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1. INTRODUCTION 

The Feynman diagram technique makes i t  possible to 
find the Green function and scattering amplitude in quan- 
tum field theory in the form of an  expansion in a s e r i e s  
in the coupling constant g.cll However, even in quantum 
electrodynamics, where the coupling constant is small, 
the effective expansion parameter  becomes fo r  some 
problems of the order  of unityt2' so  that one needs eval- 
uate Feynman diagrams of arbitrari ly high order.  The 
necessity of a good estimate fo r  various observed quan- 
tities in high o rde r s  of perturbation theory is felt also 
in those cases  where the experimental accuracy of their 
measurements is sufficiently high. The anomalous mag- 
netic moment of an electron is an  example of this; the 
accuracy of the measurements of this quantity exceeds 
the accuracy of the theoretical calculations up to sixth 
order perturbation theory and i t  becomes necessary to 
take into account in the calculations a huge se t  of eighth 
order diagrams.c31 The methods for  estimating Feyn- 
man diagrams in higher order  which exist a t  the pres-  
ent timec4' cannot claim to have the accuracy desired. 

In the present paper we use as an example the calcu- 
lation of the asymptotic behavior of the expansion coef- 
ficients in the Gell-Mann-Low function in sca lar  theories 
to show that one can construct for  a high order  k of per- 
turbation theory a computational scheme which acts  
upon the solution of the corresponding classical equations 
and which gives us the possibility to. find the physical 
quantities a s  an expansion in powers of l / k .  Although 
we ca r ry  out our discussion in the framework of sca lar  
theories, the method for  the calculations can be carried 
over to theories of greater  practical interest (quantum 
electrodynamics, Yang-Mills theory, and s o  on). 

2. STATEMENT OF THE PROBLEM 

In the c lass  (2) of theories models with an  interaction 
Hamiltonian 

a r e  of physical interest, but we shall in what follows 
give the discussion for  the general case  of a rb i t ra ry  
even n 4. 

In Eq. (1) g, is the renormalized coupling constant 
which is equal to the value of the invariant charge in the 
normalization point p (see below). The additional te rm 
~ ' ( c p , g , )  in the energy density is a polynomial of degree 
n in the field cp(x), introduced to compensate the ultra- 
violet divergences in the ~ u b d i a ~ r a r n s . ~ ' '  One can easily 
find i t s  lower expansion coefficients in the s e r i e s  in the 
renormalized charge g, : 

the f i r s t  t e rm is intended here  to remove the logarithmic 
divergences connected with the renormalization of the 
charge, (pU) '=  p2, and the other t e r m s  remove the pow- 
er-law ultra-violet divergences in the diagrams with 
number of tai ls  m cn - 2. The quantity ~ ' ( x )  is the free-  
particle Green function: 

The additional te rm %' may also contain an  arb i t ra ry  
polynomial P,-2(p) with finite coefficients which is a 

We consider a s e t  of sca lar  models for  field theory in generalization of the mass  te rm $m2cp2 in the theory 
a Euclidean space with an interaction Hamiltonian 

but if we choose the normalization momentum p much 
In order that the theory be renormalizable (but not hy- 

la rger  than the characterist ic  mass  parameter  which is 
perrenormalizable) we connect the dimensionality of the connected with these dimensional coefficients, the Gell- 
space D with the index n of the power of the non-linearity Mann- Low function will not depend on them. 
of the theory by the following formula: 

We define the invariant charge in the model consid- 
D-2n/(n-2), n=4, 6 ,  8 . . . (2) e red  by means of the formula 
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where r,, and A(p2)=d/pe a r e  the renormalized vertex 
function and the Green function for  la rge  momenta p. 
In a rea l  pseudo-Euclidean world we can in al l  Feynman 
diagrams perform a Wick rotation for  the t ime compo- 
nent of the virtual momenta Po-ip4, if we choose the 
external invariants in the vertex and in the Green func- 
tion spatial1 scaled. Using such a procedure we can 
evaluate the invariant charge directly in a Euclidean 
theory with the Hamiltonian (1). We further choose the 
external invariants for  n-tails in a symmetrical  spa- 
tially scaled point: 

and correspondingly we assume the invariants in the 
normalization point to be equal to 

The Gell-Mann-Low function can then be evaluated 
through the formula 

where by virtue of the renormalizability the right-hand 
side is independent of p2/C12 under the condition that it 
is expressed a s  a function of the invariant charge. 

