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A method is developed for calculation of the spectral density of energy loss by an ultrarelativistic particle 
in a periodically nonuniform medium, and calculations are carried out. It is shown that a periodic change 
in the absorbing properties of a medium substantially affects the spectral distribution of the energy loss. 

PACS numbers: 61.80.Mk 

INTRODUCTION expression. This expression relates the probability W 

Radiation arising in passage of fast charged particles of radiation by an electron in an external field during 
the entire time of an interaction, summed over the 

through artificially created one-dimensional periodic 
final states of the electron with a definite energy, to the 

structures presents interest a s  a result of the effect 
f irst  noted by ~ e r - ~ i k a e l y a n . ~ "  This effect consists of 

electron forward scattering amplitude T,, calculated in 
second-order perturbation theory in the interaction of 

the possibility of radiation of photons in such media by 
the electron with the radiation field. T t e  result is a s  

a uniformly moving charge in the region of the spectrum 
where eerenkov radiation is clearly impossible. The 

follows (see for example the book by Baier e t  a1 .,L51 

radiation, called by Ter-Mikaelyan resonance radiation, page 98): 

has all the properties of cerenkov radiation: threshold 
nature and directivity. 

Radiation of rather energetic photons by ultrarelativ- 
istic electrons in a periodically inhomogeneous medium 
occurs essentially at small angles. Accordingly, it 
becomes important to take into account multiple scatter- 
ing of the  electron^.^^' Multiple scattering is the cause 
of bremsstrahlung by electrons. On the other hand, i t  
leads to a change in the spectrum of resonance radia- 
tion. As a result of interference of the probability am- 
plitudes, the multiple scattering of electrons can be 
treated by various methods, depending on what i s  con- 
venient. L21 

Other important factors which require consideration 
in calculation of the radiation of electrons in periodic 
structures, in addition to multiple scattering, a re  the 
absorption and scattering of virtual photons in the radia- 
tion process, and also the energy loss by the electron, 
which leads to a change in the mean. square scattering 
angle. Finally, a s  will be shown below, the resonance 
radiation effect can be produced not only by a change of 
the real part of the permittivity,L" but also by a period- 
ic change in the absorbing properties of the medium 
(the imaginary part of the permittivity). 

In the work presented, in calculation of the energy 
loss by an electron in a periodically inhomogeneous one- 
dimensional structure we used the result obtained for 
homogeneous mediaL3"' and an analogy, developed be- 
low, between radiation in a periodically inhomogeneous 
medium and in a homogeneous medium in the region of 
anomalous dispersion. 

where 

T,,=iez 'Y, (s) Tp~.? (z, s f )  r v ~ L t '  (z-z') Y, (s')  d'z d'z', I - 
@,(x)= $,(r)e-"at is the wave function of the electron in 
the field corresponding to a state with energy &, and 
quantum numbers q, S;'(X, x ' )  is the Green's function 
of the electron in the external field, and D:O,'(X - x') is 
the photon  ree en's function." 

The external field in the case of interest to us is the 
total field of the atoms of the material. In the case of 
random location of the atoms i t  is necessary in addition 
to average the probability W over the coordinates of 
the atoms of the medium, which we will designate below 
by angle brackets. It is easy also to take into account 
the interaction of the photons with the medium in the 
radiation process. For this i t  is sufficient in Eq. (1) 
to replace the Green's function of the f ree  magnetic 
field ~:0, '&- x ' )  by the photon Green's function in mat- 
ter .  The latter, taking into account the macroscopic 
lengths important in the problem (coherence lengths), 
can be taken in the long-wavelength a p p r o ~ i m a t i o n . ' ~ ~  
It is necessary here to have in mind that, in taking into 
account the interaction of the radiation photons with the 
medium, their removal from the intrinsic field of the 
electron can occur now not only a s  the result of scatter- 
ing of the electron by the atoms of the medium (normal 
bremsstrahlung), but also without scattering of the elec- 
tron. In the latter case the radiated photon interacts 
with the medium (cerenkov radiation, direct ionization 
of atoms). 

