal, so that measurements on this part of the spectrum can be used to 
analyze the spectra of the interacting fields. 
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INTRODUCTION centrated in the long-wave spectrum components. On 

There a re  many problems in hydromechanics, acous- 
tics, radiophysics, and so on, that involve the phenom- 
ena occurring during the propagation of high-intensity 
noise through a nonlinear medium. It is well known 
that the nonlinear interaction between the spectral com- 
ponents of a random wave leads to the appearance of 
new components in the spectrum and, if the medium is 
nondispersive, so that the velocities of all the harmonics 
are  the same, the nonlinearity of the medium may lead 
to an appreciable modification of the spectrum of the 
initial wave and to a distortion of i ts  The 
general method for analyzing the spectra of noise waves 
in nonlinear nondispersive media in which the field 
propagation is described by the equation of a simple 
wave was developed  it^'^'^]. However, the initial pro- 
file eventually becomes steeper, and large field gradi- 
ents appear, so  that dissipative effects, which stabilize 
the shape of the shock front and lead to the attenuation 
of the wave, begin to play an important role in the wave 
propagation process. In media with high-frequency 
absorption, the propagation of finite-amplitude waves is 
described by the Burgers  equation^^"^'^^ 

where, for example, in acoustic problems, v(x, t )  is the 
oscillatory velocity and p represents the dissipation. 
Depending on the formulation of the problem, the vari- 
able t  is either the time o r  the distance between the 
point of entry into the nonlinear medium and the point of 
observation, whereas x is, correspondingly, either the 
distance o r  the time. The problem of non-Kolmogorov 
acoustic turbulence was considered on the basis of (1) 
inclo,ll I and the statistical characteristics of quasimono- 
chromatic waves propagating in a nonlinear medium 
were analyzed inc12'131. These analyses were confined 
to the case when p - 0 and the initially continuous wave 
transformed into a sequence of triangular pulses. It is 
physically clear that when p is finite, high-frequency 
absorption will eventually ensure that the wave will fol- 
low linear propagation, and the field energy will be con- 

the other hand, the spectrum and i t s  intensity will then 
Qe determined by the initial stage of wave propagation, 
so that nonlinear effects resulting in a parametric trans- 
fer  of energy to the low-frequency part  of the spectrum 
will predominate over dissipative effects. In this paper, 
we investigate the dependence of the asymptotic shape 
of the wave spectrum for large t imes on the statistical 
parameters of the initial field. In particular, we shall 
consider the interaction of broad-band noise with a reg- 
ular wave. It will be shown that, owing to the nonlinear 
interaction between the signal and the noise, the long- 
wave part  of the spectrum carr ies  information both about 
the noise and about the parameters of the regular sig- 
nal. 

$1. ASYMPTOTIC CHARACTERISTICS OF 
NONLINEAR RANDOM WAVES 

1, We shall use the exact solution of the Burgers 
equationc143 to determine the statistical characteristics 
of the random field v ( x ,  t) .  The required field is then 
given in terms of the solution of the linear diffusion 
equation 

We shall suppose that the field 

so (x) = I . ,  ( x 0  dz' 
- - 

is statistically homogeneous in x and has a finite vari- 
ance D ~ .  The latter condition is satisfied if the initial 
field vo(x) is also statistically homogeneous and its 
spectrum is proportional to ka, a > 1 a s  k - 0. Trans- 
forming to the dimensionless variable z(x) = io(x)/D, 
we can write the initial conditions for the diffusion equa- 
tion (3) in the form 

r(x, 0 )  =erp {-Re.: (x)}, (4) 

where Re=d/zp and can be interpreted a s  the acoustic 
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Reynolds number characterizing the relative influence 
of nonlinear and dissipative effects on the wave propa- 
gation process. In view of the statistical homogeneity 
of U(x, O), the mean field ( U )  will be independent of 
time. We now introduce the relative fluctuations q(x, t )  
of the field U through the equation 

and write the solution of the Burgers equation in the 
form of a ser ies  in powers of q: 

