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An integral equation is derived for the t-channel partial wave amplitudes in the investigation of the multi- 
Regge form of the 2+2+ n amplitude. For a t-channel state with isospin T = 1 the solution of this 
equation is a Regge pole. The analytic properties of the isospin T = 0, 2 partial wave amplitudes are 
investigated near the threshold for the production of two or three particles. It is shown that in the j-plane 
there are moving poles and cuts. For the T =O vacuum channel it was found that the partial wave 
amplitude has a fued square-root type branch point to the right of j = 1. 

PACS numbers: 12.40.Mm, 11.80.Et 

1. INTRODUCTION complex field. In this model there is a scalar field cp 

The most attractive models of strong interactions a r e  necessary for the renormalizability of the theory. The 

at present models based on the gauge vector fields of calculation of the asymptotic behavior of the scattering 

the ~ a n ~ - ~ i l l s [ "  type. In distinction from quantum amplitudes for large energies slr2 is carried out in the 

electrodynamics,[23 in these models the interaction van- leading logarithmic approximation: 

ishes at short distances, leading to an approximately 
scale-invariant behavior of the hadronic structure func- d l n 4  m - 1, gz<l ,  s= (p,+ps)2)mz, -t-m2. (1 ) 
ti on^.'^' The infrared instability of the theory at large 
distances seems to be the mechanism which confines In a preceding papertBJ we have shown that for an in- 
the quarks within the hadron.[*] The Yang-Mills theory elastic process in the multiregge kinematics (cf. Fig. 1) 
is renormalizable. Moreover, this property is retained "+t 

in the massive theory which ar ises  from the massless s k = ( ~ ~ k - , + ~ ~ k ) Z ~ m Z ,  -ti=-qlZ-m2, s . = s f i  (mi2+pk:), 

one via the Higgs-Kibble m e ~ h a n i s m . ~ ~ ]  For some of (-1 3-1 
I n k  

the models obtained in this manner factorization rela- ('1 
which yields the main contribution to the absorptive part tions hold for the Born amplitudes, a necessary condi- 
of the s-channel elastic amplitude; the corresponding in- tion for the reggeization of vector bosons and spinor 

 particle^.^^' elastic amplitude has the factorized form (cf. Eq. (55) 
int8'): 

In our preceding papers["81 the hypothesis that the 
Yang-Mills fields reggeize was confirmed to eighth order 
of perturbation theory (cf. also[g'). It was discovered 
that the inelastic amplitudes have a multiregge behav- 
ior.[" This gave r ise  to the hope that in the nonabelian 
case, in distinction from quantum electrodynamics,[101 
the total cross sections will not exceed the Froissart  
bound a s  the energy grows.[11' In our preceding note[12] 
we have shown that in the leading logarithmic approxi- 
mation, in spite of the multiregge form of the inelastic 
amplitudes, the total cross  sections increase with ener- 
gy according to a power law. In the present paper we 
consider questions related to the Pomeranchuk singular- 
ity in nonabelian gauge theories in more detail. 

where 

is  the Regge pole trajectory. For t = m 2  this pole tra- 
verses the point j = 1, corresponding to the spin of the 
original Yang-Mills boson, and this means the reggeiza- 

In the following section we shall derive a multiregge equa- tion of the latter. 

tion for partial waves withdifferent quantum numbers in the The vertices y f, a r e  
t-channel and show its self-consistency. In Sec. 3 we 
investigate the analytic properties in t of the partial- ~ , , ~ = m g 6 ~ ~  
wave amplitudes and the moving singularities in the j- 
plane. In Sec. 4 we consider the leading singularity in fo r  the emission of scalar particles, and 
the j-plane for the vacuum channel. 

2. A MULTIREGGE EQUATION FOR THE 
t-CHANNEL PARTIAL WAVES 

Below we shall consider the simplest model, [I3' based 
on an isotriplet of Yang-Mills vector fields V, of mass /2L&L ....... <&I 
m, the latter being the result of the appearance of a A 8 
nonvanishing vacuum expectation value of an isodoublet 

FIG. 1. 
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for the emission of vector particles D with polarization 
AD = l ,2,3.  The value AD = 3 corresponds to a longitudi- 
nally polarized vector particle. The letters, i, j ,d ,  la- 
bel the isospin indices. 