In the present paper we evaluate the asymptotic be- 
havior a s  k -  m of the expansion coefficients C , ( n )  of the 
Gell-Mann-Low function in the perturbation theory se r -  
ies: 

It is convenient to change to  coordinate space. We have 
for  the Green function of a sca lar  particle 

where for A&) the representation in the form of a 
Feynman functional integral is valid: 

The ultra-violet divergences which a r e  connected with 
the renormalization of the mass  and the wavefunction 
a r e  cancelled in each given order  of the perturbation 
theory due to the counter t e r m s  (3) in the Hamiltonian 
H and the finite corrections to 1' must be chosen such 
that 

Similarly we have for  the vertex function I?, 

where 

In (13) G', is the contribution of unconnected diagrams 
and contains products of lower-order Green functions. 

In higher perturbation-theory o rde r s  the contribution 
to the invariant charge of correct ions to A,(p2) (see (11)) 
a r e  negligibly small  compared to the contribution from 
the corrections to r,, , and, moreover, Eq. (14) contains 
only connected diagrams in the l imit  k -  .o a s  is clear  
from the further discussion. We thus have approximate- 
ly  

G,!" (x,. 2%. . . . , z.) 

where the integration over g, is over a closed contour 
around the origin. We find the asymptotic behavior of 
the integral (16) a s  k  - - in the following sections. 

3. THE IDEA OF THE CALCULATION METHOD 
AND ITS ILLUSTRATION FOR EXACTLY SOLUBLE 
MODELS 

To find the asymptotic behavior of the integral (16) for 
large k  we apply the saddle-point method. As the func- 
tional to be varied we choose the quantity (see (1)) 

expanding all other t e rms  in the integrand in (16) in a 
s e r i e s  near the saddle-point values G(x) and g, (this 
will be justified by the course of the subsequent calcu- 
lations). The Euler-Lagrange equations for  the func- 
tional (17) have the form 

Equations (18b) a r e  the usual classical  equations for  the 
field +(x), but by virtue of (18a) we must find their solu- 
tions which decrease a t  infinity under the condition that 
the coupling constant is negative (g, < 0). The theory 
with the Hamiltonian (1) becomes unstable for  a nega- 
tive coupling constant, a s  one can take arbitrari ly large 
cp which a r e  independent of x. However, the condition 
(18a) means that the minimum of the Hamiltonian (1) 
must be looked for  fo r  a fixed potential energy, i. e., 
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tribution of the connected diagrams a s  can easily be 
verified by finding the generating functional for the con- 
nected Green functions 

FIG. 1. 

one must discard functions cp independent of x and con- 
sider only functions which decrease a s  1x1-.o. For 
such functions, which satisfy condition (lab), we have 

There is a se t  of spherically symmetric solutions of 
Eqs. (18) which differ in the position of the center xo 
and the scale y : 

The fact that is proportional to ,/k justifies the use 
of the quasi-classical method for evaluating the func- 
tional integral. (16). 

In the next section we use the se t  of solutions (20) to 
evaluate the integral (16). Here we illustrate the pos- 
sibility to apply the saddle-point method for calculating 
the asymptotic behavior of the expansion coefficients in 
the perturbation theory ser ies  by two exactly soluble 
models. We consider firstly instead of the functional 
integral a normal integral ("zero-dimensional" theory): 

Evaluating the integral over g we get 

The effective potential V(cp) has the form shown in Fig. 
1 which means that for large k there is a saddle-point 
(cf. (20)) in the integral (21) when 

After finding the coefficient of the exponent by means 
of evaluating the Gaussian integral over small fluctua- 
tions near the two saddle points (23) we get for the 
asymptotic behavior of (21) 

i. e., the perturbation theory ser ies  diverges a s  
(k ! ) "'""-'. Under those conditions the asymptotic be- 

havior of the integral (21), which is the contribution of 
all possible k-thorderdiagram for the 2rn ends, is, a s  
we already noted earl ier  when deriving the expression 
(16), the same a s  the asymptotic behavior of the con- 

and finding the coefficients of i t s  expansion in J andg. 
One also checks easily that Eq. (24) is the same a s  the 
asymptotic behavior of the integral (22) which can be 
expressed explicitly in terms of the gamma function. 