The variance 02, (t) will decrease in the course of time 
because diffusion will smooth out the inhomogeneities 
of the initial profile qO(x). To determine the asymptotic 
properties of the random field, we can therefore re- 
strict our attention to the f i rs t  term in (6): 

Since q(x, t )  satisfies the linear diffusion equation, the 
formula given by (7) is the solution of the Burgers equa- 
tion for times for which the wave v(x, t )  has reached 
linear propagation, and nonlinear effects which initially 
give r ise  to the distortion of the wave profile and to a 
modification of i ts  spectral composition, reduce to the 
single fact that the initial conditions for the Burgers 
equation and the linear diffusion equation a r e  related 
through the nonlinear transformation (4). Thus, for 
times for which (7) is valid, the spectrum of the wave 
v(x, t )  satisfying the Burgers equation is given by 

where S,(k, 0) can be expressed in terms of the two-di- 
mensional characteristic function of the process z(x) 
[ E ~ s .  (4), (5)l: 

Bearing in mind the Gaussian properties of the field z (x), 
and using (9), we find that the spectrum S,(k, 0), which 
determines the asymptotic form of the spectrum of the 
wave for t- m, and the variance ot ( t )  are,  respectively, 
given by 

When t- m, high-frequency absorption ensures that the 
wave energy is concentrated in the long-wave compo- 
nents so that, to determine the asymptotic form of the 
spectrum S,(k, t), we must analyze the behavior of S,(k, 
0) for k-0. Expanding (11) into a se r i e s  in powers of 
~ e ~ ,  we obtain 

where @ represents convolution. If the initial spectrum 
near the origin is proportional to ka, the function S,(k) 
will, according to (lo), be proportional to ka'2. When 
1 < a! < 2, the function S,(k) has a singularity a s  k - 0, 
and the behavior of S,(k, 0) near the origin is determined 
by the first  term in the expansion (12), since the re- 
maining terms of the ser ies  have a weaker degree of di- 
vergence. From (8) and (12), i t  follows that a s  t -  m, 

the spectrum of the field v(x, t ) coincides with the spec- 
trum of the wave in a linear medium and, in particular, 
the wave energy decreases in proportion to t"u+1"2. 
When a 2 2, the spectrum of v(x, t )  for t- m has the uni- 
versal form 

S ,  ( k ,  t )  =4p2kZS,  (0, 0) e-'*", (13) 

S,(k,O)= j {O,(iRe, i Re; BZz( i  Re)Je""p. (9) 
27~13: ( i  Re) -_ 

Consequently, to determine the asymptotic behavior 
of the spectrum of a high-intensity wave, we must know 
the two-dimensional characteristic function of the pro- 
cess z (x) or, using the connection between vo(x) and z(x), 
the characteristic functional of the initial field. In 
other words, to determine the asymptotic characteris- 
tics of the wave, we must have the complete statistical 
information about the initial field, and it is only for 
small Reynolds numbers, when nonlinear effects can be 
neglected, that the spectrum of the wave is linearly re- 
lated to the spectrum of the initial field. 

2. For Gaussian statistics of the initial field v,(x), 
the statistical characteristics Uo(x) a r e  completely de- 
termined by specifying the spatial spectrum SUo(k) of the 
profile vo(x). In view of (2), the correlation function for 
the process normalized to the dispersion, z = zo /D, is 
given by 

independently of the shape of the initial spectrum, and 
the wave energy decreases in accordance with the power 
law 

The factor S,(O, 0) defines the intensity of the spectrum 
and the wave energy for large times, and depends on 
the field correlation function B d ( p )  and dissipation co- 
efficient F .  We note that, for a! 2 2 and for sufficiently 
large times, the energy and the spectrum of an intense 
field a r e  determined by not only the local behavior of 
the initial spectrum for k- 0 but also by i ts  entire shape. 
This is in contrast to the case of a linear medium. 

3. Qualitative conclusions with regard to the behavior 
of the spectrum S,(k, t )  for  k - 0 can be derived from the 
results .reported for the spectrum of a random 
Gaussian field v k ,  t )  satisfying the equation of a simple 
wave ( p  = 0): 
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exp (- 02kZt2)  7 
S,(k, t )  = { e s p  ( k Z t Z B ,  ( p ) )  - 1)e"P dp. 