1. DERIVATION OF THE GENERAL EXPRESSION 
FOR ENERGY LOSS BY AN ELECTRON IN AN We now use Furry's representation for the electron 

INHOMOGENEOUS MEDIUM Green's function 

The energy loss by a relativistic electron in an in- s s ' = -  Y, (3) Tn(zn)6(t-t ' ) ,  
homogeneous medium can be calculated from a general C 

n(e.>ol 
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where B(f  - t') is the Heaviside unitary function. For an 
inhomogeneous stationary medium' the photon Green's 
function can be represented in the form 

where T = t - t, p = r' - r. Taking into account that 
DuY(k, 1, w )  is an even function of w, we obtain for the 
probability of radiation of a photon with energy w by an 
electron per unit time in an inhomogeneous medium the 
following expression: 

where 

Lw ( z ,  t, k ,  1 )  =e-'" ( j"(x) e-'"-l)' ) Tn (Y (2') elkr') nq, 

(2') 

Within the accuracy of the notation, Eq. (2) coincides 
with the analogous result of Yakimets,'" obtained by 
another method. It should be noted that in the general 
case, when the removal of the photon from the intrinsic 
field of the electron can occur by absorption of the pho- 
ton, Eq. (2) is, generally speaking, the differential 
probability of energy loss a t  a frequency w and not nec- 
essarily involving real radiation. 

In the classical limit in which the quantization of the 
electron motion and the recoil on radiation a r e  neglect- 
ed, the matrix elements in Eq. (2) can be replaced by 
the Fourier components of the corresponding quantities, 
and the tensor LwY takes the form 

where vw(t) = (v(t), 1); r(t), r ( t  + T )  a r e  the locations of 
the electron in its trajectory a t  the moments of time t 
and t '; ~ ( t )  and v(t + 7) a r e  the velocities of the electron 
at the corresponding moments of time. The tensor LuY 
is expressed in terms of the trajectory and with inclu- 
sion of the quantized recoil in radiation by an ultrarela- 
tivistic e l e c t r ~ n . ~ ~ '  Averaging over the coordinates of 
the scattering atoms reduces in the classical limit to 
averaging over all possible trajectories of the electron. 

If we neglect the optical inhomogeneity of the medium, 
then the Green's function ~ , , (k ,  1, w )  takes the form 

where 60) is the Dirac delta function. In this case the 
energy loss probability (2) is written in the form 

dZW(h) - 
- = - R e  j j Lfl1 ( z ,  t ,  k )  1m DL:' (k,  w ) d t  d3k,  

d o  d t  8n' 

In a uniform medium, according to Eqs. (3) and (2"), 
the differential probability of energy loss (3) does not 
depend on time, strictly speaking, only when the elec- 

tron is moving in a straight line: v(t + T)  = v(t) = v. For 
ultrarelativistic particles the deviation from straight- 
line motion is small. Therefore after averaging over 
the trajectories the tensor (L?; ) can be assumed not to 
depend explicitly on the time and, consequently, to in- 
troduce a time-independent differential probabilityy 
d '(w'" )/dw dt. 

In an optically inhomogeneous medium, a s  can easily 
be seen from Eqs. (2) and (2"), the differential prob- 
ability (2) depends, generally speaking, on time even in 
the case of straight-line motion of the electron. There 
are,  however, at least two types of optically inhomo- 
geneous media in which this dependence disappears. 
Thus, in a medium with random inhomogeneities, dis- 
cussed by Kalashnikov and ~yazanov , '~ '  the photon 
 ree en's function D,,(k, 1, w) averaged over the inhomo- 
geneities contains a dependence on 1 in the form 6(1). 
Another case, which is discussed in detail in the pres- 
ent work, corresponds to a medium with periodically 
located inhomogeneities. 

Suppose that the medium is optically inhomogeneous 
with a period a along a direction a. Using the transla- 
tional symmetry of the photon Green's function D,,(r, 
r', T ) =  DuY(r + nu, rf + nu, T), i t  can be represented in the 
form 

where K is the base vector of the reciprocal lattice 
(eiMO = 1). In particular, the probability of energy loss 
in a medium with periodic inhomogeneities by a recti- 
linearly moving electron is obtained by substitution in 
Eq. (2) of expression (2"), and the Fourier component 
of the Green's function (4) and has the form 

where 

D,!~'"' (k ,  w )  = JD:?' (p, r )  e-iimr+kp) d3p d r .  