The second exactly soluble example which we study 
is very close to the real  case considered in the following 
sections. In fact, it a r ises  in the limiting transition n - m, D - 2 in the class (2) of the theories. In this limit 
we can evaluate the Gell-Mann-Low function in any per- 
turbation-theory orderr5': 

where c,= 0.577 is the Euler constant. The factor C ,  
in Eq. (25) is given by the following integral: 

It can be set  in correspondence with a Feynman diagram 
in which k points a re  connected by lines with propaga- 
tors  Ix,- x,, I -'Ik. The exact value of the integral (26) 
is equal toc5' 

whence 

(ne) 'k" exp ( - 2 4  ~ k ~ c k l k + ~  =- 
(2n) '" t.2 * -  

We get an asymptotic expression for C k  directly from 
Eq. (26) by a statistical method-by scanning the saddle- 
point density of the interaction point distribution fib). 
This allows us to interpret the saddle-point method of 
calculating the functional integral (16) in the framework 
of the diagram method of perturbation theory. We as- 
sume that a s  k - the main contribution to the integral 
(26) is collected from a limited space volume O. In 
that case the density of the number of interaction points 
increases and we apply the quasi-classical method to 
evaluate it. We divide the space 51 into N cells AO, << 1 
with k, points in each cell, and we shall assume that 
1 <<N << k, i. e. , 1 << k, c< k. Averaging the integrand in 
Eq. (26) by means of integrating over the region 
4 (AO, )~  we can rewrite (26) a s  

(28) 
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where 

1 1 
J (k , )  = - k,k,*u.,* - --I: k,v,, 

,.?* 2 ,  

The t e rms  left out of Eq. (28a) a r e  unimportant under 
the conditions that the dimensions of an  elementary cel l  
An, is sufficiently small: An, << (l/k)'I3. We shall as -  
sume, nonetheless, that Anr >> l/k s o  that we can use 
Stirling's formula fo r  k,! in  Eq. (28): 

(A8, )k ,  1 
z -  exp ( - k ,  ln - 

k,! (Znk,)"' 

Under this condition the third te rm in Eq. (28a) is of 
the order k ~ n ,  >> 1. One can check that its role, when 

.we evaluate the sum in (28) using the saddle-point meth- 
od, reduces to extending the minimum of the functional 

in the class of the s tep  functions 

to its minimum in the c lass  of all functions. One must 
find the minimum of the functional (29) with the follow- 
ing additional conditions: 

The solution of this variational problem in the class 
of continuous functions is 

resulting from the second te rm in Eq. (28a) removes the 
logarithmic divergence which appears when integrating 
over y (x). When we diagonalize the quadratic form in 
y (x) in (32) there  a r i s e  dangerous directions along which 
it does not change. The integration over the parameters 
which correspond to these directions is performed by 
means of the 6-functions. Using the method of the fol- 
lowing sections we can easily integrate over y (x) and ' 

obtain Eq. (27a). Another way of calculating the asymp- 
totic behavior of the integral (26) is reducing it to a 
functional integral of the form (16) with an exponential 
interaction 

H,,<-g J d2x exp I- (8nlk)  '"cp(x) I 

and the evaluation of that functional integral by means 
of the saddle-point method gives the same result  (27a). 
We have thus verified through the exactly soluble model 
(25) that the saddle-point method of evaluating the inte- 
gra l  (16) is in perturbation theory equivalent to looking 
for  the saddle-point density of the interaction-point dis- 
tribution. 

4. ASYMPTOTIC BEHAVIOR OF THE EXPANSION 
OF THE GELL-MANN-LOW FUNCTION 

We have shown in the beginning of the preceding sec- 
tion that there is in the limit k- m in the integral (16) 
a s e t  of saddle-point values fo r  p(x) and g, which differ 
in the position of the center of the distribution and the 
scale y (see (20)). All saddle points found give the same 
contribution when we evaluate the integral (16) because 
the functional J of (17), which is varied, is the same 
in those points (see (19)). In order  to separate explicit- 
ly the integrations over x,  and y we apply ~ a d d e e v ' s  
method.Ie1 We introduce in the functional integral (16) 
the following expansion of unity: 

After that, using the formulae 

It is convenient when summing in (28) over the fluc- 
tuations A k ,  near the saddle-point number of the parti- 
cles i,= EAQ, to  change to a new variable y (x)= (2nk,)-'/' 
xAk,: We have 

The counterterm 

to  transform the parameters  x and the integration vari- 
ables (o, and using the fact that the functional (17) is in- 
variant under those transformations we can put (16) into 
the form 

(35) 
where ~ i ( p , g , )  differs from%'(cp,g,) (see (3)) by the 
substitution 
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and the dropping (for sufficiently small y )  of the poly- 
nomial in cp of degree n - 2 which might contain arbitrary 
finite dimensional coupling constants (such a s  the re- 
normalized mass). 