2xk2t2 
- w  

When k - 0, equation (1 5) yields 

S,  ( k .  t )  = S , ( k ) + k ' t 2 { S ,  ( k )  @ S ,  ( k ) ! 2 - c s 2 S , ( k ) ) .  (16) 

i. e., i f  the spectrum S,(k) is proportional to ka near the 
origin, then, for ci < 2, the nonlinear interaction does 
not lead to a change in i t s  behavior for k- 0, and for 
ci 2 2 the spectrum of the wave is proportional to k2t2 
independently of ci a s  k - 0, and becomes steeper with 
increasing time. The restriction on the growth of the 
spectrum for k - 0 is connected with the presence of dis- 
sipation in the medium. In a medium with low-frequency 
dissipation, absorption leads to a steady-state wave pro- 
file for sufficiently high attenuation coefficients, and 
the shape of the wave spectrum is given by (15) and (16) 
with the time replaced by the characteristic time for 
linear a t t e n u a t i ~ n . ~ ~ ' ~ ~  In a medium with high-frequency 
absorption, it is clear from (8) and (12) that the analo- 
gous replacement is possible only for small  Reynolds 
numbers but, in general, analysis of the asymptotic 
spectrum must be based directly on the exact solution 
of the Burgers equation. 

4. For small Reynolds numbers, dissipative effects 
predominate over nonlinear effects and we can confine 
our attention to a single nonlinear interaction, so  that 
corrections to the spectrum of the linear wave a re  pro- 
portional to ~ e '  (12). For broad-band noise, the spec- 
tral  components due to the presence of the nonlinear in- 
teraction a re  located in the same interval a s  the main 
spectrum and, consequently, do not affect i t s  shape, 
with the exception of a small broadening and a modifica- 
tion of the behavior of the wave spectrum for k-0. For 
high-frequency noise, when the initial energy of the wave 
is concentrated near some frequency k,, the nonlinear 
interaction leads to the appearance of new components 
i r l  the spectrum at  the difference and sum frequencies. 
Thus, for a quasimonochromatic wave with spectrum 
width Ak, the higher harmonics a r e  cut off and the low- 
frequency part  of the spectrum is formed. The latter is 
proportional to the convolution of the envelope of the 
initial spectrum and the factor k2/ki [(8) and (12)], and 
practically does not change for time t<[CL(~k)2]- ' .  Its 
effective width is equal to twice the width of the spec- 
trum of the quasimonochromatic wave, and the relative 
fraction of energy transferred to the long-wave part  of 
the spectrum is proportional to the square of the Rey- 
nolds number and the relative width of the spectrum of 
the incident wave. 

For large Reynolds numbers, we can no longer con- 
fine our attention to the inclusion of a single interaction 
of a spectral component because weak attenuation in the 
nonlinear medium without dispersion ensures that a 
large number of harmonics will interact. It can be 
shown that the inclusion of N-fold nonlinear interaction 
corresponds to the truncation of the ser ies  (12) at the 
(N+  1)-th term. The asymptotic behavior of the spec- 
trum will be considered below for certain special cases. 
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$2. INTERACTION OF BROAD-BAND NOISE WITH 
REGULAR SIGNAL 

1. The problem of the interaction between noise and 
a regular signal ar ises  in the study of real  noise spec- 
t r a  consisting of discrete lines and a continuum, for 
example, the cavitation spectra. With increasing dis- 
tance from the source, the spectrum of such waves be- 
comes distorted by the nonlinear interaction and high- 
frequency absorption connected with the thermal con- 
ductivity and viscosity in the medium. It is interesting, 
for example, to consider in terms of (13) the relative 
contributions of the continuous and discrete components 
to the asymptotic shape of the spectrum at large dis- 
tances from the point of entry. Effects appearing during 
the nonlinear interaction of noise with a regular signal 
can also be used to investigate noise fields with the aid 
of a high-intensity external wave. By varying the pa- 
rameters of the latter, and confining measurements to a 
restricted spectral interval, it is possible to determine 
the spectral composition of the noise. 