The vertices riD have a different form, depending on 
the type of scattered particle. For isospin T = 4 quarks 
we have 

For the scattering of vector particles 

where a = 1 for )IA = 1,2  and aLA = 4 for XA = 3, and for 
&.! the transition of a vector particle into a scalar particle 

We note that some relations between the different vertex 
functions (7)-(9) follow from the group properties of the 
initial massless Yang-Mills theory."' 

Making use of the fact that the contribution to the ab- 
sorptive part of the elastic amplitude coming from the 
(2+n)-particle s-channel intermediate state can be cal- 
culated to logarithmic accuracy (1) according to the 
formula 

where the integration is over the region (2), we obtain, 
after using dispersion relations in s, the elastic ampli- 
tude in the following form ( ~ f . ' ~ '  for more details): 

4'11. 
A,. ( s ,  q )  = r A A . ~ i Q j  (s, q )  rss.+r:Ar~(l) ( s ,  q )  riB.+r.L.~(E)(~, q )  rii.; 

(11) 
here A 'T ' (~ ,  q )  is the scattering amplitude with definite 
isospin T in the t-channel. These amplitudes can be 
represented in  a multiregge form (cf. Eq. (60) inc8'): 

where 

HereAT=CT(t-  (3/2)m2)+3m2, C T = 2 -  ~ T ( T + I ) ,  and 
the scattering amplitude for reggeons on each other, 
~ ' ~ ' ( q ~ ,  q2) has the form 

(14) 
The vertices in Eq. (11) for vector (v), scalar (s), and 
spinor (F) particles (cf. also (7)-(9)) are:  

where 

We note that the first  term in (13) leads to the Born 
term in the amplitude A?? (s, q )  for T = 1. In the case 
T = 0,2 the signature factor in (12) does not contain a 
pole a t  o= 0, i. e . ,  the f i rs t  term in (13) yields a negli- 
gibly small contribution in the even signature. Elimina- 
tion of this term from FLT' is necessary in order that t- 
channel unitarity hold (cf. the following section). The 
amplitude  AT^^ (s, q )  was calculated incQ1 to eighth order 
of perturbation theory. The results of Lo and Cheng 
coincide with the expansion to eighth order of our ex- 
pressions (11)-(13); the results  of McCoy and Wu for 
T =  0, 2 also agree with ours, after corrections of mis- 
prints. 

As is easily verified, the amplitude FiT'(q2) can be 
expressed in terms of the off-shell amplitude ~;''(k,q 
- k)  according to the formula 

F.(') ( q z )  =~.(r) (k, q-k )  Ik:-(s-h)*-ma, (16) 

where the amplitude FLT'(k,q - k)  satisfies the Bethe- 
Salpeter equation 

[ o - a ( V )  - a ( ( q - k ) ' )  IF:'' ( k ,  q -k )  

The solution of this equation for T = 1 

shows that the branch points in the j-plane which appear 
in individual diagrams according to the Amati- Fubini- 
Stanghellini m e ~ h a n i s r n ~ ' ~ '  cancel in the sum for T = 1, 
so that a s  a result we have only a pole for (L.= a(q2), 
corresponding to a reggeized vector meson. Thus, the 
multiregge equation leads in this case to the same sin- 
gularity in the j-plane a s  that which determines the high- 
energy behavior of the initial inelastic amplitudes (3): 
we have a peculiar ' ' b ~ o t s t r a ~ . ' ' ~ ~ ~ ~  

In the case T = 0 and T = 2 there is no cancellation of 
the branch cuts related to the exchange of two reggeized 
vector mesons, a s  we will see in the following section. 

3. MOVING SlNGULARlTlES I N  THE 
/'-PLANE PARTIAL WAVES 

We introduce the new functions f E( t )  according to the 
definition 
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F ( T 1 f q Z ) = ~ : +  w w 6 + +Too +2(,-u4 
57-k 

+f { 4 : O C O q ( t - c T r 4 ~  

FIG. 2. 