If we put 

the &functions in Eq. (35) will be completely analogous 
to the 6-functions in the integral (26), i. e., they fix the 
center and scale in the density of the interaction point 
distribution in k-th order. There a re  thus in the integral 
(35), in contrast to (16b only two saddle-point values 
for cp(x) (cf. (20)): 

The corresponding saddle-point interaction-point dis- 
tribution is given by the formula 

In particular, a s  n - a, we get Eq. (31). 

Bearing in mind that Eq. (18b) holds a t  the saddle 
point, we can make the following substitution in the in- 
tegral (35): 

The enables us to "break the ends" of GA* (xl, . . . , x,) 
and change to the vertex function l?Ak'(xl,. . . , x,) (see 
(13)): 

Here y, is an integral over small fluctuations Acp close 
to the two saddle points (38): 

The functional @(~cp)  in Eq. (42) is quadratic in Acp : 

of the integral in Eq. (42), in order that the quantity 
y, be independent of k a s  k -  a,. When calculating with 
an accuracy up to a constant i t  is sufficient to  retain in 
x' only two terms (see (3)): 

We use Eq. (41) to express the expression for the k-th 
order of perturbation theory in the expansion of the in- 
variant charge in a series in the physical charge g, in 
terms of y,. To do this we change to the renormalized 
vertex part in the momentum representation: 

where the momenta p, and p$ a re  chosen such that Eqs. 
(6) and (7) a re  satisfied. Substituting Eq. (41) into Eq. 
(45a) and changing the variables x; yx,+ xo we get after 
integrating over xo 

- exp ( iy C p T 8 r ) ]  kWa (-~P)-keku-nlzl ~ ( Y P ) .  (46) 

For large k the main contribution to the invariant 
charge (5) comes from the vertex part  (see, for instance 
the splitting off of the f ree  particle Green function A' in 
Eq. (40)). The expansion of the invariant charge is thus 
the same a s  the expansion of r: 

To find the ser ies  expansion of the Gell-Mann-Low 
function (9) we must according to the definition (8) dif- 
ferentiate (47a) with respect to l n ( ~ ~ / ~ ~ )  and express 
the result a s  a function of g(p2/p2,g,). Since the coef- 
ficients ~ , ( n , p ~ / ~ ~ )  increase fast  with the number k (see 
2, in Eq. (20)) the main role in such a re-expansion is 
played by the terms in (47a) closest to a given number 
k, and in them it  is sufficient to retain only two terms 
in the expansion of g, in g(p2/Cr2,g,). We thus get for 
the coefficients Ck(n) in (9) the following expression: 

The separate terms on the right-hand side of Eq. (48) 
may depend on p2/c12, but the sum does not depend on i t  
by virtue of the renormalizability of the theory. 

Bearing in mind that the coefficients Ak(n,p2/p2) for 
the case n 3 6 increase faster than (k I)'*, we find from We have included some k-dependent factors in front 
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(48) that the Ck(n) must the same a s  the A; ,  i. e., the 
A, for n 2 6 contain only the single-logarithmic contribu- 
tion. This in turn means that for n > 6 the coefficients 
y,(yp) in Eq. (46) a r e  independent of y, i. e., 

The case n = 4 in the four-dimensional space D = 4 is 
singular, for in that case the coefficients Ak(n) increase 
a s  a factorial (see (20) and (46)). By virtue of Eq. (48) 
this leads to a more complicated formula expressing the 
Ck of (4) in terms of y4(y p): 

(50) 
Since 

y4(y p )  must appropriately depend on y p in order that 
there does not remain a pz-dependence in the product 
(50). In the next section we show that this is, in fact, 
the case. The cause of the yp-dependence of y4 is the 
fact that in thegrp4/4!-theory in higher orders of the 
perturbation theory comparable contributions to the in- 
variant charge come from both the skeleton diagrams 
and diagrams with the simplest single-loop insertions 
which have an ultra-violet divergence before renormal- 
ization. At the same time diagrams with radiative cor- 
rections to the Green functions turn out to be important 
only in terms of order 1/k relative to the contribution 
from (50). 