2. Suppose that, for  t = 0, the field uo(x) is a super- 
position of a regular sinusoidal wave of amplitude a, 
and wave number ko, and broad-band Gaussian noise 
Fob) with energy u2, characteristic spectrum width y, 
and correlation function B ~ , ( P )  such that S,,(O)= 0. We 
shall introduce Reynolds numbers for  the broad-band 
noise through the formula 

where 

(Re:* 02/C12y '1, and for the monochromatic wave 

where the initial conditions for the linear diffusion equa- 
tion (3) can be written in the form 

U ( x ,  0 )  = e s p { -  Re,  z ( x )  + Re,  cos k,x} = e s p  (- R e ,  z ( x ) ) I o  (Re , )  

+ 2 2 I,, ( R e s )  e x p { -  Ren z }cos ?lkUx, 
,2= l 

where I,(x) a re  the modified Bessel functions. Using 
the Gaussian properties of t0(x) and equations (5) and 
(17), we obtain the following expression for the auxiliary 
field S,(k, 0) averaged over one period of the sinusoid: 

- 
= S.,, ( k ,  0) + j , ,?(Re,)  [ 6  ( k  - nk, )+  6 ( k  i n k s )  ] 

11-1 

where f,(x) = I,(x)/Io(x) and 

S,,,(k. 0 ) =  --f- j [ e s p { R e n ? B . ( p ) } -  l lcos  k p d p  
2n 

- = 
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The first  term in (18) is the spectrum of the process 
qO(x), (4), (5) for broad-band noise in the absence of the 
signal, and the second is the spectrum of the sinusoidal 
signal and corresponds to the well-known Mendousse 
solution.c33 The last term describes the nonlinear inter- 
action between the signal and the noise. We note that, 
since the relationship between v(x, t )  and ~ ( x ,  t), given 
by (6), is nonlinear, the last term describes both the 
distortion of the noise part of the spectrum and the 
change in the amplitudes of the harmonics of the regular 
wave. 

3. Let us now consider, to begin with, the transfor- 
mation of the spectrum of broad-band noise in a non- 
linear medium. During the initial stage, when nonlinear 
effects predominate over dissipative effects, the spec- 
trum of the wave broadens in both directions away from 
the "central" frequency k - y, and i ts  energy center 
shifts toward higher frequencies.[51 Dissipation leads 
to a reduction in the wave energy and limits the nonlinear 
interaction process. Consequently, for sufficiently large 
times, the more effective attenuation of high-frequency 
components ensures that the energy width of the spec- 
trum is reduced. The maximum width of the spectrum 
of the noise propagating in the nonlinear medium is de- 
termines by the Reynolds number. For Re, << 1, we can 
expand the exponential in (19) into a ser ies  in Re,, so 
that 

S, , , (k .  0 )  =Ren2S, ( k )  (20) 

and the spectrum of the broad-band noise becomes prac- 
tically identical with the spectrum in a linear medium. 

When Re,>> 1, we can retain the f i rs t  two terms of the 
expansion ~ , ( p )  = 1 - yzp2+. . . , in (19), so  that 

Hence, it is clear that, for Re, >> 1, the effective width 
r, of the spectrum is proportional to y Re,. For suf- 
ficiently large distances, the wave spectrum has the 
universal form given by (13), and the factor S,(O, 0) is 
then equal to e ~ ~ ( ~ e ; ) / ( 4 ) " ~  Re,. Hence, i t  follows that 
the slope of the spectrum S,(k, t )  of 'an intense wave for 
k - 0, and i ts  energy, a re  much greater than in a linear 
medium. This is due to the parametric transfer of en- 
ergy to the long-wave part of the spectrum. 