These functions coincide with the partial wave ampli- 
tudes T:T;,,,, for nonsense-nonsense transitions for the 
t-channel scattering of two vector rnes~ns . '~ '  

From the equation'131 with the use of the explicit 
form of the kernel K ' ~ '  (ql, q2) (cf. (14)) it follows that 
in the region 4 m 2 < t  < 9m2 the partial waves we have in- 
troduced in (19) satisfy the unitarity condition in the 
form 

As is well known, [16' i t  follows from the equation (20) 
that the partial waves f z(t) must have Regge poles, 
whereas near the fixed singularities at c =  b, the func- 
tion f E(t) cannot be singular (the limit of f ;f;(t) for c- cue 
must exist). As will be shown in the following section, 
the leading singularity in the vacuum channel with T = 0 
is a fixed square-root branch point for b,=j  - 1 
= 2n-% ln2. We then obtain from the relation (20) that 

f."t) ) I.-w=C(t)+Cl(t) (a-a,)". (21) 

It follows from Eqs. (19) and (20) that for t- 4m2 the 
leading singularity in all  three channels T = O,1,2 is 
the Regge pole 

As t decreases for T = 0 this pole moves to the left and 
in the s-channel physical region (t < 0) i t  will hide under 
the cut w = w, (cf. (21)), no longer influencing the asymp- 
totic behavior of the scattering amplitude (12). The re- 
sult (22) can also be obtained directly from (13), i f  one 
collects the terms which a r e  most singular for  t- 4m2 
(for this one has to omit in (14) the last  term). We note 
in addition that Eq. (22) makes sense only in the region 
where the expansion (13) is valid, i. e., for c -g << 1. 
In the region c- 1 the unitarity condition (20) must be 
changed,t16' which leads to the "freezing" of the Regge 
pole (22) for t- 4m2, somewhere near the point w = 1. 

It is easy to see by means of the expansion of (13) into 
a perturbation theory ser ies  (Fig. 2), that for T = 0 and 
T = 2 the partial waves f z(t) have in t thresholds for t 
= (nm )2 of arbitrarily high order n = 2,3,4, . . . . This 
seems to be the explanation of the appearance of a fixed 
square-root branch point in the j-plane, if  one considers 
this problem from the point of view of analyticity and 

unitarity in the t-channel. Indeed, the mechanism of 
appearance of a fixed singularity related to the nonde- 
crease a t  large t of the singular part  of the discontinuity 
of the partial-wave amplitude on the left-hand cutc171 
which occurs in quantum eiectr~dynamics,['~'will be ab- 
sent in this case, since the partial wave (13) has only 
singularities for positive t. As is well known, the slope 
of the Regge trajectory corresponding to the bound state 
of n particles decreases with the increase of n. This 
mechanism could lead for  n - m to a fixed singularity." 

We consider in more detail the unitarity condition at 
the three-particle threshold. It follows from Eqs. (13) 
and (19) that the discontinuity of the partial-wave ampli- 
tude f :(t) produced by the three-particle intermediate 
state in the t-channel can be represented in the follow- 
ing form (cf. Eq. (20)): 

where the t-channel transition amplitude of two particles 
into three, f2-,, can be expressed in terms of the off- 
shell two-particle amplitude in the following manner (cf. 
(19)): 

In Eq. (24) the function F:' represents a solution of 
Eq. (17) analytically continued into the region k2 > 0, 
(q - k)2 > 0, q2 > 0 (this continuation requires a pseudo- 
euclidean rotation in the integrals (17)). 

The f i rs t  term in Eq. (23) corresponds to the diagram 
a in Fig. 3, where the particles with momenta k, and k2 
go over into reggeons of isospin T = 1 and negative sig- 
nature, and the second term corresponds to the inter- 
ference graph b. 

We note that on account of the fact that for  negative 
signature and T = 1 the function F',' (kl + k2, k3) I ,,;.,,,2 does 
not depend on (k, + k2)2 (cf. Eq. (18)), the two terms in 
Eqs. (23) cancel mutually (since C, I = I), so  that the 
partial wave with negative signature has only two-parti- 
cle singularities in the t-channel. 