5. CALCULATION OF CORRECTIONS CONNECTED 
WITH QUANTUM FLUCTUATIONS TO THE 
ASYMPTOTIC FORMULA 

For the calculation of y, (see (42)) it is convenient to 
change from the Euclidean D-dimensional space to the 
unit sphere SD+l in the D + 1-dimensional z space1': 

If we use the formula 

to introduce a new integration variable ~ ( z )  and use the 
relations 

we can write Eq. (42) for y, after integration over Ag,  
in the form 

The counterterm - I&?idDx is intended to remove the 
ultra-violet divergence which occurs when one evaluates 
the functional integral (55). One discovers this diver- 
gence most simply in the old variables xu and Arp (see 
(42)). If we consider the term 42, +n'2(~rp)2/(n - 2)! in 
perturbation theory (to do this we introduce a factor c), 
the calculation of the functional integral 

is equivalent to summing for F the contribution from 
closed loops in the field ~(-i)?" '~/(n - 2)!. In f i r s t  or- 
der in the external field we get 

where A'&) is the Green function of the scalar particle 
in the coordinate representation. It is clear from (4) 
that (57) contains an ultra-violet divergence. This di- 
vergence is removed for  c =  1 due to the first  term in 
1; of (44) corresponding to the infinite renormalization 
of I?,, . The role of the f i rs t  term in%' thus reduces 
to multiplying the result of calculating the integral (55) 
by the factor 

In the next order of the perturbation theory in c we 
have 

The integral converges for n 3 6 (D a 3). When n = 4 
(D = 4) there is a logarithmic divergence in the integral 

One checks easily that the second counterterm in&: (see 
(44)) corresponding to the renormalization of the charge 
removes that divergence. The role of the second term 
in X' thus reduces to multiplying the result of the inte- 
gration in (55) by the factor 

(61) 
It is convenient, when evaluating the integral (56), to 

rewrite i t  in t e rms  of the variables (52) and (53): 
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We must diagonalize the quadratic form in Y. This 
calls for the solution of the following equation for eigen- 
values and eigenfunctions in the (D + 1 )-dimensional 
space: 

which is a generalization of the well known equation for 
the spherical harmonics Y yeim'. 

The eigenvalue spectrum of Eq. (63) is discrete: 

and the eigenfunctions corresponding to a given eigen- 
value (64) a r e  

where the curly brackets {. . .} denote separation of the 
terms and symmetrization; we note that the spectrum 
(64) can easily be obtained if we bear in mind that 

Each eigenvalue of (64) corresponds to 

linearly independent eigenfunctions (65). 

We can choose the solutions of Eq. (63) to be ortho- 
normalized on the sphere: 

If, therefore, weexpand the integration variable in (62) 
in terms of these functions 

the functional integral (62) will factorize when we change 
to the new variable C, : 

We thus get for the expansion in E the following coeffi- 
cients, which a r e  necessary for evaluating Al and A2 
(see (58) and (61)): 

It is clear from Eqs. (64) and (66) that the ser ies  for 
( a F / a ~ ) ~ ,  and for (#F/~E~),, diverge a t  the upper limit 
like zmD" and CmD", respectively, i. e., there is a 
power-law divergence in (8F/8&),& for all  D >2, and a 
logarithmic divergence only for  D = 4 in (82~/8&2)w0. 

We now turn to the calculation of the functional inte- 
gral for y, (see (55)). Using Eq. (67) to introduce the 
variables C ,  instead of the integration variables Yk), 
we can write the result in the form (cf. (68)) 

A,A,  dCI exp (-1/,C,2 (A-D) -i/,D26roCo2}6D (R.) 6 ( R )  rn=-II 
12n 

I .  
S dCI exp{-'/rC~'[h+'lrD ('/zD-1) I} (70) 

The quadratic form in the C ,  in the exponent in the in- 
tegrand in Eq. (70) is not negative-definite. Indeed, for 
m = 1 we have X,= D, i. e., the coefficients of the squareE 
of the m + 1 parameters C corresponding to the ortho- 
normalized eigenfunctions (see (65)) 

vanish. This fact is a consequence of the Goldstone 
theorem. Indeed, the initial equations in the theory 
(18) were symmetric with respect to translational and 
scale transformations. When we choose the solution 
with a fixed center and scale (see (38)) there must occur 
in the quantum spectrum of the problem constants with 
zero energy. Moreover, the corresponding eigenfunc- 
tions A ~ I '  (see (72) and (53)) can be obtained by means 
of differentiating the se t  of classical solutions (20) with 
respect to the parameters xo and y. 