For simplicity we shall assume that the electron is  
moving along the direction n. In an infinite periodic 
medium the probability (5) has the meaning of an aver- 
age over the time of flight t, = a/v between neighboring 
inhomogeneities. After such averaging the contribution 
to the energy loss probability (5) is only from terms 
with rn = 0. This statement obviously remains valid also 
in the case of "almost rectilinear" trajectories, which 
occur when relativistic electrons a r e  scattered by the 
atoms of the medium. Thus, the probability of energy 
loss (radiation) by a relativistic electron at frequency 
cu per unit time, averaged over the coordinates of the 
scattering atoms (trajectories) and over the time of 
flight between neighboring optical inhomogeneities, for 
a periodically nonuniform medium has the form 

d Z W  e' - = -Re ( L w ( r ,  k, 0) ) 1m DL:' (k ,  w ) d 3 k .  
d o  dt  8n' 

Equation (6) for the probability differs from the corre- 
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sponding expression (3) for  the case of an  optically 
homogeneous medium only in the fact that D:(k, w) now 
represents  the Fourier component of that part  of the 
total Green's function of the photon in the inhomogeneous 
medium (4) which depends only on the difference of co- 
ordinate p. This analogy is the principal result  which 
will be used subsequently in the calculation. As will be 
shown below, with certain restrictions, the function 
~(i!,(k, w), which determines the differential probability 
of energy loss by the electron (6), can be represented in 
the form of a linear superposition of Green's functions 
of homogeneous media. Thus, almost all of the results  
for  the spectral and angular distributions of the energy 
loss, obtained previously for  homogeneous 
can be transferred directly to the case of a medium with 
periodic inhomogeneities. 

2. THE PHOTON GREEN'S FUNCTION IN A 
PERIODIC MEDIUM 

In the approximation of macroscopic electrodynamics 
and in the gauge with a scalar  potential equal to zero, 
the photon Green's function in an inhomogeneous medi- 
um satisfies the equationc6' 

[ e  (0, r )  0'6, - I . O ~ , , , ~ T I , ~ , , ,  IDix (r, r', O )  =4n6,,,6 (r-r') 

We take the coordinate axis  x, = x  along the direction 
of optical inhomogeneity. Since the medium i s  assumed 
uniform in the remaining directions, i t  is convenient to 
go over to the Fourier components 

DI* ( x ,  x' ,  q, 0) 
= J c x p [ - i q , ( x l - s , ' )  - iq,  (2,-x, ')  ID,, ( r ,  r ' ,  o ) d ( x , - x z ' )  d  (x,--x,') 

and to direct  the axes x, and xk along the vector q. Then 
for  the nonzero Fourier components we obtain the equa- 
tions 

where 

Below we will be interested in the radiation of rather 
energetic photons, for  wblch the complex dielectric per- 
mittivity ~ ( w ,  X )  is close to unity and the angles of radia- 
tion a r e  small  (O,,, << l ) .  A periodic variation of c(w, x )  
along the x axis  is achieved in practice by varying the 
density of the material. Therefore c can be represented 
in the form c (e ,x )=  co(w)+ cl(e,x) ,  where Ice- 11 << 1, 
and the periodic par t  of the dielectric permittivity cl(w, x )  
is significantly smaller  than unity and, consequently, 
smaller  than the constant part  .so(&). In addition, for  
practical purposes i t  is sufficient to find the solution of 

the system of Eqs. (7) in the WKB approximation, re -  
quiring satisfaction of the inequalities 

Using the condition of smallness of the angles of radi- 
ation (q < < I  ~ " ~ ( w ,  x ) ~  I ) and the closeness of I E(W, x)  I 
to unity, we can show that the f i r s t  of the inequalities 
(8) is equivalent to the condition of smallness of the 
wavelength of the radiation in comparison with the period 
of the medium (aw >> 1), which is always satisfied fo r  
artificially produced periodic media and for  x-ray fre-  
quencies. The second of the inequalities (8) and in- 
equality (9) a r e  equivalent to the l e s s  rigid condition 
a& >> Icll . The restr ict ions enumerated permit the 
components of the Green's function in Eq. (7) to be ex- 
pressed in t e rms  of D33 a s  follows: 

Since we a r e  interested in that part  of the Green's func- 
tion which depends only on the difference in coordinates 
(see Eq. (6)), we can assume, in accordance with Eq. 
(lo), that D,, = Dl,. Then the relations (10) formally 
coincide with the corresponding relations for  a uniform 
medium. 