In the case of positive 'signature (T = 0,2) the cancel- 
lation of the imaginary part  a t  the three-particle thresh- 
old does not occur. The f i rs t  term in Eq. (23) is the 
contribution to the imaginary part from the three-parti- 
cle intermediate state in the t-channel, which appears 
when one cuts the T = 1 reggeon from the particles (cf. 
Fig. 3, a). This contribution is of opposite sign corn- 
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FIG. 4. 

pared to the contribution (20) of the two-particle inter- 
mediate state, which is directly related to the fact of 
reggeization of the vector meson. Indeed, the partial- 
wave corresponding to a graph with the exchange of a 
state consisting of a reggeon and a particle (cf. Fig. 4) 
is proportional to an integral over k containing a factor 
A = - (k2 - m2+ i&)-'(w - a(k2))-l. If the vector meson 
reggeizes a(k2) lk2.,2= 0, so  that the contribution to the 
two-particle absorptive part is proportional to the in- 
tegral of Im,A = nw"8(k2 - m2), and the contribution of 
the three-particle intermediate state is proportional to 
the integral of Im,A I R?.,4m2 = - (k2 - m2)-I 1 LO - a(k2) 1 '2 Ima 
and is a negative quantity on account of the two-particle 
unitarity relation (20). The negative sign of the imagi- 
nary part  of the partial wave with positive signature a t  
the three-particle threshold for rea l  j # 2n is possible 
on account of the fact that for an analytic continuation 
from physical values j = 2n in the three-particle case, 
in distinction from the two-particle case (20), there 
appear in the right-hand side of the unitarity condition 
terms which a re  proportional to tan(nj/2), so  that the 
result is no longer positive definite."'' 

We now consider the question of the character of the 
singularities of the partial-wave amplitude in the j- 
plane near the three-particle threshold t = 9m2+ 6mEo - 9m2, where Eo  is the energy of the particles in the 
center-of-mass frame. After integrating over the 
"time" components of the two-vectors ki , Eq. (23) can 
be rewritten in the nonrelativistic limit in the form 

1 n 
lmaf:(t)  I.+, = -, (;)' dk,  d k 2 4  6 ( q  -z k , )  

where q is the momentum of the center of mass of the 
three particles, whereas the equation for f2,:, is easily 
obtained in the same limit from Eq. (17), taking into 
account the relation (24), in the following form 

where it was assumed that w/g2-m(t - 9m2)-'I2 >> 1. 
This makes i t  possible to omit the three-particle terms, 
which appear in the case when one retains in the kernel 
of the integral equation (17) the f i rs t  term of Eq. (14). 
Equation (26) is a one-dimensional Faddeev equation for 
the three-particle scattering amplitude with a delta-like 
pair i n t e r a c t i ~ n . ~ ' ~ '  Going over into the coordinate r e p  
resentation 

where p(xl, x, ; x,) = cp(x2, x, ; x,), we obtain in place of 
(26) the equation 

Here 

We consider the case C, = - 2, corresponding to the 
unphysical value T = 3.4, where i t  is possible to obtain 
an exact solution. For C, = - 2 the unitarity relation 
(25) contains the square of the absolute value of the func- 
tion 

in the coordinate representation for the function G(xl, 
x2 , x,) defined according to (27) with the substitution 

f ? - ~ ( k , + k t ,  X.:) + j ( k t ,  kt ,  k , ) ,  q(x1,  xi; x3)+G ( x i ,  x?, x s ) ,  

we obtain 

(29) 
This is an equation for the Green's function of three 

identical pointlike spinless particles. A complete set  
of wave functions of the homogeneous equation (29) is 
known,['9' in terms of which G k ,  ,x2,  x,) can be ex- 
pressed in the standard form. We f i rs t  consider the re- 
pulsive case A< 0 (in terms of the variable w this means 
w<O). In this case the se t  of functions #(x,xg3l klk&,) 
with real  k, is complete.c191 Use of dispersion relations 
for the reconstruction of f :(t) in terms of i t s  imaginary 
part  yields for C,= - 2: 

juT( t )  lcT--2=- (L)' j dk ,  dk2dk,6 ( q  -z I , )  f ( k t .  kt. ka)' 
2n m 

where ~ = ~ ~ + q ~ / 6 m  = (t- 9m2+q2)/6m; ki,=ki - k,. In 
integrating over k ,  in Eq. (30) a cutoff a t  momenta of 
the order of m is understood. It is obvious that in the 
region below the threshold (t<9m2), for A<O (o<O) the 
expression (30) has no singularity in X. In the case of 
attraction (X>  0, w> 0) the result can be obtained either 
by using the complete se t  of functions for that case,"91 
o r  by analytically continuing the expression (30): 
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3gZPTa 
fmT( t )  l c  TF-2 = - 