4. The nonlinear interaction between broad-band noise 
and a regular signal leads both to the appearance of noise 
modulation of the signal harmonics and to the modifica- 
tion of the spectral composition of the noise itself. In 
particular, i t  produces an additional contribution to the 
low-frequency part of the spectrum. It is clear from 
(18) that the influence of the determined signal on the 
transfer of energy to the long-wave region will be im- 
portant only when the noise spectrum broadened in the 
nonlinear medium intersects the harmonics of the mono- 
chromatic wave, i. e. , when r,2 ko . When Re, << 1, the 
width of the noise spectrum in the nonlinear medium is 
practically constant, and the regular wave leads to an 
increase in the amplitudes of the low-frequency compo- 
nents only when the discrete line k = k, l ies on a back- 

ground of broad-band noise (k,< r,= 7). When Re, >> 1, 
the influence of the monochromatic wave must be taken 
into account if ko< I',= y Re,. 

For a weak signal ( ~ e ,  << I), when the spectrum of 
the regular wave consists of a single discrete line k = k,, 
we have only the single interaction between the signal 
and the noise, and 

Re,' a z  
%(O, 0 )  --Son ( 0 . 0 )  + Sm(ko. 0 )  T= S,,(O, 0 )  + Son (ko, 0 )  &, 

(22) 
i. e. ,  the additional contribution to the low-frequency 
part of the spectrum is proportional to the spectrum of 
the auxiliary field qo(x)  at  the frequency k = ko . Thus, 
by varying the signal frequency and measuring the low- 
frequency part  of the spectrum, i t  is possible to deter- 
mine the spectrum S,,(k, 0) and hence the initial shape 
of the noise spectrum S,,(k). 

When Re, >> 1, the nonlinear interaction between the 
noise and the signal harmonics becomes important. 
Hence, the components of the spectrum S,,(k, 0) provide 
a contribution to S,(O, 0) a t  a ser ies  of frequencies k = nk,, 
n = l ,2,  . . . , N, where I i 2 =  Reb is the number of harmon- 
ics  of the intense regular wave generated in the linear 
medium. We then have the following expression for 
S,(O, 0): 

s,, ( 0 . 0 )  + 2s , , ,  (ko ,  0 ) .  r, s ko 
B,, (O)/k.  = [exp (Re,') - 1]/1io, ko < rn < Nko. (23) 
S,, (O, 0 )  fx, r, > Nko. 

It is clear from (23) that, a s  the amplitude of the reg- 
ular wave increases, an additional contribution to the 
low-frequency part  of the spectrum is provided by the 
components S,,(k, 0) a t  increasingly higher frequencies. 
Consequently, the dependence of the slope of the field 
S,(k, t )  for k - 0, o r  of i ts  energy a t  sufficiently large 
times, on the regular-wave amplitude can be used to 
determine the spectrum of the auxiliary field S,,(k, 0) 
and, consequently, the initial spectrum of the noise a t  
frequencies k = nk, . In particular, when k, is much 
smaller than the characteristic noise frequency, mea- 
surements in the low-frequency part  of the spectrum 
can be used to determine the shape of the initial spec- 
trum with sufficient detail. 

To estimate the spectrum width of the noise wave, we 
can use the fact that, for a sufficiently intense signal, 
when Nk, >> r,, the effectiveness of the transformation 
of energy is independent of the regular-wave amplitude 
and is determined by i ts  frequency k, . For broad-band 
noise, we find, by comparing (20) and (21) with (23), 
that, for Re, << 1 (regular wave on a weak noise back- 
ground: y >> k,), the slope of the spectrum S,(k, t )  for  
k - 0 increases due to the interaction between the signal 
and the noise by a factor of y/ko, and for Re, >> 1 by a 
factor of Re, y/kO. 

The finite spectral-line width of the quasimonochro- 
matic wave ensures that its energy is transferred a s  a 
result of the nonlinear interaction not only to the short- 
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wave but also the long-wave par t s  of the spectrum. The 
appearance of low-frequency components in the quasi- 
monochromatic-wave spectrum ensures  that the interac- 
tion between broad-band noise and the quasimonochro- 
matic wave is more  effective than the interaction with 
the regular signal. The additional t ransfer  of energy to  
the long-wave pa r t  of the spectrum may turn out to be 
important even for  l?,<<k, when the regular wave has 
practically no influence on the low-frequency part  of the 
spectrum. 