The solution of the f i r s t  of Eqs. (7) with inclusion of 
the restr ict ions which we have introduced has the form 

(11) 
The last  factor in Eq. (11) is a periodic function of x 
and x' and can be represented in the form of a double 
Fourier ser ies .  Then the part  of D:: which depends 
only on the difference x - x'  takes the form 

where 

1 " io ' 
H ,  = - exp [- 1 E ,  (o, x ) & ]  eiKrz' d d .  

a 0 

In the particular case  where ~ ~ ( w , x )  var ies  according to 
a law cl(e, x ) =  A cos KX , the weighting factors P, a r e  
expressed in t e rms  of the Bessel  functions J,(cu): P, 
= ~:(cu), where cu = w a ~ / 4 r  (a is the period of the medi- 
um). 

Taking into account the closeness of I co(w) 1 to  unity, 
we obtain for  the Fourier  component of the Green's 
function D:: (k, w) the following expression4): 
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where we have introduced the designation c,,, = cO(w) 
+4rr/aw. In the transition from Eq. (12) to Eq. (13) i t  
is assumed that we can neglect terms in Eq. (12) with 
r < rmin and r >r,, where r,,, and r,, a r e  chosen from 
the condition of closeness of the effective dielectric 
permittivity to unity for the corresponding values of the 
index r : 

It is always possible to neglect these t e rms  if the radia- 
tion of particles in a periodic medium occurs mainly a t  
small angles (see below). 

Using Eq. (lo), we obtain the following expression for 
the transverse part of the Green's function D::' (k, w),  
which in accordance with Eq. (6) determines the differ- 
ential probability of energy loss in a periodically in- 
homogeneous mediumg : 

where 

4n D,Y' ( r ,  k ,  o) = 
kz-eet ,  ( r ,  0) o2 

is a quantity which formally coincides with the trans- 
verse part of the Green's function in a homogeneous 
medium with a dielectric permittivity ceff ( r ,  w) = cO(w) 
+ 4  nr/aw. 

The expressions (14) determine the dispersion of pho- 
tons with wavelength significantly less  than the period 
of the medium a which a re  propagated a t  small angles to 
the direction of periodic change of the optical properties 
of the medium. 

3. SPECTRAL DISTRIBUTION OF ENERGY LOSS 
BY AN ELECTRON 

Relations (3), (6), and (14) show that for purely real  
weighting factors P, the spectral distribution of the 
energy loss in a periodically inhomogeneous medium is 
directly expressed in the form of a linear superposition 
of the corresponding quantities for uniform media.* 
This relation is preserved also in the general case of 
complex P,, since the spectral distribution of the ener- 
gy loss (6) is determined in fact by the residues a t  the 
points where k 2 =  ceff ( r ,  w ) w ~ , [ ~ ~  and near these points the 
imaginary part of D::' ( r ,  k, w) coincides with the real 
part (see Eq. (14)). Thus, the spectral density of ener- 
gy loss I(w) by an electron per unit length of path in a 
periodically inhomogeneous medium can be represented 
in the form 

where 1'" ( r ,  w) is the corresponding quantity for a 

homogeneous medium with the effective permittivity a s  
defined in (13). 