40nhs tn  {I  d k t d k 2 d k 3 1 ( q - ~  k , )  

i. e. ,  we see that in the w-plane there is a Mandelstam 
branch point for w = 3g  2m/8 r(- 4 m ~ ~ ) " ~ ,  correspond- 
ing in the language of the quantum-mechanical problem 
(29) to the production threshold of a particle and a bound 
state of two particles with a binding energy - k Z / 4 m ,  
and a pole for w = 3g2m/8 n(- r n ~ ) " ~ ,  corresponding to 
a bound state of three particles with a binding energy 
- k2/rn.  

Although we have not succeeded in solving the system 
(28) for arbitrary T, we think that the analytic proper- 
ties of the partial-wave amplitudes f z(t) in the w-plane 
will be the same a s  for C ,  = - 2, i. e., the moving sin- 
gularities of the partial waves (19) in the vacuum chan- 
nel and in the channel T = 2 a re  Mandelstam branch 
points and possible Regge poles. 

The character of the moving singularities of the par- 
tial waves f z(t) in the w-plane can be illustrated on the 
example of the wave with C ,  = 0 (this corresponds to the 
unphysical isospin value T = 1.6). For this case the ex- 
act equation (17) is easily solved: 

2 
~ r ' ( k ,  q-k) Ic, ,o =- [ o - a ( k 2 ) - a ( ( q - k ) ' )  ]-I 

m2 

(32) 
The existence of moving poles and cuts is obvious from 
(32). 

4. THE FIXED SINGULARITY OF THE 
PARTIAL-WAVE AMPLITUDE FOR THE VACUUM 
CHANNEL 

For the investigation of the singularity in the j-plane 
of the partial wave with the quantum numbers of the vac- 
uum in the t-channel (T= 0) we consider the amplitude 
F,(kl, k,; q )  with momenta k,, k , ,  q - k,, q - k2 off the 
mass shell, amplitude which satisfies the equation 

[ o - a ( k i 7  - a ( ( ~ - k , ) ~ )  IFr (k l ,  k t ;  q )  =Kc') (k , ,  k2) +H(k t ,  kz) 
gZ +-Jd!k '  

K'O' (k , ,  k')  
(2n)"k"-mZ) [ (q -k ' )Z -mZ]  f', (k ' ,  k2, q ) ,  (33) 

where 

Here F,(k,  , k,, q )  satisfies the relations 

1 g" F?' (k , ,  q-k , )  = - + J d2kz 
Fm(kt, kz;  AT-' 

AT (2n)  (kZ2-m') [ (q-Is,)'-mZ] 

The equation (33) can be rewritten in the form 

oF. (k , ,  k,; q ) = K ( " ( k , ,  k z ) + R ( k , ,  k?) 
d2k' 

[K'O1(k,,  k ' )F,(k' ,  k,:  q )  

+H(kr ,  k')F.(k,,  k,; q )  I. (36) 

We consider this equation for large x,,, = - k:, ,. Ne- 
glecting m2, q2 and averaging over the directions of k, , 
we obtain 

We look for the solution in the form F,(xl ,x,)=xlL, 
x (x, /x,); for L,(z ) we have the equation 

4 
o L .  ( z )  = - 

(4+z2)  '!: 

For the homogeneous equation (38) there exists a sys- 
tem of eigenfunctions q,(z) ,  - m < v< m, which is com- 
plete in the interval [0, m], corresponding to the eigen- 
values w = ~ ( v ) :  

q v ( z )  = z l ~ - ' :  / (2n)"*,  

(39) 
The solution of the inhomogeneous equation (38) can be 
expanded in terms of these functions: 

The maximal value of ~ ( v )  is attained for v = 0 and equals 
(2g2 1n2)/n2. The function L , (z) has, consequently, a 
cut in the w plane for o< wo= (2g ln2)/n '. Since the 
position of the singularity of the partial wave amplitude 
does not depend on the degree of virtuality of the parti- 
cle, we conclude that f LO'(t) has a fixed branch point a t  
w= Wo. 