5. To determine the spectral  composition of the noise 
we can also use the components near k =nko due to the 
interaction with the regular  signal. When I?, <<ko, i t  
follows from (19) that the above spectral  bands do not 
overlap and one can speak of noise pedestals near the 
monochromatic lines or, in other words, the random 
modulation of the regular  wave and its harmonics. We 
shall consider the situation in which C( k i t  >> 1, i. e., we 
need not take into account the higher harmonics in the 
wave spectrum. From (17), (2), and (3), we have the 
following expression for  the high-frequency component 
of the wave a t  the frequency k = k,: 

a exp{-  Re, z (x ' ) ) cos  k,x'G(x - x', t ) d ~ '  
G ( X ,  t )  = - 4 d l  (Re,) - 

dx  5 exp{-  Re, z ( x ' ) ) G ( x  - x ' ,  t)dx' ' 

It follows from this expression that the intensity of a 
randomly modulated signal is proportional to ~ e :  for  
small signal Reynolds numbers and is independent of the 
amplitude a, for  Re, >> 1 when the t ransfer  of the noise- 
signal energy from the region k = ko toward higher f re -  
quencies becomes important. 

The shape of the wave spectrum near k = k, depends on 
the parameter  pk,yt, which characterizes the nonuni- 
formity of high-frequency absorption in the frequency 
band of the modulated signal. When pk,y t c< 1, all the 
harmonics appearing a s  a resul t  of the interaction be- 
tween the signal and the noise a t  frequencies k = k, a r e  
attenuated practically in the s ame  way. Neglecting the 
change in the low-frequency noise, we can readily show, 
using (24), that for  such t imes 

When the initial field [ , (x )  has Gaussian statistics, the 
signal spectrum has  the form 

S, (Q,  t )  = 8pZfiz(Re, )  (k ,  + a)' exp ( -  2pk;t) esp (- 09k,'t")6 ( Q )  1 

where C2 = k - ko . We note that the shape of the pedestal 
spectrum and the additional attenuation of the mean field 
a r e  independent of the dissipation parameter  p and, fo r  
y <<k,, agree  with the resul t s  inrs1. The attenuation of 
the regular component may be regarded a s  the additional 
attenuation of sound due to the interaction with extra- 
neous noise. We note, however, that there  is an  impor- 
tant difference between high- and low-frequency noise. 
Thus, whilst the wave energy is scattered into a broad 

spectral  interval in the case  of propagation of sound in 
a medium with high-frequency noise, the situation in  a 
medium with low-frequency noise is different in that the 
scattered energy is concentrated in a relatively narrow 
spectral  interval near the c a r r i e r  frequency of the sig- 
nal. In particular, i t  is readily verified with the aid of 
(25) that the low-frequency noise has practically no ef- 
fect  on the resultant energy of the regular signal and its 
pedestal. 

When uk, t << 1, so  that only a single interaction be- 
tween noise and the regular  wave is important, a pedes- 
tal  is formed near  k = k ,  which approximately repeats 
the shape of the low-frequency noise spectrum.c61 When 
ok, t >> 1, the interaction of the low-frequency noise with 
the pedestal becomes important, and this results  in a 
broadening of the spectrum of the wave. It can be shown 
from (25) that the spectrum of the pedestal is thenGauss-  
ian in shape with a width yuk,t,  whatever the shape of 
the noise spectrum So(x), i. e.,  the width of the spec- 
trum of the low-frequency wave becomes much greater  
than the bandwidth of the low-frequency noise. 