The quantity 1'" (r, w) for a homogeneous absorbing 
medium with inclusion of multiple scattering and elec- 
tron energy loss has been calculated by Bazylev et  ~ 2 . ~ ~ '  
In the simpler case in which we can neglect the effect of 
energy loss on the mean square multiple-scattering 
angle, the result has the following formc3': 

2eZ 
Zch' (r, 0) = - (qo) (s,) n 

Here 

8 is the unit step function, signx = x/ I x 1 ,  $(x)= d(lnr(x))/ 
dx is the logarithmic derivative of the r function, 

a re  the real  and imaginary parts of the effective dielec- 
t r ic  permittivity: P =  C( sign(1- E,,,+E'~+ EL;,  ), 44 is 
the mean square multiple-scattering angle per unit 
length of a medium with the average density over the 
period.7' 

For a transparent medium (cl'(w, x )  5 0) which changes 
i ts  properties according to a cosine law cl(w, x )  = A cosKx, 
Eqs. (15) and (16) coincide with the result of Ter- 
~ i k a e l ~ a n . ' ~ '  

In the general case we can separate for each discrete 
index r three dimensionless parameters: 

If PI >> Ip21,p3, then Eq. (16) is dominated by the f i rs t  
term, which represents in this limit the intensity of 
bremsstrahlung inther-th harmonic. For p2 >>PI, p3 
the energy loss is determined mainly by the second 
term (resonance radiation). If p3 >>PI, Ip, I ,  the energy 
loss is determined by the third term, which represents 
(for an appropriate cF(w)) the contribution to ionization 
loss from ther-th harmonic. In intermediate cases 
when a t  least two parameters a r e  comparable in magni- 
tude, this simple interpretation of Eq. (16) becomes 
impossible (see Refs. 2 and 3). Thus, only in the case 
p, <<PI, lpzl when the coherence length of the radiation 
is significantly less  than the photon-absorption length 
can we assume that the entire energy loss is determined 
by the radiation of the relativistic electron. 

In the opposite case (p3 >>PI, Ip, I ), if we a re  inter- 
ested, for example, in the radiation emerging from a 
periodic absorbing medium of finite size, further calcu- 
lation is necessary. 
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The following result is important. According to Eqs. 
(15) and (16) the spectral density of the energy loss is 
determined not only by the periodic variation of &:(to, 
x),"' but to an equal degree also by the periodic varia- 
tion of the absorbing properties of the medium &~' (o ,  x). 
Thus, for example, in the case of a cosine-function 
medium cl(w, x )  = A cos KX inclusion of periodic variation 
of E;'(W,X) substantially affects the value of the weight- 
ing factors P, = ~ : ( w a ~ / 4 r )  in ~ q .  (15), particularly in 
the frequency region where ImA2ReA. 

It follows from the results obtained that a periodic 
inhomogeneity of the medium not only affects the brems- 
strahlung spectrum and leads to appearance of reso- 
nance r a d i a t i ~ n . ~ ~ '  The energy loss to direct ionization I 

of the atoms in the medium and formation of electron- 
positron pairs, and also the radiation from the recoil 
Compton electrons, whose spectral density is deter- 
mined by the third term in Eq. ( l ~ ) , ~ ~ ' ~ '  depend substan- 
tially on the periodic variation of the dielectric proper- 
ties of the medium. 

The calculation which we have presented of the elec- 
tromagnetic processes in a periodic medium may be 
useful not only in construction of relativistic-particle 
deteclors (see for example Ref. 2). An excess of EL,, 
over unity permits in principle use of radiation in a 
periodic medium a s  an intense source in the x-ray re- 
gion, in analogy with cerenkov radiation in homogeneous 
media in the region of atomic frequencies.c10' In this 
case a broader possibility exists than in homogeneous 
media, since the creation of an appropriate periodic 
medium is limited only by technical problems. 

"We use the system of units in which f i  = m = c = 1 ,  and the 
metric tensor has the form g,,= 0 (P* v ) ,  gll =gzz =g33 =-g44 
= 1. 

 he approach described can easily be generalized to  the case 
of a nonstationary medium. 

3 ' ~  dependence on time remains only if we introduce phenomen- 

ologically a time-dependent mean square scattering angle. ''I 

4 ' ~ m a l l  deviations from s t r ic t  periodicity can be taken into 
account by introduction into Eq. (13) of a factor of the Debye- 
Waller type. lZbl 

 he effect of periodicity on radiation of longitudinal modes i s  
not considered in this work. 

6 '~ t  i s  assumed that the deviation of the density of the medium 
from the average does not have a substantial effect on the 
motion of the electron. 

''The formula for F(s,) in the article of Bazylev et al. l3]  i s  
given with an  incorrect sign in front of the 0 function. 
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