One can arrive a t  this result from a somewhat dif- 
ferent point of view. The appearance of the singularity 
of the partial-wave amplitude a t  the point w= wo means 
that the perturbation theory ser ies  with respect to (g2/ 
w)" diverges at that point for this wave. In order to 
understand the character of the singularity and of the 
divergence point i t  is necessary to know the asymptotic 
behavior of the terms of the series for n -  .a. We shall 
iterate Eq. (17) in the case T = 0: 

pkO' ( k ,  q -k )  = r l o - l  cp" ( k ,  q )  ; 

("f" ( k ,  q )  = - d2k' 
[ (q-k' )?-m2]  

[K'O)(k, k') cp,-!  (k', q )  

+K ( k  ,k')cpn-I ( k ,  q )  I, 

cp*(k, q ) -1 .  (41) 
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A similar ser ies  can be written for ~: ' ( t ) :  

Here 

As n grows in the interval (43) the essential contribution 
comes from larger and larger values of - k2. For large 
- k2 one can neglect the q2-dependence in (41); defining 
rp,(k,q)= +,(()(- k)lf2, where 5 = In(- k2/m2), we obtain 

By analogy with the diffusion equation (interpreting +,(5)  
a s  the probability of being situated on the nth step at 
the point (), one should expect that J1,(() will change over 
characteristic distances 5 -n1I2; therefore in (44) one 
may expand +,,,((') at the point (; a s  a result of this we 
obtain 

where w0 = (2g2 1n2)/n ', C = 7 n *g26 (3), where g (n) is the 
Riemann zeta function. Going from the difference equa- 
tion to a differential equation, we shall have 

Substituting the solution of this equation for large n 

into (43), where the q-dependence may now be neglected, 
we obtain 

Summation over n yields 

Thus, the leading singularity in the j-plane for the 
vacuum channel (T = 0) is a fixed square-root branch 
point for j = wo+ 1 > 1, 

CONCLUSION 

Starting from the multiregge equation for the partial 
waves with different quantum numbers in the t-channel, 
(13), obtained in the leading logarithmic approximation 
(I), we have shown that the only singularity in the j- 
plane for the T = 1 partial wave is a Regge pole with the 
trajectory j = 1 + ( ~ ( t ) ,  (la), whereas for T = 0, 2 the j- 
plane structure is considerably more complicated. In 
this case an investigation of the partial-wave amplitudes 
near the two- and three-particle thresholds in the t- 

channel which we carried out in Sec. 3, shows the exis- 
tence of Regge poles (22) and of Mandelstam cuts (31), 
(32). In Sec. 4 we have investigated the leading singu- 
larity in the physical region for the vacuum channel and 
have shown that i t  is a fixed square-root branch point 
for j = wo + 1 > 1, (49), meaning a power-law growth of 
the total cross  sections with energy. In quantum elec- 
trodynamics the reason for the violation of the Froissart  
theorem is the growth of the c ross  sections for the pro- 
duction of an arbitrary number of e'e--pairs. Here, in 
spite of the decrease of each cross  section for n-parti- 
cle production with energy, the total c ross  sections in- 
crease, i. e., the growth of the number of open channels 
prevails. We remark here on the following circum- 
stance. From the analysis carried out in Sec. 4 it can 
be seen that the determining contribution to the forma- 
tion of a singularity a t  w= w, comes from high virtuali- 
ties (i. e., deviations from the mass  shell). One may 
therefore hope that in an asymptotically f ree  theory the 
situation will change. If, however, in our equations we 
simply consider the coupling constant a s  dependent on 
k2, there will not occur any cardinal changes; the char- 
acter of the singularity changes, but there remains a 
singularity to  the right of j = 1. 

 he authors a r e  grateful to S. G. Matinyan for  a useful dis- 
cussion of this question. 
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