When pk, y t  >>I, the nonuniformity of high-frequency 
absorption within the bandwidth of the modulated signal 
begins to have an effect. Neglecting the change in the 
law-frequency noise, and using Gaussian stat is t ics  for  
to&), we obtain from (24) the following expression for  
the mean field of the modulated signal: 

(L' (5 ,  t ) )  = 4pkof ,  (Re,) esp(Ren2)  

Consider a noise spectrum with correlation function 
B{,( P) = 02(1 - y 'p2) exp(- y 'p2/2), f o r  which Re, = o/2p y. 
Expanding the integrand in (26) into a s e r i e s  in powers 
of ~ e : ,  and recalling that the low-frequency component 
is st i l l  undistorted, we obtain the following expression 
for  the mean field after  integration and summation of 
the series:  

As expected, when pk, y t << 1, the additional attenuation 
of the mean field is determined only by the total energy 
o 2  of the noise, and the expression for  the mean field 
becomes identical with (25). On the other hand, when 
pk, y t >> 1, the additional attenuation of the mean field 
begins to depend appreciably on the spectral  composition 
of the noise, and increases rapidly with increasing 
noise spectrum width. 

Nonuniform attenuation will also substantially modify 
the shape of the pedestal. The expression for  the ped- 
estal  fo r  Re, << 1 and Re, exp(pk, y t )  << 1 is 

Sp(R. t )  =8pZf12(I les)  (k ,+R)  9n-2S:d ( R ,  0) [e-Z'h~Qt- 1]ze-2uk .' . (28) 

Hence, i t  is clear  that when pk, y t >> 1 and $2 > 0, the 
shape of the pedestal is proportional to the spectrum of 
the noise integral, i. e. , S,(Q, t )  - S,,($2, 0)/n2, and is 
attenuated in the same way a s  a regular harmonic. On 
the other hand, pedestal frequencies (a< 0) a r e  attenu- 
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ated much more slowly, and this leads to a shift of the 
energy center of the spectrum toward lower frequencies. 
When Re, exp(pk, y t )2 1, the total power within the ped- ! 

estal is approximately equal to the power in a regular 
harmonic, i. e., the random modulation index of the sig- 
nal becomes high. Interactions between the low-fre- 
quency noise and the pedestal harmonics, which lead to 
the broadening of the spectrum mainly in the direction 
of lower frequencies, then become important. 

The authors a re  indebted to A. I. Saichev for useful 
suggestions. 
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Interaction of charged particles with strong monochromatic 
radiation in an inhomogeneous medium 
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Multiphoton processes of stimulated absorption and emission by a charged particle in an external 
electromagnetic field incident on the interface between two media are considered. The effect can manifest 
itself in a broadening of the energy spectrum of the particle beam. It is also shown that the stimulated 
processes lead to modulation of the beam at the frequency of the external field. 

PACS numbers: 41.70. +t 

1. Charged particles that move uniformly in optically 
inhomogeneous media can radiate electromagnetic waves. 
Examples are  the transition radiation at the interface 
between two media, radiation in a layered medium, and 
diffraction radiation by different screens. These phe- 
nomena have been sufficiently well studied both theoret- 
ically and experimentally. ['-33 

It is of interest to ascertain the variation of the char- 
acter of this radiation in the presence of an external 
electromagnetic field, particularly a laser  field. In 
contrast to ordinary spontaneous emission, this process 
has a stimulated character: the particle can not only 
radiate but also absorb quanta of the external field. 
These two phenomena a r e  of definite interest both from 
the point of view of acceleration of charged particles by 
an external electromagnetic field and from the point of 
view of amplifying electromagnetic radi_ation by charged 
particles, a s  in the case of stimulated Cerenkov radia- 
t i ~ n . [ " ~ ~  In addition, a s  a result of such a stimulated 
interaction, the beams a r e  modulated at the external- 
field frequency o r  its multiples, which is also of definite 
interest. 

The present paper is devoted to a study of the interac- 
tion of an external monochromatic electromagnetic ra- 
diation with charged particles crossing the interface be- 
tween two media, i. e . ,  the analog of stimulated transi- 
tion radiation. 

2. We assume a s  usual that the particles themselves 
do not interact with the medium. Let the medium be in- 
homogeneous along z and le t  a plane linearly polarized 
electromagnetic wave of frequgncy w propagate in the 
same direction. We seek the solution of the Klein-Gor- 
don equation 

in the form 

where cp is a function that varies slowly in comparison 
with the exponential function. This approximation is 
valid if the following inequalities a r e  satisfied: 
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