One can use the 6-functions to get rid of the integra- 
tion in Eq. (70) over the parameters C  employing the 
formulae 

Thus we have (cf. (68)) 

A,A2 D(D+2)  (D+')/" 1 ' .=--{-I e x p [ - T ' , ~ . i n  L-D 
21; 4n(D+1)  m-a h , + ' / 9  ( ' / a - 1 )  

(74) 
Substituting Eq. (74) into Eqs. (49) and (50) we get after 
some elementary calculations of the integrals which we 
encounter the following expressions for the asymptotic 
behavior of the expansion coefficients of the Gell-Mann- 
Low function (9): 
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for the case n 3 6 and 

k 
Ck (4) - lim Ck (4) = (-) k'E (4), 

~ l - . -  16nZe 

1 " 2m+3 amz 
~ e x p { - ~ ~ -  [ln(l-am)+ a,,, f -1) = 2.75; 

m-2 a" 2 

a, = 
6 1 "  d . ~  

K~(Y)=-J- cos xy 
( m f l )  (m+2) ' y (z2+1)" 

for the case of a theory with the interaction Hi,, 
=g Id 4~ (p4/4!. 

It is interesting to compare Eq. (75) with the calcula- 
tions in an exactly soluble model. In the limit n - m the 
sum in Eq. (75) can be found in analytic form and we 
get 

One sees easily that this expression is the same as the 
asymptotic form for large k of the exact Eq. (25) ob- 
tained in a gqn/n! theory in the limit of large nC5' (see 
(27a)). Equation (77) proves the statement given in a 
previous paperc51 that the coefficients Ck(n) can, a t  
large n, be  evaluated for fixed k and that such a cal- 
c~llation leads to their correct  asymptotic form even 
when k >> n. 

The problem arises:  how fast  is the asymptotic form 
approached and what is the accuracy of the asymptotic 
formulae for small 2 ? The exact calculation of the 
first  coefficients C2, C3, C4, and C5 (see (27)) for the 
integral Ck occurring in an exactly soluble modelcs3 (see 
(26)) and their approximate calculation, using the asymp- 
totic formula (27a) give, respectively, 

For the case of a theory with interaction Hi,,= g(p4/4! 
only the first  three expansion coefficients of the Gell- 
Mann-Low function a re  known.cs' A comparison of ex- 
act calculations and calculatiops using the approximate 
Eq. (76) gives, respectively (Ck(4) =A,(16 $)-"'), 

The approximation to the true coefficients of the Gell- 
Mann-Low function given by the asymptotic Eqs. (75) 
and (76) is thus a good one. Moreover, i t  is clear from 
the whole preceding discussion that we can make the 
asymptotic Eqs. (75) and (76) more exact by developing 
a perturbation theory in the small  parameter l/k 
(which even for the f i rs t  coefficient of the Gell-Mann- 
Low function is equal to 9).  The exact asymptotic for- 
mulae thus obtained could be used to evaluate coeffi- 
cients C,(n) with complex k. If the correct analytical 
continuation of the asymptotic perturbation theory ser-  
ies  (9) is to write it a s  a Watson-Sommerfeld integral 

I 
*(g)=-, J cik&-C(n), 1<o<2. 

0-,- 
sin nk (80) 

a s  was suggested in a previous paperc51 the exact asymp- 
totic formulae would give the possibility for an approxi- 
mate calculation of the integral (80), i. e., would enable 
us to find the Gell-Mann-Low function approximately. 
Such a calculation would be of particularly actual inter- 
est  in the asymptotic-free theories where an infrared 
catastrophe occurs.[10' The calculation of the Gell-' 
Mann-Low function would also be a great interest in 
quantum electrodynamics. 
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